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Abstract

Background: Epirubicin (EPI) is an important anticancer drug that is well-known for its cardiotoxic side effect. Studying epigenetic
modification such as DNA methylation can help to understand the EPI-related toxic mechanisms in cardiac tissue. In this study, we
analyzed the DNA methylation profile in a relevant human cell model and inspected the expression of differentially methylated genes
at the transcriptome level to understand how changes in DNA methylation could affect gene expression in relation to EPI-induced car-
diotoxicity. Methods: Human cardiac microtissues were exposed to either therapeutic or toxic (IC20) EPI doses during 2 weeks. The
DNA and RNA were collected from microtissues in triplicates at 2, 8, 24, 72, 168, 240, and 336 hours of exposure. Methylated DNA
immunoprecipitation-sequencing (MeDIP-seq) analysis was used to detect DNA methylation levels in EPI-treated and control samples.
TheMeDIP-seq data were analyzed and processed using the QSEA package with a recently published workflow. RNA sequencing (RNA-
seq) was used to measure global gene expression in the same samples. Results: After processing the MeDIP-seq data, we detected 35,
37, 15 candidate genes which show strong methylated alterations between all EPI-treated, EPI therapeutic and EPI toxic dose-treated
samples compared to control, respectively. For several genes, gene expressions changed compatibly reflecting the DNA methylation
regulation. Conclusions: The observed DNA methylation modifications provide further insights into the EPI-induced cardiotoxicity.
Multiple differentially methylated genes under EPI treatment, such as SMARCA4, PKN1, RGS12, DPP9, NCOR2, SDHA, POLR2A, and
AGPAT3, have been implicated in different cardiac dysfunction mechanisms. Together with other differentially methylated genes, these
genes can be candidates for further investigations of EPI-related toxic mechanisms. Data Repository: The data has been generated by
the HeCaToS project (http://www.ebi.ac.uk/biostudies) under accession numbers S-HECA433 and S-HECA434 for the MeDIP-seq data
and S-HECA11 for the RNA-seq data. The R code is available on Github (https://github.com/NhanNguyen000/MeDIP).
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1. Introduction

Epirubicin (EPI) is an important anticancer drug that
is widely used in multiple types of cancer treatments even
though its utilization leads to a high risk of heart failure [1].
To improve the therapeutic application of EPI, clinicians
restricted its dose usage, because a very high dose of EPI
(around 900 mg/m2) can cause acute heart failure circum-
stances. However, long-term observational studies have
shown that using EPI also at lower doses can still provoke
substantial cardiotoxicity [2,3]. Even though researchers
have suggested updated signal transduction models [4], and
we studied the side effect of EPI on cardiomyocytes on
gene expression [5] and protein [6] levels, deeper insights
into EPI toxic mechanisms are still on demand. Since epi-
genetic modification can influence the functional state of
genome regions without changing the DNA sequence, epi-
genetic signals could provide added value to understanding
EPI-related toxic mechanisms.

DNA methylation is an influential epigenetic modifi-
cation, in which a methyl group is added to the fifth carbon
position of the cytosine base [7]. DNAmethylation is regu-
lated by both methylation and demethylation processes and

plays an essential role in different biological activities based
on its location in genomic regions. DNA methylation in in-
tergenic regions can repress the expression of potentially
harmful genetic elements. DNA methylation in CpG is-
lands or at the first exon can lead to gene silencing [8], while
DNAmethylations in other gene regions can also be signals
for RNA splicing regulators [9]. Research on EPI in gastric
cancer demonstrates that the changes in DNA methylation
can be beneficial to understanding the biological mecha-
nism of drug resistance [10]. Thus, DNA methylation can
also be a useful tool to reveal drug-induced adverse side ef-
fects. Studying DNA methylations can thus be allied with
gene and protein expression research in order to produce a
multi-layered view on EPI-related toxic mechanisms.

Among a wide range of DNA methylation detect-
ing technologies, methylated DNA immunoprecipitation-
sequencing (MeDIP-seq) has appeared as a cost-effective
approach for genome-wide DNA methylation profiling.
This method uses a specific antibody to immunoprecipi-
tate methylated DNA; the obtained fractions are then en-
riched and read by high-throughput sequencing [11]. The
outcome of MeDIP-seq is a high dimensional dataset that
requires a defined data analysis pipeline to map the se-
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quencing reads to the reference genome, calculate methy-
lation levels, and identify differentially methylated regions
(DMRs) in the genome. While several tools have been de-
veloped to accommodate these analysis steps, QSEA is the
most recent one that offers a straightforward procedure to
inspectMeDIP-seq data [12]. We recently launched a bioin-
formatics workflow built on QSEA to analyze the DNA
methylation status not only on the DMRs level but also on
the gene levels [13]. This workflow could refine candidate
genes for further investigation and certainly elevates the ap-
plication of DNA methylation analysis.

In this study, we intently focused on the DNA methy-
lation profiles under EPI exposure as a follow-up to the pre-
vious report that has established the aforementioned bioin-
formatics workflow [13]. By analyzing the genome-wide
methylation status of human cardiac tissues exposed to EPI,
we identified candidate genes that had strong DNA methy-
lation alterations related to the EPI-induced cardiotoxic-
ity mechanism. We also examined how changes in DNA
methylation of those genes affects their expressions on the
transcriptome level. Hence, the outcome of this study could
suggest new candidate genes with different levels of regu-
lation for EPI-induced cardiotoxicity research.

2. Materials and Methods
2.1 Cardiac Microtissue Samples

Human cardiac microtissues consisting of 4000 iPSC-
derived human cardiomyocytes from a female Caucasian
donor and 1000 cardiac fibroblasts from a male Caucasian
donor were exposed for 2 weeks to EPI either at therapeutic
dose or at toxic dose (IC20) levels calculated based on re-
verse physiologically based pharmacokinetic (PBPK) mod-
eling [14]. The microtissues were collected in triplicates at
2, 8, 24, 72, 168, 240, and 336 hours. EPI was dissolved in
0.1% DMSO before utilization, thus control samples were
also exposed to similar DMSO concentrations over time.

2.2 MeDIP-seq Data Analysis
After DNA extraction from microtissues, the

methylated DNA fragments were isolated by anti-5-
methylcytosine antibody and then paired-end sequenced
(MeDIP-seq) with 50 bp read length [15]. MeDIP-seq
paired-end reads were aligned to human reference genome
hg38 using Burrows-Wheeler Alignment tool (BWA)
version 0.7.17 [16] and converted to .bam files using
Samtools version 1.10 [17]. Thereafter, the aligned
MeDIP-seq data were processed following the recent
bioinformatics workflow for MeDIP-seq data analysis
[13] in R version 4.0.5 [18] using the “QSEA”, “annotar”,
“tidyverse”, “BSgenome”, and “AnnotationDbi” package
[12,19–22]. The quality of the MeDIP-seq data was
reviewed through the quality control functionalities in the
QSEA package. We performed the methylation analysis
between all EPI-treated and control samples, as well as
between either EPI therapeutic or toxic-treated samples

compared to control. All the filtering steps were used
with the default settings from the bioinformatics workflow
[13]: (i) detect DMRs (p-value < 0.01) with pairwise
comparisons between EPI-treated and control samples; (ii)
select top 5% genes with the highest number of DMRs
across their gene regions; (iii) select top 5% genes with
the highest number of DMRs in their promoter region,
(iv) select genes that had the absolute log2 fold change
(Log2FC)≥0.5. The average p-value and log2 fold change
of each gene were calculated based on the average of the
p-value and log2 fold change from all DMRs assigned to
that gene. The overlapping genes within different DNA
methylation analyses were identified using InteractiVenn
tools [23]. Gene Ontology (GO) enrichment analysis on
differential methylated gene sets was performed with the
PANTHER version 14 using the GO molecular function
annotation dataset, no correction after Fisher’s Exact test,
and default reference for Homo sapiens [24].

2.3 RNA Sequencing Data Analysis
The RNA in each sample was isolated and mea-

sured using Illumina ribosomal RNA-depleted sequencing
method with 100 bp paired-end read. Before sequencing,
the sample RNA quality and quantity were examined by
the Agilent 420 TapeStation and the Qubit™. After se-
quencing, the sample sequencing quality was checked by
FastQC version 0.11.7 [25] and summarized by MultiQC
[26]. The RNA sequencing data were then trimmed by
Trimmomatic [27] and mapped to the human genome ver-
sion GRCh38.p12, Ensembl Archive Release 12 93 [28] us-
ing RSEM version 1.3.1 [29] and Bowtie2 version 2.3.4.1
[30]. Only samples that hadmore than 5million read counts
were included for further analysis. The data quality control,
preparation, and processing were tangibly reported in the
previous study [5]. Due to the limited amount of microtis-
sue after 336 hours exposed to EPI-related toxic dose, only
RNA data were available from samples treated with toxic
dose at 2, 8, 24, 72, 168, and 240 hours of exposure. There-
after, the RNA read counts between EPI-treated and control
samples were normalized using the “DEseq2” package [31].

3. Results
The methylation enrichment efficiency was sufficient

in all harvested samples, as indicated in the previous re-
port [13]. In general, DNA methylation profiles differed
between EPI-treated and control samples (Fig. 1). This in-
dicates that EPI treatment could significantly alter the DNA
methylation in cardiac tissues and MeDIP-seq was able to
capture these DNA methylation alterations.

3.1 DNA Methylation Analysis of All EPI-treated Samples
Compared to Control

The DNA methylation analysis between all EPI-
treated and control samples unveiled 161,356 uniqueDMRs
corresponding to 19,825 genes. Per gene, the high amount
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Table 1. The overview of DMRs and selected methylated genes in EPI-treated samples compared to control.
Samples compared to controls All EPI-treated

samples
EPI therapeutic-treated

samples
EPI-related toxic-treated

samples
No. DMRs regions 161,356 169,214 42,226
No. annotated genes 19,825 20,270 11,637
No. top 5% genes with the highest number of DMRs across the gene regions 966 987 521
No. top 5% genes with the highest number of DMRs in the promoter region 47 46 23
No. gene with average log2FC ≥0.5 35 37 19
No. of hypo-methylated genes 26 22 18
No. of hyper-methylated genes 9 15 1
MR, differentially methylated region; EPI, epirubicin; No.: number; log2FC, log2 fold change.

Fig. 1. The PCA plot of all EPI-treated and control samples.
EPI, epirubicin; The numbers are the exposure times in hours.

of DMRs, especially in the promoter region, suggests a
strong influence of the EPI treatment on the DNA methyla-
tion status of that gene compared to control samples. After
filtering, 966 genes were in the top 5% genes that had the
highest number of DMR regions across gene regions, while
47 out of these 966 genes had the highest number DMRs
in the promoter region (Table 1). After selecting genes that
had average absolute log2 fold change ≥0.5, the workflow
derived 35 genes with strong methylated alterations from
the enormous number of detected DMRs (Table 1, Fig. 2).

3.2 DNA Methylation Analysis Between EPI-treated and
Control Samples Per Dose Exposure

A similar DNA methylation analysis procedure was
employed to analyze the DMRs and corresponding differ-
ential methylated genes between EPI-treated and control
samples per dose. The workflow again distilled the exces-
sive number of detected DMRs into a shortlist of strong
differentially methylated genes (Table 1, Fig. 3). Intrigu-
ingly, EPI therapeutic-treated samples showed a higher
number of DMRs regions and gradually a higher number

of strong differentially methylated genes compared to EPI
toxic-treated samples. The DNA methylation analysis be-
tween therapeutic-treated samples compared to controls in-
dicated 37 candidates comprising of 15 hyper-methylated
and 22 hypo-methylated genes. This is quite compara-
ble with the outcome of DNA methylation analysis be-
tween all EPI-treated samples and controls, which had
35 candidates including 9 hyper-methylated and 26 hypo-
methylated genes. However, the DNA methylation analy-
sis between EPI toxic-treated samples compared to controls
demonstrated 19 candidates, of which one gene, SPG7, was
hyper-methylated (Table 1). The GO enrichment analysis
demonstrated that the differential methylated genes are in-
volved in different functional classes (Table 2). While a
majority of these genes were concentrated in the catalytic
activity (GO:0003824) and binding (GO:0005488) groups,
the rest engages in regulator and transporter activities.

Furthermore, we identified the overlapping differen-
tially methylated genes within all foregoing DNA methy-
lation analyses. Eight genes were demonstrated as differ-
entially methylated candidate genes after comparing sam-
ples treated with either therapeutic or toxic doses com-
pared to controls. However, in the DNA methylation anal-
ysis between all EPI-treated samples and control, one of
these genes, ATP11A, was not recognized as differentially
methylated candidate gene (Fig. 4, Table 3). Interestingly,
while SPG7 was hyper-methylated at the EPI toxic-treated
conditions (log2FC_avg = 0.84), it was hypo-methylated
at EPI therapeutic-treated condition (log2FC_avg = –0.69)
and when using all EPI-treated samples compared to con-
trols (log2FC_avg = –0.68) (Supplementary Tables 1–3).
By contrast, while the rest of the candidate genes at the
EPI toxic-treated conditions were in hypo-methylated sta-
tus, some of them were in hyper-methylated status at other
conditions. For instance, MAD1L1 was hyper-methylated
when comparing EPI therapeutic-treated or all EPI-treated
samples to control. On the other hand, NCOR2 was hyper-
methylated at the EPI therapeutic-treated condition but
hypo-methylated when comparing all EPI-treated samples
or EPI toxic-treated samples to control (Supplementary
Tables 1–3). Thus, specific doses and how the MeDIP-seq
data were processed had influenced on the outcome of the
DNA methylation analysis.
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Fig. 2. Differential methylated genes in all EPI-treated samples compared to control. EPI, epirubicin; log2FC, log2 fold change.

3.3 From DNA Methylation to Gene Expression

The MeDIP data and the transcriptome data were ob-
tained from the same microtissues exposed to EPI, thus
we were able to evaluate the influence of changing DNA
methylation status on the gene expression. The gene ex-
pression of eight differential methylated genes that were
identified for both EPI therapeutic and toxic-treated condi-
tions is shown in Table 3 and Fig. 5. The methylation status
of some genes, such as SUN1, demonstrated a coherent re-
lation with the expression on the transcriptome level. SUN1
was hypo-methylated with log2FC_avg = –0.66, –0.79, and
–0.59 for the DNA methylation analysis between all EPI-
treated, EPI therapeutic-treated, and EPI toxic-treated sam-
ples versus control, respectively. The expression of SUN1
in almost all EPI-treated samples was higher than its expres-
sion in the corresponding control samples (Fig. 5). Never-
theless, for some genes, the regulation at the DNA methy-
lation level could not entirely be related to the gene ex-
pression at the transcriptome level. For example, SPG7
was hyper-methylated at the EPI toxic-treated condition and

hypo-methylated at EPI therapeutic-treated condition; how-
ever, at the transcriptome level, SPG7was overexpressed in
samples treated with both EPI doses compared to its expres-
sion in controls (Fig. 5). Similarly, MAD1L1 and NCOR2
were hyper-methylated during EPI therapeutic treatments
and hypo-methylated at EPI toxic treatments but their gene
expression did not clearly reflect this (Fig. 5). Thus, the
change in methylated status could explain the expression
regulation of certain genes, but not for all affected genes in
the human genome.

Some candidate genes were differential methylated in
either EPI therapeutic or toxic-treated conditions, and also
demonstrated distinct expressions on the transcriptome in
EPI-treated samples from control. For instance, DPP9 was
hyper-methylated at the EPI therapeutic-treated condition
(log2FC_avg = 0.61, SupplementaryTable 2), and its gene
expression in EPI-treated samples was also mostly lower
than that in control samples (Fig. 6A). While SMARCA4,
HDAC4, PKN1, and RGS12 were hypo-methylated at the
EPI therapeutic-treated condition (log2FC_avg = –0.50, –

4

https://www.imrpress.com


Fig. 3. Differential methylated comparison between control and each EPI-treated condition. (A) EPI therapeutic-treated. (B)
toxic-treated samples. EPI, epirubicin; log2FC, log2 fold change.

Fig. 4. The Venn diagram of differential methylated genes re-
sulting from different DNA methylation comparisons. This
includes all EPI-treated, EPI therapeutic-treated, and EPI toxic-
treated samples compared to controls. EPI, epirubicin; The, ther-
apeutic dose; Tox, toxic dose.

0.60, –0.72, and –0.90 respectively, Supplementary Ta-
ble 2), only SMARCA4 and PKN1 were up-regulated on
the transcriptome level in EPI therapeutic-treated sam-
ples compared to control across roughly all time of ex-

posure (Fig. 6A). At the EPI toxic-treat condition, SDHA
and POLR2A (log2FC_avg = –0.69 and –1.03 respectively,
Supplementary Table 3) were hypo-methylated at the
DNA methylation level and consequently showed notice-
able up-regulation on the transcriptome level (Fig. 6B). By
contrast, although AGPAT3was hypo-methylated at the EPI
toxic-treated condition compared to control (log2FC_avg =
–0.84, Supplementary Table 3), AGPAT3 had lower RNA
expression levels after 24 hours of EPI exposure compared
to corresponding control samples (Fig. 6B).

4. Discussion
EPI is a popular chemotherapeutic agent with car-

diotoxic effects. Although we have investigated the im-
pact of EPI on cellular mechanisms on the transcriptome
and protein levels [5,6], there is little information about
EPI-induced epigenetic modifications. This study demon-
strated the undeniable impact of EPI on the DNA methy-
lation profiles in a human cardiac tissue model. Several
genes showed strong DNA methylation alterations under
EPI treatment. The gene expression data obtained from the
same cardiac tissue thereupon disclosed how several EPI-
induced changes in DNA methylation could regulate gene
expressions on the transcriptome level. Thus, this study cer-
tainly provides new insights into the gene expression and
regulation at DNA methylated level related to EPI-induced
cardiotoxicity.

5

https://www.imrpress.com


Table 2. GO enrichment analysis for differentially methylated gene set per treatment condition compared to control.
Gene Ontology (GO) Enrichment Number of differentially methylated genes

All EPI-treated
samples

EPI therapeutic-treated
samples

EPI toxic-treated
samples

Transporter activity (GO:0005215) 3 1 1
Transcription regulator activity (GO:0140110) 2 2 2
Catalytic activity (GO:0003824) 13 12 5
Molecular function regulator (GO:0098772) 1 2 1
ATP-dependent activity (GO:0140657) 3 3 1
Molecular adaptor activity (GO:0060090) 2 2 1
Binding (GO:0005488) 14 10 6
Cytoskeletal motor activity (GO:0003774) 2 1 -
Translation regulator activity (GO:0045182) 1 - 1
Molecular transducer activity (GO:0060089) 1 - -
EPI, epirubicin; -, not applicable.

Table 3. The differentially methylated genes resulting from three DNA methylation analyses compared to control.
Samples compared to controls All EPI-treated samples EPI therapeutic-treated samples EPI toxic-treated samples

Overlapping differential methylated genes
7

MAD1L1, PRDM15, NCOR2, SUN1, SPG7, ANKRD11, DENND3

Other differential methylated genes
28 30 12

PIGG, SMG6, ADAP1, MCF2L,
TCF25, OSBPL2, EHMT1,
KIF1A, PPFIA1, HDAC4,

POLE, HTT, LSP1, RNF213,
MOK, MBTPS1, DYNC1H1,
SDHA, SPTAN1, EIF3B,
SNHG14, PFKP, POLR2A,
RGS12, SEPTIN9, AGPAT3,

ATP9B, IGF1R

ADAP1, ATP11A, CCDC57,
CHFR, CTTN, DNM2, DNMT1,
DPP9, GET4, HDAC4, HDLBP,

KIF1A, LAMA5, MCF2L,
NADSYN1, NPHP4, PALM,

PIGG, PKN1, PRKCZ, RGS12,
RNF213, SEPTIN9, SMARCA4,
SNHG14, SPTAN1, TCF25,
TNK2, TSC2, ZC3H18

AGPAT3, ANKLE2, ATP11A,
BRD9, CCDC187, EHMT1,
EIF3B, LINC02188, PFKP,
POLR2A, PPP6R2, SDHA

EPI, epirubicin.

By using a recently developed MeDIPseq data analy-
sis workflow, we were able to refine the extensive amount
of detected DMRs into a shortlist of strongly differentially
methylated genes. We detected 35 genes with DNAmethy-
lation alterations in cardiac microtissue in vitro exposed
to EPI compared to control. When a similar procedure
was employed to analyze DNAmethylation profile between
specific EPI dose treatment and control sample, the out-
come in each analysis step (Table 1) resulted in lists of
slightly different candidate genes (Table 3). Although there
were still overlapped genes between these DNA methyla-
tion analyses (Table 3, Fig. 4), it is clear that various sample
grouping approaches can generate different outcomes. Fur-
thermore, it also shows that dose-dependence can lead to
different numbers of DMRs and corresponding genes. For
example, we had 37 differentially methylated genes at the
EPI therapeutic-treated condition while we only had 19 dif-
ferentially methylated genes at the EPI toxic-treated con-
dition (Table 1). These differential methylated genes are
involved in molecular interactions, regulations, and trans-
portations (Table 2).

In particular, the change in methylation status of some
genes under EPI treatment (Table 3, Figs. 5,6) is poten-
tially associated with EPI cardiotoxic adverse effects. For
instance, SMARCA4 (also known as BRG1) was hypo-
methylated and provoked up-regulation on the transcrip-
tome level in samples treated with EPI therapeutic dose
(Fig. 3A, Fig. 6A). SMARCA4 has been known for its crit-
ical role in regulating heart muscle development and dis-
ease via myosin heavy chain switch. This gene is generally
turned off in cardiomyocytes; however, it is re-activated un-
der stress and its level is correlated with hypertrophic car-
diomyopathy severity [32]. Thus, EPI could afflict the ex-
pression of SMARCA4 via DNAmethylation alterations and
stimulate cardiac dysfunctions. Similarly, the gene expres-
sion of PKN1 was also up-regulated by hypo-methylation
in EPI therapeutic-treated conditions (Fig. 3A). A previ-
ous study had revealed that the PKN1 activation can ini-
tiate cardiac hypertrophy and fibrosis-associated genes ex-
pression, and can be involved in heart failure development
[33]. RGS12 was hypo-methylated and up-regulated on the
transcriptome level in a part of the samples exposed to EPI
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Fig. 5. The gene expression of overlapped differentially methylated genes between EPI therapeutic and toxic-treated conditions.
The gene expression is the mean of the gene read counts after normalization between samples. EPI, epirubicin.

Fig. 6. The gene expression of differentially methylated genes in EPI-treated condition. (A) EPI therapeutic condition. (B) EPI
toxic-treated condition. The gene expression is the mean of the gene read counts after normalization between samples. EPI, epirubicin.

due to different times of exposure (Fig. 3A, Fig. 6A). A ro-
dent study has demonstrated that RGS12 contributes to an-
giotensin II-induced hypertrophy, and its over-expression
has been observed in cardiac hypertrophy and heart failure
pathology [34]. Another hypo-methylated gene, HDAC4,
is notable for rapid histone methylation regulation in re-

sponse to elevated cardiac load [35]. On the other hand,
DPP9 was hyper-methylated and led to a lower gene ex-
pression in EPI therapeutic-treated samples compared to
control (Fig. 3A, Fig. 6A). Other research has revealed that
drug-induced DPP9 inhibition in cardiomyocytes can im-
pair the CaMKII-PLB and PKC signaling and cause car-
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diac dysfunction [36]. All these genes were differentially
methylated and potentially related to cardiotoxicity even at
EPI therapeutic-treated conditions; this is consistent with
the inspection of cohort studies in which cancer survivors
who underwent EPI treatment have a higher risk of late-
onset cardiac disease [2,3].

Eight genes were consistently differently methylated
across EPI-treated samples as well as some genes specifi-
cally showed strong methylated alterations at the EPI toxic-
treated condition (Table 3, Figs. 4,5,6). NCOR2 was hyper-
methylated in the EPI therapeutic-treated condition but
hypo-methylated in the EPI toxic-treated conditions, re-
spectively (Fig. 3). As a nuclear receptor, NCOR2 can
regulate the expression of other genes and influence the
metabolic oxidative balance in cardiomyocytes [37]. A
study has suggested that the differential methylation signa-
ture of NCOR2 in CD4+ T cells could be a non-invasive
biomarker to identify pulmonary arterial hypertension pa-
tients [38]. Furthermore, SDHA, POLR2A, and AGPAT3
genes were hypo-methylated at the EPI toxic-treated con-
dition (Fig. 3B) and also play important roles in cardiac
dysfunctions. While POLR2A has been considered a sta-
ble heart failure reference gene across rodents and humans
[39], SDHA participates in the tricarboxylic acid cycle and
mitochondrial respiratory chain. The change of SDHA ex-
pression, due to the methylation modification at the DNA
level (Supplementary Table 3, Fig. 6B), can impact mi-
tochondrial acetyl-CoA homeostasis and energy metabolic
which contribute to heart failure [40]. AGPAT3 is also an
enzyme involved in mitochondrial oxidation; thereupon,
the change in its expression can consequently affect ATP
production [41]. Thus, SDHA and AGPAT3 can be poten-
tial drivers in the EPI-induced energy metabolic dysregu-
lation and contribute to heart failure development. Some
studies have indicated the influence of anthracycline, i.e.,
epirubicin and doxorubicin, on immune responses such
as interleukin-1 (IL-1) or NLRP3 inflammasome and cy-
tokine release [42,43], as well as supplements which have
immune-regulating properties that could alleviate the cyto-
toxicity [44,45]. However, in this study, we did not ob-
served the methylation changes of IL-1 and NLRP3 after
analyzing the MeDIP-seq data. It could be that the change
in immune response happens at the protein level; and there
is no clear change in the DNA methylation level.

5. Conclusions
This study demonstrated the change of the DNA

methylation profile as well as the changing of gene expres-
sion as the consequence of DNAmethylation alterations un-
der EPI exposure in in vitro human cardiac microtissues.
Since epigenetic modification can influence gene expres-
sion, differential DNA methylation alterations could offer
a supportive explanation to understanding EPI cardiotoxic
mechanisms along with transcriptome and proteome study.
A handful of genes that had strong EPI-related DNAmethy-

lation alterations were named as candidates for further in-
vestigation. A part of them, such as SMARCA4, PKN1,
RGS12, DPP9, NCOR2, SDHA, POLR2A, and AGPAT3,
has disclosed their roles in cardiac dysfunctions as well as
potential biomarkers for heart failure in different contexts.
This is coherent with the well-known EPI cardiotoxicity ad-
verse effects. Those genes, together with other detected
candidate genes can be interesting targets for further inves-
tigation in EPI-induced toxic mechanisms.
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