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Abstract

Background: Epithelial-mesenchymal transition (EMT) has been recognized as playing a crucial role in cancer progression. Among the
studies on EMT, biomarker detection has been one of the important topics to understand the biology and mechanism of EMT related to
tumor progression and treatment resistance. The existing methods often identified differentially-expressed genes as potential markers by
ranking all genes by their variances. This paper proposes a novel method to detect markers for respective lineages in the EMT process.
Methods and Results: Our method consists of three steps: first, perform trajectory inference to identify the lineage of transitional
processes in EMT progression, and secondly, identify the lineage for EMT reversion in addition to EMT progression, and thirdly detect
biomarkers for both of the EMT progression and reversion lineages with differential expression analysis. Furthermore, to elucidate the
heterogeneity of the EMT process, we performed a clustering analysis of the cells in the EMT progression and reversion conditions.
We then explored branching trajectories that order clusters using time information of the time-course samples. Using this method, we
successfully detected two potential biomarkers related to EMT, phospholipid phosphatase 4 (PLPP4) and lymphotoxin-beta (LTB), which
have not been detected by the existing method. Conclusions: In this study, we propose a method for the detection of biomarkers of EMT
based on trajectory inference with single-cell RNA-seq data. The performance of the method is demonstrated by the detection of potential
biomarkers related to EMT.
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1. Introduction
In cancer research, it is very important to identify cell

characteristics and their changes associated with the evolu-
tion of cancer for considering the next therapeutic strategy.
Epithelial-mesenchymal transition (EMT) is a well-known
and important factor in the transition in tumor progression
due to the evolution of cancer and is also recognized as one
of the causes of drug resistance [1]. Single-cell RNA-seq
analysis has been used for identifying the characteristics of
individual cells from their gene expression profiles at the
single-cell level. Since single-cell RNA-seq analysis re-
quires handling enormous amounts of gene expression data
from respective single cells, tools for more effective analy-
sis have been studied to date.

These studies have used clustering methods for classi-
fying cells into functional groups or cell types such as Seu-
rat [2] and then have inferred the trajectory with pseudo-
time constructed from similarities in gene expression be-
tween cells (for example Monocle [3] and slingshot [4]) for
estimating gene expression over time in response to cell de-
velopment and stimulus reactions [5], etc.

In the studies on EMT, single-cell approaches have
been recently applied to elucidate the mechanism of EMT.
For example, for identifying the EMT-related biomarkers,
clustering and pseudotime analysis are conducted by Mon-
ocle as a semi-supervised approach [6]. Also, an unsu-

pervised learning method (QuanTC) is proposed to infer
and quantify the transitional property of individual cells
in scRNA-seq data [7]. By applying the method to the
analysis of the transition trajectories from EMT single-cell
datasets, they analyze transition cells and dynamics of EMT
that highlight the transition trajectories mediated by inter-
mediate cell states. In our previous study [8], we identify
biomarkers that are differentially expressed along specific
lineages progressing toward drug resistance by combining
clustering, trajectory inference, and gene expression analy-
sis of each lineage.

Another single-cell-based approach to using mass cy-
tometry time-course analysis resolves lung cancer EMT
states through TGFβ-treatment and identifies through
TGFβ-withdrawal, a distinct mesenchymal-epithelial tran-
sition (MET) state [9].

2. Materials and Methods
We used single-cell RNA-seq data from prostate can-

cer cell line DU145 studied by Cook et al. [10]. They
analyze single-cell RNA-seq data from four different can-
cer cell lines capable of undergoing an EMT (A549, lung;
DU145, prostate; MCF7, breast; and OVCA420, ovarian).
These cell lines were exposed each to knownEMT-inducing
factors TGFB1, EGF, and TNF over 12 distinct EMT time-
course experiments. For each of the 12 conditions, samples
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were collected at five distinct time points from 8 hours to 1
week (“0 d”, “8 h”, “1 d”, “3 d”, and “7 d”) after treatment,
and three additional time points from 8 hours to 3 days (“7 d
+ 8 h off”, “7 d + 1 d off”, and “7 d + 3 d off”) after the EMT-
inducing stimulus had been removed [10]. These data have
been deposited in the NCBI Gene Expression Omnibus un-
der the accession GSE147405. They assessed the temporal
progression of each above time course by using the R pack-
age Seurat 4.1 [2] and evaluated gene expression dynamics
throughout the pseudotime by using the R package psuper-
time v0.2.1 [11].

While the cells were arranged along with the physi-
cal time points of the obtained cell samples and they pseu-
dotemporally ordered the cells from each condition, their
study did not fully perform trajectory inference but com-
puted pseudotime along the paths connecting the centroids
of the successive time-course experiment data [10]. In addi-
tion, since they omitted the treatment withdrawal samples,
only EMT progression data were used to assess changes in
gene expression along with a pseudotime series.

In this paper, we propose a novel method for ana-
lyzing EMT processes. The objective of our study is to
identify biomarkers expressed along the transition process
through EMT. Our method consists of three steps: (1) per-
form trajectory inference to identify the lineage of transi-
tional processes in EMT progression by minimum spanning
tree (MST), (2) identify the lineage for EMT reversion in
addition to EMT progression, and (3) detect biomarkers for
both of the EMT progression and reversion lineages with
differential expression analysis. By taking advantage of this
method, we can identify biomarkers that exhibit differen-
tially expressed along the specific lineages of EMT.

Furthermore, to elucidate the heterogeneity of the
EMT process, we performed a clustering analysis of the
cells in the EMT progression and reversion conditions. We
then explored branching trajectories that order clusters us-
ing time information of the time-course samples. For the
clustering analysis and the temporal trajectory inference of
the resulting clusters, we adopted Seurat 4.1 and Tempora
0.1.0 [12], respectively. The method takes as input a gene
expression matrix from a time-series scRNA-seq experi-
ment and cluster labels for all cells and then calculates the
average gene expression profiles of all clusters [12]. Using
the temporal trajectories of the EMT progression and rever-
sion processes, we detect markers that are differentially ex-
pressed along the trajectories of the clusters. This analysis
can detect a variety set of markers reflecting the diversity of
the cell population in the EMT progression and reversion.

3. Results
3.1 Lineage Analysis

We conducted the proposed method to analyze the
scRNA-seq data on the EMT process. We used slingshot
2.2 [4] at Steps (1) and (2) of the method. In the inference
with slingshot, we set “0 d” as a start cluster (green circle)

and “7 d” as an end cluster (red circle) in the EMT progres-
sion as shown in Fig. 1. In addition, we set “7 d + 8 h off”
as a start cluster (green circle) and “7 d + 3 d off” as an
end cluster (red circle) in the EMT reversion. We detected
respective lineages by the inference in the case of DU145
prostate cells stimulated by TNF as shown in Figs. 1,2. The
UMAP embeddings of those cells were provided by Cook
et al. [10]. These lineages denote the temporal changes
from epithelial tomesenchymal in the EMTprogression and
from mesenchymal to epithelial in the EMT reversion, re-
spectively through the comparison of temporal dynamics of
the EMT, pseudotemporally ordered the cells for each con-
dition.

Table 1. Markers detected along the EMT progression
lineage of DU145 cells treated with TNF.
Gene waldStat_lineage logFClineage

IL32 84.83 1.84
PLPP4 48.54 2.53
FHL2 44.66 1.42
LTB 39.97 2.29
SFTA1P 38.68 1.28

Table 2. Markers detected along the EMT reversion lineage
of DU145 cells treated with TNF.

Gene waldStat_lineage logFClineage

IL32 37.30 –1.87
ISG15 33.18 –1.68
PLPP4 27.43 –2.70
WFDC2 20.48 –1.99
CSF2 15.69 –2.35

3.2 Biomarker Detection along both EMT Progression and
Reversion Lineages

Given the lineages identified in Sect. 3.1, we per-
formed statistical tests on gene expression along the lin-
eages by using tradeSeq 1.8.0 [13]. To extract markers for
the EMT, we assessed differential expression between the
starting and ending points along the lineages of the EMT
progression and reversion. We used the startVsEndTest
function in tradeSeq [13] as a Wald test to assess the null
hypothesis that the average expression at the starting point
is equal to the average expression at the endpoints.

We detected statistically significant markers in both
the EMT progression and reversion lineages. Tables 1,2
show the top five markers of the EMT progression and re-
version lineages for TNF stimulated DU145 cells detected
by the test. Interestingly, Interleukin (IL)-32 and phospho-
lipid phosphatase 4 (PLPP4) were detected as the statis-
tically important markers in both two lineages. Figs. 3,4
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Fig. 1. The lineage of the EMT progression detected by trajectory inference on UMAP embeddings of DU145 cells treated with
TNF. “0 d” as a start cluster (green circle) and “7 d” as an end cluster (red circle) in the lineage.

Fig. 2. The lineage of the EMT reversion detected by trajectory inference on UMAP embeddings of DU145 cells treated with
TNF. “7 d + 8 h off” (8 h_rm) as a start cluster (green circle) and “7 d + 3 d off” (3 d_rm) as an end cluster (red circle) in the lineage.

show the change of gene expression of IL32 and PLPP4,
respectively. Furthermore, TGFB1 stimulated OVCA420
cells showed a similar trend about IL32 in both the lineages
of the EMT progression and regression (data not shown).
These results may reflect that IL32 and PLPP4 have a sig-
nificant role in the EMT in these conditions.

Moreover, we evaluated the association of markers be-
tween the EMT progression and reversion for TNF stimu-
lated DU145 cells. Fig. 5 (Ref. [14]) shows a Venn di-

agram with the number of statistically significant markers
for both EMT progression and reversion in TNF stimulated
DU145 cells based on the results with startVsEndTest (p
< 0.05). We adapted the MSigDB hallmark EMT gene set
as a reference for canonical EMT-related genes [14]. We
identified TAGLN, LOX, VEGFC, LAMC2, TNFAIP3 in
addition to IL32 in both the EMT progression and rever-
sion in Fig. 5. Also, we identified ADAM12, TNC, and
GADD45A in only the EMT progression and CAPG and
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Fig. 3. Gene expression of interleukin (IL)-32 along with the EMT progression and reversion lineages. The left and right curves
denote the change of gene expression of IL32 along with the EMT progression and reversion lineages, respectively.

Fig. 4. Gene expression of phospholipid phosphatase 4 (PLPP4) along with the EMT progression and reversion lineages. The left
and right curves denote the change of gene expression of PLPP4 along with the EMT progression and reversion lineages, respectively.

ITGA2 in only the EMT reversion. In this analysis, the
concordance rate with the EMT hallmark genes was a part
as shown in Fig. 5. As the reason that the rate is low, it
has been reported that many canonical EMT genes, includ-
ing SNAI1, CDH1 (E-cadherin), and CDH2 (N-cadherin)
differentially expressed in only a small number of condi-
tions [10]. Of all genes differentially expressed across con-
ditions, the majority changed in as few as one to two condi-
tions, suggesting that the global expression programs asso-
ciated with the EMT are remarkably context specific. In ad-
dition, it has been shown that another canonical EMT gene,
SLUG (SNAI2), was not expressed in DU145 cells treated
with TNF (Fig. 3a in [10]).

If we would extend to apply our analysis to the other
conditions, we could detect more different markers that
would be additionally shared with the EMT hallmark genes.
Another reason is that we used the startVsEndTest function
to analyze the differential expression between the start and
end points of a lineage. For this reason, we cannot detect
potential markers that exhibit significant changes within a
lineage, e.g., early driver genes that affect the EMT process
only at its early stage of the process. We will extend our
method to the detection of such markers in the EMT pro-
cess.

Fig. 5. Comparison of the top markers between the EMT pro-
gression/reversion lineages in TNF stimulated DU145 cells and
the EMT hallmark genes. The “DU145 TNF pro” (red) and
“DU145 TNF rev” (blue) denote the EMT progression and rever-
sion markers, respectively. “EMT hallmark” (green) was obtained
from the MSigDB database [14].

3.3 Biomarker Detection along Temporal Trajectories of
Clusters

To elucidate the diversity of the cell population in the
EMT processes, we performed clustering analysis followed
by temporal trajectory inference of the obtained clusters in
the EMT progression and reversion datasets. Figs. 6,7 show
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Fig. 6. Clusters of the EMT progression/reversion samples on UMAP embeddings of DU145 cells treated with TNF. The left and
right plots denote the clustering results of the EMT progression and reversion samples, respectively.

Fig. 7. Temporal trajectories of the clusters in Fig. 6. The left and right diagrams denote the inferred trajectories of the EMTprogression
and reversion samples, respectively. The vertical axes denote time information of the clusters by calculating the average gene expression
over all cells in each cluster. The nodes of the diagrams denote the clusters, and the proportion of the pie charts of the nodes represents
the ratios of the samples with time information.

the clustering results of those datasets and the temporal tra-
jectories of the clusters inferred by Tempora 0.1.0 [12], re-
spectively. The obtained trajectories suggest the diversity
of cell populations in the EMT processes.

We then detected biomarkers along the branching tra-
jectories in the EMT progression and reversion samples by
using the startVsEndTest function to analyze the differen-
tial expression between the start and end points of each tra-
jectory (two trajectories in the EMT progression and three
trajectories in the EMT reversion). Tables 3,4 show the top
five genes detected by this analysis. As shown in Tables 3,4,
differentially expressed genes along the different trajecto-
ries do not overlap each other. This may suggest that signif-
icant diversity exists in the EMT process. However, IL32,
PLPP4, and lymphotoxin-beta (LTB) were detected in both
EMT progression/reversion trajectories. Fig. 8 shows the
change of gene expression of LTB along the EMT progres-
sion/reversion trajectories. The gene expression of LTB ex-
hibits similarity to that of IL32 (Fig. 3).

3.4 Comparison with the Previous Study

We compared the markers described in Sect. 3.2 to
the differentially-expressed markers in the previous study

Table 3. Markers detected along the two branching
trajectories in EMT progression.

1→3→4→5 1→3→0→2

STC1 IL32
ITGA2 LTB
MMP14 CDA
PRSS3 SERPINA1
RP11-221N13.3 PLPP4
The first row in the table denotes the order of the clusters along
the trajectories. The other rows indicate the differentially ex-
pressed genes in descending order of the Wald statistical score
(their scores are not shown). Only the top five genes are shown.

[10]. It has been reported that the cells in EMT pro-
gression morphologically transitioned throughout the full 7
days of EMT induction [10]. By comparison of the cells
stimulated for 7 days with the unstimulated ones at a 0
time point, our method detected the genes including IL32,
ITGA2, KLF6, OCIAD2, PLAU, and KRT19 as EMT-
relevant genes, which were also detected in the previous
study [10] as upregulated genes. Although the duration,
7 days, seems to be very long, it may be suggested to be
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Fig. 8. Gene expression of lymphotoxin-beta (LTB) along with the EMT progression and reversion lineages. The left and right
curves denote the change of gene expression of LTB along with the EMT progression and reversion lineages, respectively.

Table 4. Markers detected along the three branching
trajectories in EMT reversion.

2→1→0 2→1→4 2→3

TKTL1 TNNC1 IL32
CTA-212A2.3 RP11-495P10.1 LTB
LMF1 DTX4 PLPP4
TERT GPRC5B BCL2A1
ZNF547 LRAT IL11
The first row in the table denotes the order of the clusters along
the trajectories. The other rows indicate the differentially ex-
pressed genes in descending order of the Wald statistical score
(their scores are not shown). Only the top five genes are shown.

meaningful to compare the cells of those time points. IL32
and ITGA2 were included in the EMT hallmark genes set.
When we confirmed the individual pseudotime of the genes
that were not detected by our approach among the genes
listed in the previous studies, the expression level was con-
stant and no change was observed (data not shown). Inter-
estingly, PLPP4 and LTB were not included in the resulting
list of the previous study (data not shown). This suggests
that our detection of markers along lineage can provide a
different means for understanding EMT.

4. Discussion
To elucidate the biology of EMT is one of the key

research fields for considering the next cancer treatment.
Currently, lots of researchers have been trying to develop a
more effective approach to identify gene expression mark-
ers by the huge amount of data from bulk RNA-seq and
single-cell RNA-seq to identify the key factor of EMT. In
this paper, we conducted a lineage-based differential ex-
pression analysis to identify markers that exhibit differen-
tial expression as specific lineages in EMT.

As a result of the markers detected in EMT, IL32 was
identified as both the EMT progression and reversion in
the conditions of TNF stimulated DU145 cells and TGFB1
stimulated OVCA420 cells. IL32 is a well-known cytokine

associated with inflammation, autoimmune disease, virus
infections, and cancer [15]. In particular, it has been re-
ported that cancer-associated fibroblasts (CAF) secreted
IL32 promote breast cancer cells invasion and metastasis
through the enhancement of the EMT markers expression
[16].

Moreover, PLPP4was identified as both the EMT pro-
gression and reversion in the conditions of TNF stimulated
DU145 cells. PLPP4 has the potential for the proliferation
and tumorigenesis of lung carcinoma by promoting cell cy-
cle progression [17]. High expression of PLPP4 is pos-
itively associated with advanced clinicopathological fea-
tures and correlates with poor survival in lung carcinoma
patients [17]. Furthermore, PLPP4 was identified as one of
the key genes to promote bowel metastases among patients
with ovarian cancer [18].

The marker detection method with clustering and tem-
poral trajectory inference identifies LTB as well as IL32 and
PLPP4 in both the EMT progression and reversion samples.
LTB binds to lymphotoxin-alpha (LTA) to form membrane-
bound heterodimers, and the heterodimer binds and sig-
nals through the unique partner lymphotoxin-beta receptor
(LTBR) [19]. The LTBR signaling initiates inflammation-
induced carcinogenesis and is related to liver and prostate
cancer development [20].

While PLPP4 and LTB have not been reported as
EMT-related genes so far, these reports suggest that PLPP4
and LTBmight contribute to EMT in the conditions of TNF
stimulated DU145 cells.

5. Conclusions
In this paper, we propose a novel method for the detec-

tion of markers related to EMT. The previous study [10] did
not fully perform trajectory inference but computed pseu-
dotime along the paths connecting the centroids of the suc-
cessive time-course experiment data. Our method was able
to evaluate continuous state transitions after the adminis-
tration of EMT stimulating and inducing factors based on
single-cell transcriptomic data, and it successfully detected
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potential markers, PLPP4 and LTB, which were not de-
tected by the previous study [10]. This lineage-specific
marker analysis will provide an efficient strategy to further
understand the processes of changes in cell state during the
EMT through the combination of the existing methods. In
addition, the study [10] reported that the cells in EMT pro-
gression morphologically transitioned throughout the full 7
days of EMT induction. We might be able to analyze them
over time according to their morphological changes. The
study also suggested that the cells could have continued to
transition following day 7. It would be important for future
studies to assess the temporal limits of the EMT response.

Several studies have identified the context specificity
between cancer cell lines in EMT induction. For exam-
ple, it has been reported that down- and up-regulated genes
in A549 (lung), ACHN (renal carcinoma), and MCF10A
(breast) cell lines through microarray experiments after
TGFB1/TNF treatment to induce EMT [21]. Only a small
fraction of genes were common between those cell lines.
McFaline-Figueroa et al. [22] propose a pseudospatial
trajectory analysis of spontaneous EMT induction with
single-cell RNA sequencing of MCF10A cells treated with
TGFB1. They have revealed that inner and outer colony
cells exhibited different stages of EMT. They ordered the
cells along a linear pseudospatial trajectory to analyze the
progress of cells through EMT.

Compared with those studies of EMT, our method has
identified the lineages for EMT progression and reversion
with individual contexts (cell lines and treatments) and has
detected biomarkers for both of their lineages. If we could
integrate the biomarkers of the individual contexts into a
single dataset, such as a hierarchical structure from com-
mon biomarkers shared between all the contexts to context-
specific ones, we could identify context-independent and/or
context-specific stages of EMT. The development of the
tools for such an integrated study and the diagnosis anal-
ysis of EMT remain our future works.

Data Availability
We applied our method to the publicly available

single-cell RNA-seq data from cancer cell lines deposited
in the NCBI Gene Expression Omnibus under the accession
GSE147405.
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