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Abstract

Background: Channel proteins are proteins that can transport molecules past the plasma membrane through free diffusion movement.
Due to the cost of labor and experimental methods, developing a tool to identify channel proteins is necessary for biological research on
channel proteins. Methods: 17 feature coding methods and four machine learning classifiers to generate 68-dimensional data probability
features. Then, the two-step feature selection strategy was used to optimize the features, and the final predictionModelM16-LGBM (light
gradient boosting machine) was obtained on the 16-dimensional optimal feature vector. Results: A new predictor, CAPs-LGBM, was
proposed to identify the channel proteins effectively. Conclusions: CAPs-LGBM is the first channel protein machine learning predictor
was used to construct the final prediction model based on protein primary sequences. The classifier performed well in the training and
test sets.
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1. Introduction
Channel proteins are a type of cross plasmamembrane

that can transport molecules of appropriate size and charged
molecules from one side of the plasma membrane to the
other through free diffusion motion. Channel proteins can
be monomer proteins or proteins composed of multiple sub-
units. They are rearranged through hydrophobic amino acid
chains to form aqueous channels. They do not directly inter-
act with small charged molecules, which can diffuse freely
through the aqueous channels formed by the charged hy-
drophilic regions of membrane proteins in lipid bilayers.
The transport of channel proteins possesses a selective func-
tion, so there are various channel proteins in the cell mem-
brane.

With high mortality, cancer is one of the most catas-
trophic diseases causingmillions of deathsworldwide every
year [1–3]. Therefore, research on the mechanism of can-
cer occurrence and development is still a research hotspot.
However, although significant progress has been made in
cancer research, there are still no good treatment strate-
gies for cancer because the mechanism of cancer occur-
rence and development is too complex. Previous studies
have suggested that abnormalities in channel proteins in
some signaling pathways can promote the occurrence and

development of cancer. For instance, chloride intracellular
channel 1 (CLIC1) is a chloride channel protein. The up-
regulated expression of CLIC1 is positively related to cell
proliferation, invasion, migration, and angiogenesis. Chlo-
ride intracellular channel 1 promotes the progression of oral
squamous cell carcinoma, and its potential mechanism may
be correlated with ITGαV and ITGβ1 regulation, resulting
in the activation of MAPK/ERK and MAPK/p38 signaling
pathways [4]. Aquaporin-4 (AQP4) forms a heterotetramer
composed of m23-AQP4 and m1-AQP4 subtypes on the
plasma membrane. The isoform ratio controls the aggre-
gation of AQP4 into the supramolecular structure, which
is called the orthogonal particle array. Studies have shown
that the aggregation/decomposition of AQP4 into OAP af-
fects the biological characteristics of glioma cells, and the
aggregation state of AQP4 may be an important determi-
nant of glioma cell survival or death. The decomposition
of AQP4 may enhance invasiveness, and the aggregation
of AQP4 may activate the apoptotic pathway [5]. HERG
(human ether - à - go related gene) K+ current realizes es-
sential ionic functions in the heart. HERG channels affect
the migration and growth of various types of tumor cells.
Studies have shown that HERG1 channel proteins take part
in the growth of small cell lung cancer (SCLC) cells [6]. In
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Fig. 1. The framework of CAPs-LGBM for channel protein identification.

rats and humans, voltage-gated Na+ channels (VGSCs) are
upregulated in prostate cancer (PCA), in which channel ac-
tivity promotes cell invasiveness in vitro and metastasis in
vivo [7].

Recent studies have shown that machine learning-
based methods have been well developed, especially those
related to effective feature representation algorithms [8–
10]. At present, various sequences based on feature descrip-
tors are obtained from many studies [11–13]. Taking vari-
ous types of features to train classifiers is a simple method
to build predictive models. A high feature dimension of
integration will lead to dimension disaster, and simple in-
tegration will lead to information redundancy. One effi-
cient way to reduce the dimension is feature selection [14].
These problems will affect the prediction performance of
the model. A more effective method is necessary to use
feature information. In addition, most existing feature de-
scriptors only use sequence information to build prediction
models. This may not be enough to provide enough infor-
mation to accurately distinguish between real CAPs and no-
CAPs. Efficient computational identification tools are good
choices; however, current research efforts in this area are
lacking. Due to their efficiency and convenience, machine
learning-based methods have been widely used in protein
function prediction [12,15–21]. Therefore, it is desirable to
research reliable and effective machine learning tools for
CAP identification.

In this research, Metascape was applied for the enrich-
ment and network analysis of the biological functions of
channel proteins. CAPs-LGBM is the first software model
that can classify proteins as CAPs or no-CAPs. We es-
tablish the first benchmark dataset composed of 914 CAPs
and 914 non-CAPs, which is publicly available to ensure
the reproducibility of the proposed predictor. On this ba-
sis, we studied the feature representation learning strat-
egy that integrates the prediction probability information
into the newly derived features. To improve the predic-
tion performance, a two-step feature optimization protocol

was adopted to manually select the optimal feature subset
containing 16 information features. Based on the optimal
16-dimensional probability feature, a sequence-based CAP
predictor CAPs-LGBM was constructed. The results sug-
gest that the proposed prediction model has good recogni-
tion performance. The overall framework of CAPs-LGBM
is shown in Fig. 1. The prediction of channel proteins is
a novel work, and there is no previous research on it. The
prediction accuracy of the model has a high accuracy in our
research. Meanwhile, we also optimized the prediction al-
gorithm and developed a user-friendly online server. The
model is a quick and effective way to predict whether a
protein is a channel protein or not. The website is http:
//lab.malab.cn/~acy/CAPs-LGBM. It has the potential to
promote future computing work in this field.

2. Methods
2.1 Datasets

To establish a reliable and robust CAP-LGBM predic-
tor, a well-prepared dataset is essential. CAP and non-CAP
protein sequences are composed of a positive and nega-
tive dataset for binary prediction model construction. CAP
sequences were downloaded from the UniProt database
(UniProtKB version 2021_03, https://www.UniProt.org/)
[22]. “channel protein and reviews: Yes” was applied as the
keyword to search the protein sequences. A total of 18,375
protein sequences were obtained from theUniProt database,
and 2105 channel proteins were selected according to the
functional annotation as the selection criteria for positive
samples. Negative samples were selected from the protein
family database (Pfam, version 35.0, http://pfam.xfam.org/)
[23]. There are two principles for negative dataset selec-
tion: (Ⅰ) each negative sample is the longest sequence from
different protein families; (II) samples from positive fam-
ilies will be removed. Finally, a negative dataset con-
taining CAP protein sequences was established. CD-Hit
(V4.8.1) [24] was applied to remove the sequence redun-
dancy for the positive and negative samples to avoid pro-
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tein homology deviation with the threshold set to 0.8 [25].
Then, 914 CAP protein sequences were selected for ma-
chine learning. There is enough protein sequence infor-
mation for the machine learning algorithm to construct an
optimal model for channel proteins. Then, CAP-positive
and -negative samples were retained as the channel protein
dataset. The original dataset is randomly divided into two
subsets at a ratio of 8:2 (Table 1), of which 80% are train-
ing sets and the rest are test sets to verify the performance
of CAP. The datasets described above are freely available
at http://lab.malab.cn/~acy/CAPs-LGBM.

Table 1. Sample distribution in the training and independent
test datasets.

Dataset Training Testing

Positive 731 183
Negative 731 183

2.2 Feature Representation Learning
Sufficient feature information from the channel pro-

tein sequences is essential for accurate and reliable bioin-
formatics model construction [10,26–32]. Following previ-
ous research [9,11,33–38], we used a feature representation
learning protocol to predict and identify the CAPs. First, 17
feature coding algorithms were used to construct the initial
feature pool to represent the protein sequence. There were
three categories divided by the coding methods: (1) amino
acid composition characteristics features, (2) based on the
characteristics of physical and chemical properties, and (3)
features based on sequence order. All of the above feature
descriptors are defined by ilearn tools [39]. In the second
step, four common classifiers, namely, random forest (RF),
XGBoost (XGBT) and SVM, were employed to train on the
17 descriptors to build the baseline predictionmodels. Each
prediction model will provide both class information (pre-
dicted label) and probabilistic information (predicted con-
fidence). In this work, we utilized the probabilistic infor-
mation predicted by each model as a “feature”. Probability
information will be used as the “feature” of each model in
our study, and a 68-dimensional probability feature vector
will generate the prediction models (68 feature descriptors
× 4 machine learning classifiers) [9].

2.3 Classifiers
Classifier choice plays an essential role in machine

learning [40–42]. Various machine-learning algorithms
have been applied in machine learning methods [8,43–45].
Seventeen descriptors were trained by four common clas-
sifiers: random forest (RF), XGBoost (XGBT), and SVM
to construct the model. As described in previous research
[46–48], all four classifiers were derived from the scikit-
learn package (version 0.24). Finally, a grid search was
used to adjust hyperparameters for the classifiers, and the

search range is provided in Supplementary Table 1.

2.4 Feature Selection
In this study, a two-step feature selection method was

used to improve the feature representation ability and pre-
diction performance of the models [49]. First, the original
feature set was ranked according to the classification impor-
tance score. Second, the SFS (sequential forward search)
strategy was used to search the optimal feature subset from
the feature list in the first step. Generally, feature selection
methods are divided into packaging, filtering, and embed-
ding methods [50,51]. The light gradient boosting machine
(LGBM) is a packaging method, and the LGBM model is
obtained by inputting the training data, which are sorted
according to the importance score of the features. In the
SFS step, additional features are obtained in the first step
according to the lower to higher rank, and reconstruct the
prediction model with various features. The subset with the
highest accuracy of the prediction model was determined as
the optimal feature set.

2.5 Performance Measurement
The validation strategies of 10-fold cross validation

(CV) and testing were used to evaluate the performance of
the involved models [13,52–55]. The training dataset was
randomly divided into 10 subsets of approximately the same
size for 10-fold CV validation. The ratio of the training
data and the validation dataset was 9:1. The performance
of 10 test subsets was averaged, and the result is the overall
performance of the 10-fold CV test. Thus, the proposed
model is verified more strictly and compared fairly with
other methods.

Furthermore, accuracy (Acc), sensitivity (SE), speci-
ficity (SP), and Matthew correlation coefficient (MCC)
[8,56,57] are four common metrics in binary classification
tasks. Receiver operating characteristic (ROC) curves were
also used to provide intuitive performance comparisons.
The area under the ROC curve (AUC) was calculated and
used as the main quantitative index of overall performance.

SE = TP
TP+FN ∗ 100% (1)

SP = TN
TN+FP ∗ 100% (2)

Acc = TP+TN
TP+FP+TN+FN ∗ 100% (3)

MCC = (TP×TN)−(FP×FN)√
(TP+FP )×(TN+FN)×(TP+FN)×(TN+FP )

(4)

Acc, accuracy; SE, sensitivity; SP, specificity; MCC,
Matthew’s correlation; TP, true positive; TN, true negative;
FP, false-positive; FN, false negative.

2.6 Construction of 3D Structure and Phylogenetic Tree
for CAPs

A phylogenetic tree of CAPs was constructed to an-
alyze the evolutionary diversity of the proteins. CAP se-
quence alignment results were analyzed bymuscle software
(V3.8.1551) and used to construct a phylogenetic tree using
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IQ-TREE software (multicore version 1.6.12). The best fit-
ting model for the phylogenetic tree was VT+R6 [58]. The
ultrafast bootstrap method was used for phylogenetic as-
sessment, and 1000 replicates per method were chosen in
this work [59–61]. Tree file was visualized by the iTOL
website (version 6, https://itol.embl.de/). Phyre2 software
(version 2.0, http://www.sbg.bio.ic.ac.uk/phyre2/html/pag
e.cgi?id=index) was applied for the 3D structure predic-
tion of CAPs. The prediction results were visualized by
PyMOL (version 2.5.1, DeLano Scientific LLC) software
(https://pymol.org/2/).

2.7 Metascape Analysis
Metascape (version 3.5, https://metascape.org/gp/ind

ex.html#/main/step1), as an effective tool, can analyze mul-
tiple groups of data on multiple platforms [62]. In our
research, Metascape was used for enrichment analysis of
CAPs. CAPs were carried out based on pathway enrich-
ment and analysis of molecular function (MF), biological
process (BP) and cell composition (CC) by the Metascape
tool based on the two databases of Kyoto Encyclopedia of
Genes and Genomes (KEGG, version 100.0) and Gene On-
tology (GO). A network plot was constructed by a subset
of enriched terms to capture the relationships between the
terms. Similarity >0.3 and p values < 0.05 of the terms
were connected for the edges and the 20 clusters with less
than 15 terms per cluster. Based on the BioGRID, In-
Web_IM, and OmniPath databases, a PPI (protein–protein
interaction) network was constructed and visualized by
Metascape. Cluster analysis was carried out by MCODE
(minimum common oncology data elements) to identify the
key clusters with default parameters in the PPI network. In
addition, the significant function module selected was pre-
dicted with p < 0.05 significance using Metascape.

3. Results
3.1 Phylogenetic Analysis and Structural Features of CAP
Proteins

The results of the phylogenetic tree (Fig. 2) showed
that 134 CAP genes were divided into five groups, and the
length of branches indicated the genetic relationship of CAP
sequences. Among the five groups, Groups I, III, and IV
contained two subfamilies. The function of AQPs is as
a water molecule transport protein, which belongs to the
branch of the fifth family. Calcium channel protein belongs
to group IVa, potassium voltage gated channel protein be-
longs to groups I and III, calcium activated potassium chan-
nel subunit belongs to IVa and IIIa, sodium channel protein
belongs to Ia and IVa, chloride intracellular channel protein
belongs to groups Ia and IIIa, potassium/sodium channel
protein belongs to IIIb and IVa. Fig. 3C also indicted the
potassium/sodium channel protein involved the transporta-
tion of potassium and sodium ions. The volume-regulated
anion channel subunit (leucine rich repeat containing pro-
tein) belongs to the IIa group.

Fig. 2. Phylogenetic tree and 3D construction of CAPs.

The secondary structure of CAPs includes α-helices,
β-pleated sheets, and random coils. Usually, an α-helix ex-
ists in the plasma membrane and belongs to the secondary
structure of transmembrane proteins. In this study, a protein
was selected from each subfamily, and the 3D structure of
these proteins was constructed. The results show that all
proteins had multiple α-helix proteins, indicating that the
subcellular localization of most channel proteins belongs to
the plasma membrane. The structure of channel proteins in
Groups I and V was relatively simple, while the structure
of channel proteins in groups II, III, and IV was relatively
complex (Fig. 2). The composition of these structures is
necessary for determining the function of channel proteins.

3.2 Detection and Enrichment Analysis of Related Genes

To identify the interaction and internal mechanism of
CAP coexpressed genes, Metascape was applied to ana-
lyze the overlapping genes, enrichment, PPI network, and
MCODE of CAPs and their coexpressed genes. First, the
overlap analysis of coexpressed genes was divided into two
methods. Specific overlapping genes were found in the co-
expressed genes of CAPs of different species (Fig. 3A,B).
According to the classification of channel proteins, only
potassium channels and sodium channels have overlapping
genes. Aquaporins and chloride channel proteins are spe-
cific molecules and ion channels, and there were no over-
lapping genes (Fig. 3C,D).

A total of 134 human channel proteins were screened
from the positive case set for Metascape analysis. These
genes were enriched based on the David database and
Gene Ontology (GO). As shown in Fig. 3E, CAPs and
their coexpressed genes were primarily enriched in potas-
sium channels (R-HSA-1296071), stimuli-sensing channels
(R-HSA-2672351), and regulation of membrane potential
(GO:0042391).
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Fig. 3. Overlaps and heatmap enrichment analysis of CAPs and their coexpressed genes. (A,B) Overlap circus plot among CAPs
of different species. (C,D) Overlap circus plot among CAPs of different functions. (E) Heatmap of enriched terms among CAPs.

Fig. 4. PPI network, enriched terms network, and MCODE analysis of CAPs. (A) Network of the enriched terms colored by cluster
ID. (B) The protein–protein interaction (PPI) network for enrichment analysis of functions and pathways. (C) MCODE components
identified from the PPI network among CAPs.
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Fig. 5. Feature selection of the 68-dimensional probability feature. (A) Classification importance score of the top 20 features. (B)
Tenfold cross validation accuracy on the SVM, RF, XGBoost, and LGBM classifiers with feature numbers.

3.3 Network of Enriched Terms and Screening of Hub
Genes

To better understand the relationships between the
terms, a network plot of enriched terms was constructed.
As shown in Fig. 4A, there were 111 GO BP, 13 KEGG
pathways, and 27 reaction gene sets. The data show that
CAPs are enriched in potassium channels, regulation of
membrane potential, stimuli sensing channels, protein com-
plex oligomerization, and sodium ion transport.

Metascape was applied to construct the PPI network
(Fig. 4B) and found important MCODE components ac-
cording to the cluster score (Fig. 4C). As shown in Fig. 4C,
a PPI network was successfully constructed. Eight molec-
ular MCODE components were identified from the PPI
network. MCODE 1 (SCN 1/4/5/8/9A, SCN 1/2/3/4B,
TRPM4) plays an important role in the voltage-dependent
sodium ion permeability of excitable membranes. MCODE
2 (CLIC 1/2/3/4/5/6, CLCN 1/2 and CLCC 1) are chlo-
ride intracellular channel proteins. MCODE 3, MCODE
4, MCODE 6, and MCODE 7 are potassium channel pro-
teins. MCODE 5 (VDAC 1/2/3) are voltage-dependent
anion-selective channel proteins. MCODE 8 (MSL 1/2/3)
are mechanosensitive ion channel proteins. Importantly,
these analyses applied to eachMCODE component showed
that the biological function was related to a series of ion
transport pathways.

3.4 Feature Selection Results
To establish an effective prediction model, the prob-

ability characteristics of possible redundant information
need to be processed to avoid the waste of computing
resources and affect the final classification effect. In this
study, a two-step feature selection method was used to
identify the optimal feature representation from the original
feature set. Sixty-eight features were sorted by LGBM
according to classification importance. Fig. 5A shows the
ranking of the top 20 features, in which the importance
decreases along the x-axis. The results show that the
most important feature is APAAC-SVM, indicating that

it is the most effective classification among all features,
followed by CTDD_LGBM and CTDD-SVM. APAAC-
SVM represents the probability features derived from the
APAAC descriptor on the SVM classifier. To evaluate the
prediction performance of the four classifiers (SVM, RF,
LGBM, and XGBoost) used in the feature representation
learning scheme, 10 CV experiments and 68-dimensional
classification probability features were implemented, and
68 prediction models were obtained. See Supplementary
Tables 2–5 for the results. The overall ACC performance
is shown in Fig. 5B. In fact, the ACC curves of the four
classifiers seem to have similar patterns. To clarify the
discussion of the SFS method on the LGBM classifier,
we also refer to the ACC results of the SVM, SFS, and
LGBM classifiers in Fig. 5B. The results show that the
SVM and LGBM classifiers are generally better than the
SFS classifier. The ACC curves of the LGBM classifier
increased steadily with the increase of the number of
features, until the number of features was close to 16 with
the Acc value of 92.34, and gradually tended towards a
fluctuating plateau, this model was named M16-LGBM
(Fig. 5B). The Acc curve of the SVM classifier increased
steadily until it reached the maximum value of 92.34 when
the feature number was 34, and the model was named
M34-SVM (Fig. 5B). Considering other indicators and
all the above findings, we choose the LGBM classifier to
construct the predictor. We believe that only the subset of
the first 16 features is optimal. To better understand the
selected features, we further analyzed their composition. In
fact, these 16 features are: APAAC_SVM, CTDD_LGBM,
CTDD_SVM, PAAC_RF, CTDD_RF, CKSAAGP_SVM,
CKSAAGP_XGboost, DDE_SVM, APAAC_LGBM,
QSOrder_SVM, CTDD_XGboost, GAAC_SVM,
APAAC_RF, Moran_XGboost, SOCN_SVM, and
CTriad_SVM. CTDD and APAAC generate four and
three features, respectively. The physicochemical infor-
mation and amino acid composition information of CAPs
have the strongest feature representation ability.
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3.5 Comparison of the Individual Feature Descriptors and
Class Features with Probability Features

To verify the effective representation ability of the
probability features generated by the feature representa-
tion learning scheme, we compared the probability fea-
tures M16-LGBM with class features M34-SVM and the
sequence-based feature descriptors related to M16-LGBM.
The 10-fold CV results of 10 sequence-based feature de-
scriptors are summarized in Supplementary Table 6. We
selected the M16-LGBM subset and compared them with
the first three feature descriptors with the best performance,
namely, DDE, QSOrder, and APAAC. Table 2 shows the
results of all training sets with comparative characteristics.
The overall performance of probability features was sig-
nificantly improved compared with original individual fea-
tures. For example, the ACC values of DDE, QSOrder,
and APAAC were 88.09%, 87.34% and 88.30%, respec-
tively, while the probability featuresM16-LGBMandM34-
SVM had the same ACC values of 92.33%. In addition, the
AUC, Sn, Sp, and MCC values of the probability features
were all higher than those of the three feature descriptors.
This shows that the probability information generated by
the model can improve the prediction model performance.
The ROC curve of comparative features is shown in Fig. 6F.
We can clearly see that the AUC of probability features is
the highest of all features. In conclusion, the observation
results showed that the probability feature with a small di-
mension is more suitable for constructing our final predic-
tor.

Table 2. 10-fold CV results for APAAC, DDE, QSOrder,
M16-LGBM and M34-SVM features on the training set.
Feature ACC (%) AUC Sn (%) Sp (%) MCC

APAAC 88.30 0.94 90.15 86.46 0.77
DDE 88.10 0.94 90.01 86.18 0.76
QSOrder 87.35 0.94 89.33 85.36 0.75
M16-LGBM 92.34 0.98 91.93 92.75 0.85
M34-SVM 92.34 0.97 92.20 92.48 0.85
The best performance value is highlighted in bold for clarification.

The t-distributed stochastic neighborhood embedding
(t-SNE) algorithm [63] was applied to explain why our
model-based probability features can effectively improve
the prediction performance. As shown in Fig. 6A–C, in the
feature space of APAAC, DDE, and QSOrder descriptors,
many positive and negative samples are mixed together, in-
dicating that their expression ability may not be enough to
fully distinguish between real CAP and non-CAP samples.
In contrast, in the two model-based feature spaces, most
positive and negative samples are distributed in two signif-
icantly different clusters (Fig. 6D,E). This shows that com-
pared with the descriptor based on individual sequences,
CAPs and non-CAPs are easy to distinguish in the vector

space of the probability feature model. Using our probabil-
ity feature, most of the positive and negative samples are
clearly separated, and only a few samples overlap in the
middle region. This once again confirms that the proba-
bility feature is more effective and can reveal the potential
difference pattern between CAPs and non-CAPs to improve
the prediction performance.

3.6 Comparison Results of Different Ensemble Learning
Methods

To verify the effectiveness of the feature representa-
tion learning method used in this paper, we explored dif-
ferent integrated learning schemes, including hard voting,
soft voting, and stacking. We compared our CAPs-LGBM
model building method with three traditional ensemble
methods and evaluated their performance with 10-fold CV.
Table 3 summarizes the performance results. Our CAPs-
LGBM model building method was optimal in the training
dataset, and similar results were found in the test dataset ex-
cept for the Sn parameter. We observed that the proposed
feature representation learning method CAPs-LGBM was
significantly better than the traditional ensemble method.
The results in Table 3 indicate that the prediction perfor-
mance is significantly improved compared with other mod-
els (Supplementary Table 6). The feature representation
learning method has the best overall performance among all
comparison strategies. The ACC value on our CAP train-
ing set was 92.34%, which is 2.32%, 2.25%, and 3.69%
higher than that of hard voting, soft voting, and stacking, re-
spectively (Fig. 7A). To verify the robustness and practical
applicability of CAPs-LGBM, we further compared these
methods through independent testing. Similar to the train-
ing dataset, performance improvement was also observed
on the test dataset. Compared with the other three ensem-
ble predictors, the average performance of CAPs-LGBMon
ACC and MCC is improved by 1.55% and 3.02%, respec-
tively (Fig. 7B). In conclusion, our method provides satis-
factory prediction results. This result shows that compared
with other ensemble learning methods, feature representa-
tion learning in CAPs can make more effective use of the
output of a single baseline model and help to distinguish
CAPs from non-CAPs.

3.7 Case Study

In order to test whether our CAPs-LGBM toolkit can
predict the protein sequence with unknown function in
practical scenarios, two common proteins from UniProt
database are downloaded and are using our CAPs-LGBM
method for practical application prediction. The two com-
mon proteins are ubiquitin and actin, none of which are
channel proteins. The sequences of these two proteins are
input into our prediction toolkit CAPs-LGBM. The results
showed that there are 7668 sequences of actin protein, and
701 sequences were predicted incorrectly, with an error rate
of 9.1%, while among 19,757 ubiquitin sequences, 2005
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Table 3. Comparison results of CAPs-LGBM with traditional ensemble learning methods.

Tools
Training dataset Testing dataset

Acc (%) Sn (%) SP (%) MCC Acc (%) Sn (%) SP (%) MCC

Hard voting 90.01 88.51 91.52 0.80 91.26 90.71 91.80 0.83
Soft voting 90.08 90.15 90.01 0.80 91.53 92.90 90.16 0.83
Stacking 88.65 88.92 88.37 0.77 91.26 95.08 87.43 0.83
CAPs-LGBM 92.34 91.93 92.75 0.85 92.90 93.99 91.80 0.86
The best performance value is highlighted in bold for clarification.

Fig. 6. Comparison of our optimal feature with the class feature and individual feature descriptors. (A–E) The t-SNE distribution
of APAAC, DDE, QSOrder, M16-LGBM, and M34-SVM features. (F) The ROC curves of the APAAC, DDE, QSOrder, M16-LGBM,
and M34-SVM features on the training set.

sequences were predicted incorrectly, with a prediction er-
ror rate of 10.1%. Therefore, our prediction toolkit CAPs-
LGBM can obtain accurate results relatively in channel pro-
tein prediction. The results of these sequences are particu-
larly meaningful for further experimental validation.

3.8 Web Server Implementation
To facilitate the identification of CAPs by researchers,

we built a user-friendly online web server named CAPs-

LGBM, which is freely available at http://lab.malab.cn/~a
cy/CAPs-LGBM. To validate our findings, the benchmark
dataset has been applied on the online server. A simple
guideline was obtained to provide researchers on the use
method for the CAPs-LGBM webserver. First, users need
to put the query sequence in fasta format in the left input
box and click the submit button. Finally, the results are dis-
played on the right result box. To restart a new task, a clear
button or the resubmit button should be selected to clear the
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Fig. 7. Comparison results of CAPs-LGBM with three traditional ensemble methods. (A) Training dataset. (B) Test dataset.

sequences in the input box. Finally, new query protein se-
quences were allowed to enter the input box. In addition,
detailed instructions and example sequences in fasta format
can be found on the web server interface. The home page
provides links of the contact information of authors and rel-
evant data to download.

4. Conclusions
Channel proteins are proteins that can transport

molecules past the plasmamembrane through free diffusion
movement. They can be divided into ion channel proteins
and aquaporins. Because it is generally located in the mem-
brane system, the protein structure usually contains an α-
helix. In this study, the samples were subjected to enrich-
ment and network analysis. The subnetwork detected by
the MCODE tool usually consisted of several single chan-
nel proteins. For example, MCODE 1 is a subnetwork con-
struct with several potassium channel proteins, which are
tetrameric ion channels existing in all cell types. Potas-
sium channels control the resting membrane potential of
neurons, help to regulate the action potential of the my-
ocardium and release insulin by pancreatic cells. Cluster
results suggested that passive transport by aquaporins (R-
HSA-432047) is significant in humans and mice. Aqua-
porin is a six-channel transmembrane protein that forms
channels on the cell membrane. Each monomer contains
a central channel composed of two asparagine-proline-
alanine motifs (NPA boxes), which determine water and/or
solute selectivity. AQP0/MIP, AQP1/2/3/4/5/7/8/9, and
AQP10 transport water inside and outside the cell through
the osmotic gradient of the cell membrane. Four aquapor-
ins (AQP7/9 and AQP10) conduct urea, four aquaporins
(AQP3/7/9 and AQP10) conduct glycerol, and aquaporin
AQP6 conducts anions, especially nitrates. AQP8 con-
ducts water and ammonia. Knockout mice lacking AQP11
formed fatal cysts in the proximal renal tubules. Exogenous
AQP12 was localized intracellularly and expressed only in
pancreatic acinar cells. Therefore, the biological function
of channel proteins is very important. Developing a tool
to identify channel proteins is necessary for biological re-
search on channel proteins.

We screened reliable and experimentally verified
channel protein sequences as the dataset and established an
effective prediction classifier on this basis. First, we se-
lected 17 feature coding methods and four machine learn-
ing classifiers to generate 68-dimensional data probabil-
ity features. Then, the two-step feature selection strategy
was used to optimize the features, and the final prediction
Model M16-LGBM was obtained on the 16-dimensional
optimal feature vector. We made a comprehensive compar-
ison between the proposed probability feature and the exist-
ing sequence-based feature description. The results showed
that the probability features generated by the feature rep-
resentation learning method had strong resolution and that
the CAPs and non-CAPs were easier to separate. In addi-
tion, the proposed CAPs-LGBM was compared with three
common ensemble learning strategies to verify the feature
representation learning scheme. The 10-fold CV and the
independent test showed that CAPs-LGBMwas superior to
other methods in CAP prediction. Finally, we also estab-
lished a user-friendly online predictor to promote the use
of relevant research communities. We expect that CAP-
LGBM will contribute to the identification of CAPs, reveal
their biological function mechanism, and accelerate patho-
logical research related to CAPs.
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