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Abstract

Background: Young adults with irritable bowel syndrome (IBS) occasionally exhibit specific abdominal symptoms, including abdominal
pain associated with brain activity patterns. Decoded neural feedback (DecNef) is a biofeedback exercise that allows symptomatic people
to exercise self-control over their brain activity patterns relative to those without symptoms. Thus, DecNef can be used to self-control
abdominal pain in patients with IBS. To establish a DecNef practice for IBS, it is necessary to develop a classifier that can distinguish the
electroencephalography (EEG) patterns (EEG signatures) of IBS between symptomatic and healthy people. Additionally, the accuracy of
the “classifier” must be evaluated. Methods: This study analyzed EEG data obtained from symptomatic and asymptomatic young adults
with IBS to develop a support vector machine-based IBS classifier and verify its usefulness. EEG data were recorded for 28 university
students with IBS and 24 without IBS. EEG data were frequency-analyzed by fast Fourier transform analysis, and IBS classifiers were
created by supervised learning using a support vector machine. Results: The diagnostic accuracy of IBS symptoms was verified for the
whole brain and the frontal, parietal, and occipital regions. We estimated >90% accuracy of the IBS classifier in the whole brain and
frontal region. Conclusions: The results of this study suggest that EEG data can be used to determine the presence or absence of IBS
symptoms. With the IBS classifier, EEG may help provide feedback regarding the presence or absence of symptoms to patients, which
is the basis for developing self-management strategies for IBS.
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1. Introduction
Irritable bowel syndrome (IBS) is a disorder associ-

ated with the dysfunction of the brain–gut interaction, char-
acterized by chronic recurrent abdominal pain and altered
bowel movements [1–3]. In addition, IBS patients fre-
quently present with symptoms associated with anxiety, de-
pression, and somatization [4]. These symptoms affect the
quality of life (QOL) of IBS patients [5], and the severity of
abdominal symptoms in IBS is a predictor of reduced QOL
in relation to physical health [6]. The symptom severity
can be evaluated according to the IBS subtype Rome IV
criteria to understand the pathophysiological mechanisms
accurately [7]. The prevalence of IBS is estimated to be
4.1% of the worldwide population, according to a large
multinational study [8], and IBS is particularly common
in young adult women with low body mass index in Japan
[9,10]. However, obesity and IBS are positively correlated,
as observed in Western populations, resulting in regional
differences in prevalence [11]. As a treatment strategy for
IBS, maintaining the rhythm of life and improving lifestyle
can help reduce mild IBS symptoms [12]. Lifestyle and
dietary advice (low FODMAP: Fermentable Oligo-, Di-,
Mono-saccharides, And Polyols) is offered as an option

for IBS symptom relief, especially in the initial manage-
ment [13]. However, frequent and prolonged abdominal
pain often interferes with daily activities, like commuting
to school or work, among patients with IBS, even in mild
cases. Relieving abdominal pain poses a challenge in re-
habilitation efforts to improve the patients’ quality of life,
and guidelines for the treatment of IBS recommend phar-
macotherapy for frequent diarrhea or constipation [14,15].
For moderate-to-severe IBS, drugs that modulate central
neurotransmission—such as those that raise visceral sen-
sory thresholds—have certain advantages, especially an-
tidepressants [16]. If a patient does not respond to these
medications, psychosomatic treatments such as cognitive-
behavioral therapy, hypnotherapy, and autogenic training
have also been shown to be effective [17,18]. Therefore,
the development of a self-care strategy that raises the vis-
ceral perception threshold for IBS can be an important form
of non-pharmacological rehabilitation for such patients.

Abdominal pain (the main symptom of IBS) is sub-
jective because the signals from the abdomen undergo pro-
cessing in the brain [19]. Event-related potentials in the
right parietal lobe region of the brain are normalized by at-
tention bias modification in IBS patients [20]. Moreover,
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brain research suggests that gastrointestinal hypersensitiv-
ity is a diagnostic marker of IBS [21]. When not perform-
ing a specific function, human brain functions form a dis-
tinctive default mode network (DMN) or resting state func-
tional connectivity (RSFC) [22]. A study on the DMN used
a method to identify the activity patterns and brain regions
that can discriminate between diseased and healthy groups
[23]. When using an analytical method based on machine
learning, the brain activity of the disease group or partic-
ipant is matched to the brain activity pattern (EEG signa-
ture) to predict the patient’s condition [24]. In a previ-
ous study, we validated the DMN of the brain–gut corre-
lation by investigating functional brain imaging data col-
lected during a gastrointestinal stretch stimulation [25]. The
results showed weak functional connectivity between the
dorsolateral and medial prefrontal cortices in the DMN of
symptomatic patients with IBS, suggesting that they are
sensitive to gastrointestinal perception. Among the brain
regions that form the DMN, the posterior cingulate cortex
is particularly involved in “preoccupation with one’s self”
[26]. However, humans often experience thoughts unre-
lated to a given task, and this phenomenon is now being
examined for its positive medical applications [27,28]. In
other words, it is hypothesized that IBS symptoms will de-
crease if the DMN in IBS patients can be induced to the
same patterns as in people without abdominal pain.

Similar biofeedback techniques have been used for
stress management, rehabilitation of motor paralysis, re-
laxation, and mental training in sports [29–32]. Among
the various biofeedback methods, the neurofeedback tech-
nique is used as an index for regulating brain activity in a
method known as decoded neural feedback (DecNef). This
is a method of training the brain network to discriminate the
differences between the pathological state of brain activity
at rest or during a task and to adjust the activity of rele-
vant brain regions through self-control mechanisms [33].
In DecNef, biological information (such as EEG and brain
images) is first presented to subjects in the form of easily
recognizable representations such as sound, light, and im-
ages. Subsequently, the participant adjusts their biological
responses based on this information. Establishing DecNef
in practice requires a classifier that can discriminate the dif-
ferent biological signals between IBS patients and healthy
subjects and a display device that provides feedback to the
treatment participant regarding decoded brain information
[34]. The IBS classifier is a tool used to predict the de-
gree of abdominal pain in symptomatic patients and judge
the effect of therapeutic intervention. Current classifiers
use functional magnetic resonance imaging (fMRI) to ob-
tain detailed functional brain images [35,36]. However, it
may be possible to develop a classifier that discriminates
between symptomatic and asymptomatic patients with IBS
by analyzing real-time changes in the frequency and am-
plitude of the electroencephalogram (EEG). This may help
predict the degree of abdominal pain in symptomatic pa-

tients and evaluate the effect of therapeutic intervention.
Moreover, if an EEG classifier is developed for IBS, Dec-
Nef methods may be developed for the self-regulation of
abdominal pain in patients with IBS.

Brain research usingmachine learning is based on out-
put data from the examination of brain activity, and re-
searchers have estimated the presence or absence of a phe-
nomenon using such brain activation data [37]. Using this
method, IBS patients are classified not only on the basis
of abdominal pain, but also on whether their specific brain
activity corresponds to that of the disease group [38,39].
Therefore, it is possible to diagnose diseases, track the
course of treatment, and evaluate interventions using brain
activity data. In machine learning algorithms, the brain ac-
tivity associated with a characteristic phenomenon (for ex-
ample, abdominal pain) is detected and examined (for ex-
ample, using principal component analysis) to create a clas-
sifier that can discriminate between diseased and healthy
groups. In IBS patients, we can evaluate the accuracy
of discriminating DMN patterns characteristic of IBS by
matching the brain activities of healthy people to a classi-
fier. Because the DMN is closely associated with the recog-
nition process of visceral perception, this function can cre-
ate a new objective scale for evaluating abdominal pain and
verifying the feasibility of DecNef. Therefore, the purpose
of this study was to verify the usefulness of a classifier as
a basis for the development of DecNef by analyzing EEG
data obtained from symptomatic and asymptomatic patients
with IBS.

2. Materials and Methods
2.1 Study Design

In this study, we used a cross-sectional study design,
created a classifier to discriminate EEG features between
symptomatic and asymptomatic patients with IBS, and ver-
ified the rate of positive diagnoses of IBS in symptomatic
patients using EEG data.

2.2 Participants and Recruitment

The eligibility criteria for study participants were as
follows: (1) university students aged ≥18 years; and (2)
right-handed individuals with a score of at least 70 points
on the Edinburgh Handedness Inventory (EHI). The exclu-
sion criteria were the presence of psychiatric disorders and
functional gastrointestinal diseases other than IBS.

University students were recruited between March
2013 and September 2020 for the verification of EEG-based
discrimination of IBS symptoms. For the recruitment of
participants, an e-mail containing the outline of the experi-
ment was prepared and sent to university students after ap-
proval by the Ethics Committee. The research procedure
was explained to the participants who met the eligibility
criteria, and all participants consented to participate in this
study.
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2.3 Samples for Analysis
Participants who met the eligibility criteria during the

study period were included. Prior to the study, verbal and
written explanations were provided to the participants, and
those who provided written consent were asked to partici-
pate in the experiment. Based on previous studies compar-
ing EEG results in symptomatic and asymptomatic patients
with IBS, we determined a sample size of 11 participants
in each group. Based on estimated data loss, the group size
was set to 30. To investigate whether the EEG data can
discriminate the presence of IBS, 15 participants were ran-
domly selected using a random number table and included
in the first analysis (derivation study) according to their
symptoms. After fitting the data to a machine learning algo-
rithm, a second analysis (validation study) was conducted
to investigate whether this classifier could discriminate the
EEG data of IBS patients. The remaining participants were
included in this validation study. The data obtained were
analyzed by a statistician blinded to the presence or absence
of IBS symptoms, in a single-blind study design.

2.4 Research Ethics
This study was approved by the Review Boards of

Saitama Prefectural University (#24075) andNagasaki Uni-
versity (#13072632). The principal investigator met with
the students who met the eligibility criteria, explained the
purpose and method of the study, and obtained informed
consent. The students were informed of their right to with-
draw from the study at any time. At the time of enrollment,
the students provided written consent for the collection and
use of their key characteristics and basic data.

2.5 Experimental Protocols
Among students who met the eligibility criteria, the

presence or absence of IBS symptoms was determined us-
ing a questionnaire based on the Rome IV criteria [40]. Stu-
dents with IBS symptoms were defined as the IBS group,
and those without IBS symptoms were defined as the non-
IBS group. In the experiment, we first administered a ques-
tionnaire to the participants regarding IBS symptoms. Next,
the participants were placed in a supine position with their
eyes closed for 5 min, and then underwent EEG measure-
ments for 10 min (Fig. 1).

2.6 Experimental Procedure
After recording the height, weight, and body mass in-

dex of consenting participants, we administered the EHI—
a 10-item questionnaire in which the participants answered
questions regarding their use of the left and right hands. A
positive value indicated right-handedness, whereas a neg-
ative value indicated left-handedness. The Rome IV self-
administered questionnaire was also administered, in which
participants answered questions regarding the intensity and
frequency of abdominal symptoms.

2.7 EEG Measurement
EEG was recorded using Ag/AgCl electrodes at 11

sites (F3, F4, C3, C4, P3, P4, O1, O2, Cz, Fz, and Pz) in
accordance with the international 10–20 method. A refer-
ence electrode was placed on the right earlobe. During EEG
acquisition, the sampling time was 1 ms, and the impedance
between the electrode and scalp was adjusted to less than 50
Ω for accurate acquisition. The EEG was recorded using a
Polymate Pro MP6100 system (Miyuki Giken. Co., Ltd.,
Tokyo, Japan). Participants remained conscious, but were
instructed to keep their eyes closed at rest during the mea-
surements to control for biological artifacts. EEGwasmon-
itored throughout the measurement period to ensure that the
participants were awake. The experimenter provided ap-
propriate warnings to the participants when necessary.

2.8 Quantification of EEG Analysis
EEG data were visually examined to confirm the ab-

sence of biological artifacts and sudden EEG abnormali-
ties, and then analyzed using the EMSE application (EMSE
Suite; Source Signal Imaging, San Diego, CA, USA) im-
plemented on a computer. EEG data were filtered in the
frequency range of 0.5–30 Hz using the right earlobe as a
reference, and the data were analyzed using fast Fourier
transform (FFT) processing and time-frequency analysis.
The time window for frequency analysis was set to 10 s,
and the overlap was set to 50%. The total power was ob-
tained by adding the powers 8.0 of 29.8 Hz. The total po-
tency was expressed as a percentage of the total power for
each participant, and α (8.0–12.8 Hz) and β (13.0–29.8 Hz)
bands were extracted. FFT is a method for transforming
time-series data into the frequency domain, and it can cap-
ture the frequency changes that cannot be supplemented by
time-series data. Due to its fast processing time, it is also
excellent for generating control signals for robots. The raw
EEG data and samples by band are shown in Fig. 2.

2.9 EEG Analysis
The EEG data of participants whose α waves were

outliers in any channel were excluded using the Smirnov-
Grubbs test. We excluded data with values above the
thresholds of 2.714 for IBS subjects and 2.773 for non-IBS,
calculated using α power percentages from EEG data. This
method has been used in neurofeedback studies and can re-
duce the effects of excessive noise [41]. EEG data in the
time window of 120–240 s were analyzed, and frequency
analysis was performed using EMSE to extract data in the
α- and β-wave bands. The channels located anterior to the
central sulcus (F3, F4, C3, C4, Fz, and Cz) were consid-
ered to be the frontal region The C3, C4, P3, P4, Cz, and
Pz) channels ranged from the central sulcus to the dorsal re-
gion, and the channels P3, P4, O1, O2, and Pz ranging from
the parieto-occipital sulcus to the dorsal side were consid-
ered to be the occipital region. EEG data for each group
were tested for normality using the Shapiro–Wilk test and
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Fig. 1. Schematic representing the electroencephalogram (EEG) analysis and tests for the predictive accuracy of the irritable
bowel syndrome (IBS) classifier. (A) A flowchart of the study protocol from the recruitment of participants to EEG data analysis.
Participants assessed for the presence of IBS symptoms are subjected to EEG examination, and the target frequency bands (α and β

bands) of the EEG data are extracted by fast Fourier transformation. (B) A support vector machine (SVM) is used to create a classifier
that can discriminate the EEG patterns of participants with and without IBS symptoms using machine learning and the α and β bands of
the frequency-analyzed EEG data. (C) Validation of the discrimination accuracy of the classifier for IBS symptoms. EEG test data are
discriminated by the classifier, and the discrimination accuracy between patients with and without IBS is calculated.

Fig. 2. Examples of electroencephalogram (EEG) patterns in patients with irritable bowel syndrome (IBS). (A) Elapsed time (x-
axis) and actual waveform of each channel (y-axis) in the EEG measurements. Data were recorded for 10 minutes, and those in the time
window of 120–240 s (shown in gray shading) were analyzed. (B) EEG waveforms of IBS patients processed using the power spectra.
The α (8.0–12.8 Hz) and β (13.0–29.8 Hz) bands highlighted in gray shading were analyzed.
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Table 1. Method of estimating the accuracy rate of the support vector machine classifier.
IBS Non-IBS Equation

IBS positive True positive: a False positive: b
Sensitivity
= a / (a + b)

IBS negative False negative: c True negative: d
Specificity
= d / (c + d)

Total IBS symptoms
Precision Negative predictive value Accuracy rate
= a / (a + c) = d / (b + d) = (a + d) / (a + b + c + d)

IBS, irritable bowel syndrome.
True positive indicates a correctly labeled positive. True negative indicates a correctly labeled nega-
tive record.

amplified to 1000 data points (total, 2000 data points) using
the parametric bootstrap method.

2.10 Creation of a Support Vector Machine Classifier and
Evaluation of its Discriminative Ability
2.10.1 Support Vector Machines

Support vector machines (SVMs) are supervised
machine-learning methods used for classification and re-
gression [42]. A linearly separable sample set is denoted
as (xi, yi) , i =, . . . , n, x ∈ Rd, including y ∈ + 1,−1

class labels. The general formula for the linear discrimi-
nant function (Eqn. 1) is as follows:

g(x) = ωx+ b (1)

The SVM algorithm finds an optimal separating hy-
perplane that can classify samples without errors and max-
imize the distance between any class and the separating hy-
perplane. To classify all the samples correctly, the follow-
ing conditions must be satisfied:

yi [(ω · xi) + b]− 1 ≥ 0, i = 1, 2, . . . , n (2)

The margin between the two classes being classified is
(2/∥ω∥). From this point of view, maximizing the margin
is equivalent to minimizing it to ∥ω∥2/2.

We can optimize the solution of the problem using
Eqn. 2, as given by the saddle point of the Lagrangian func-
tion. The optimal discriminant function is as follows:

f(x) = sgn {(ω∗x) + b∗} = sgn
{∑

n
i=1α

∗
i yi (xix) + b∗

}
(3)

The extended optimal separating hyperplane is determined by
replacing Eqn. 3 using the kernel function K (x, x′). Therefore, the
original feature space is mapped to a new higher-dimensional space,
where the linear separability of the projected samples is enhanced.
Therefore, the discriminant function (Eqn. 4) changes as follows:

f(x) = sgn
{∑

n
i=1α

∗
i yiK (xi, x) + b∗

}
(4)

The SVM is adaptable to cases where linear separation is
possible or impossible. This has been extended to construct non-

linear discriminant functions using kernel tricks. In this study, we
used the Gaussian kernel in Eqn. 5 as follows:

k
(
x′
i, x

)
j = exp

(
i− γ∥x− x∥2j

)
(5)

2.10.2 Creating an SVM Classifier
The data of the α- and β-wave bands were amplified us-

ing the bootstrap method; 90% of the data were used as train-
ing data for supervised machine learning, and the remaining 10%
were used as test data to evaluate the discriminative ability of
the classifier. We created classifiers using the ksvm function in
the “kernlab” package in R statistical software (R Core Team.
R Foundation for Statistical Computing, Vienna, Austria. https:
//www.R-project.org/, 2019.).

2.10.3 Evaluation of the Discriminative Ability of the
Classifier

The discriminative power of the classifier was evaluated us-
ing a bootstrapped dataset. Classification was quantified using a
confusionmatrix. According toHan et al. [43], a confusionmatrix
tool can be used to apply classifier analysis to recognize various
classes. In this study, we examined whether the SVM classifica-
tion model established in the training dataset could discriminate
the EEG of the test datasets between participants with and with-
out IBS. This validation procedure was repeated 10 times, and the
accuracy rate was calculated as AR = (TP + TN)/N (AR, accuracy
rate; TP, true positive; TN, true negative; N, sum of true positive,
true negative, false positive, and false negative). The calculation
method for the positivity rate is detailed in Table 1.

2.11 Statistical Analysis
In the statistical analysis, the EEG data obtained from each

group were tested for normality using the Shapiro-Wilk test. After
confirming normality, the band-specific data for each channel am-
plified by the bootstrap method were tested for associations with
IBS symptoms using a multivariate analysis of variance. Post-hoc
analyses with unpaired t-tests were performed to compare each
channel for each IBS symptom. The SVM classifier was used to
calculate the rate of positive diagnoses, sensitivity, and specificity
of the IBS symptoms. Demographic data were compared using
the chi-square and Mann–Whitney U tests. All statistical tests
were performed in R using R Studio (version 1.1.4; R Foundation,
Boston, USA), with the significance level set at 5%.
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3. Results
3.1 Enrollment and Student Characteristics

A consent form for participating in the study was sent via
email, and 60 students who met the eligibility criteria were en-
rolled in this study (mean age = 20± 1 years). Those with an EHI
of ≥80% were considered right-handed [44,45]. Right-handed
participants were evaluated for the presence of IBS symptoms
based on the Rome IV criteria and divided into two groups: 32
participants with IBS symptoms (IBS group) and 28 without IBS
symptoms (non-IBS group) (Fig. 3). The IBS QOL was recorded
for each participant prior to EEG measurement. The data of eight
participants were excluded from analysis because they exceeded
the group mean + standard deviation in at least one of the chan-
nels). In total, the EEG data of 52 participants were analyzed.
The groups based on IBS symptoms were as follows: IBS with
predominant constipation (IBS-C, n = 9), predominant diarrhea
(IBS-D, n = 6), mixed bowel habits (IBS-M, n = 7), and unclas-
sified (IBS-U, n = 6) [40]. In addition, the training dataset for
machine learning included four IBS-C, five IBS-D, four IBS-M,
and two IBS-U subjects, and the validation dataset included five
IBS-C, one IBS-D, three IBS-M, and four IBS-U subjects. The
scores of IBS QOL were similar between groups (Table 2).

Fig. 3. Selection process of the study population and study
design. Among the participants screened for IBS symptoms,
60 students selected by random sampling were enrolled in this
study. Then, EEG measurements and psychological tests were
performed, and participants with outliers in EEG data were ex-
cluded. The participants finally included in the analysis were 28
in the IBS group (training: 15, validation: 13) and 24 in the non-
IBS group (training: 15, validation: 9).

3.2 Comparisons of EEG Bands and α and β Power
Percentages in Groups with and without IBS Symptoms

The MANOVA results including α and β wave channels ac-
cording to IBS symptoms were df (1, 50), Pillai: 0.658, p = 0.01.
Post-hoc analyses revealed significant differences between groups
in α and β power percentages in EEG channels. Intergroup dif-
ferences were found in α power percentages in the F3 (t = –3.54,
p < 0.001, r = 0.08), C3 (t = 2.77, p = 0.006, r = 0.06), Cz (t =

–2.24, p = 0.025, r = 0.05), P3 (t = 4.31, p< 0.001, r = 0.10), Pz (t
= 3.87, p< 0.001, r = 0.09), P4 (t = 4.53, p< 0.001, r = 0.10), O1
(t = –3.63, p < 0.001, r = 0.08), and O2 (t = –3.63, p < 0.001, r
= 0.08) channels. Significantly differences in β power percentage
were found in all channels as follows: F3 (t = 7.21, p< 0.001, r =
0.16), Fz (t = 6.15, p < 0.001, r = 0.14), F4 (t = 9.10, p < 0.001,
r = 0.20), C3 (t = 10.40, p < 0.05, r = 0.23), Cz (t = 8.52, p <
0.001, r = 0.19), C4 (t = 10.21, p< 0.001, r = 0.22), P3 (t = 11.06,
p < 0.001, r = 0.24), Pz (t = 10.86, p < 0.001, r = 0.24), P4 (t =
13.88, p< 0.001, r = 0.30), O1 (t = 8.47, p< 0.001, r = 0.19), O2
(t = 10.47, p < 0.001, r = 0.23) (Fig. 4).

3.3 Discriminative Ability of the SVM Classifier to
Differentiate EEG Data by IBS Symptoms

The EEG data in the α- and β-bands collected from ran-
domly selected participants with (n = 15, subtypes: four IBS-C,
five IBS-D, four IBS-M, and two IBS-U) and without (n = 15) IBS
were bootstrapped to 1000 iterations per channel. In the amplified
data, 1500 of the 2000 samples were defined as a supervised train-
ing dataset for the SVM to generate IBS classifiers. The remain-
ing 500 samples were used to test whether these classifiers could
automatically distinguish between the EEGs of IBS and non-IBS
groups. Subsequently, to test whether the generated classifiers
could discriminate EEGs based on IBS symptoms, bootstrapped
data from participants with (n = 13, subtypes: five IBS-C, one
IBS-D, three IBS-M, and four IBS-U) and without (n = 9) IBS
were newly included, and the discriminative ability of classifiers
was tested in each brain region (Fig. 5). Table 3 lists the accu-
racy, sensitivity, specificity, and rates of positive predictions (for
symptomatic and asymptomatic participants) of the SVM classi-
fier based on 10 repeated measurements. In the frontal region, the
SVMclassifier showed high discrimination accuracy and low vari-
ability in the rate of positive diagnosis of the IBS (0.860–0.949;
mean, 0.908; 95% confidence interval, 0.890–0.926) and non-
IBS (0.840–0.947; mean, 0.898; 95% confidence interval, 0.8–
076.921) groups (Fig. 6).

4. Discussion
In this study, we generated a classifier to determine the

symptoms of IBS using the discriminant frequencies of theα andβ
bands from the EEG channels of symptomatic and asymptomatic
participants with IBS. Using this classifier, we tested the rate of
positive discrimination of EEG segments in young adults with IBS
symptoms. The SVM classifier demonstrated high accuracy in
discriminating IBS symptoms (whole brain: 90.0–94.5%; frontal
region: 88.0–94.0%). Studies analyzing EEG power spectra have
reported β-power enhancement and α-power attenuation in IBS
[46,47]. In previous studies, the accuracy rates of SVM classi-
fiers for EEG data were reported to be 59.9–64.9 [38] and 67.2%
[48]. Our results indicate that IBS symptoms can be discrimi-
nated using classifiers based on the α and β bands of EEG data
of the whole brain or the frontal region. These findings suggest
that bootstrap-based machine learning can more accurately deter-
mine the presence or absence of IBS symptoms when more α-
and β-band data are recorded, thus enhancing the discrimination
ability of the classifier. Although the SVM is one of the simplest
mechanisms in artificial intelligence, its computational simplic-
ity and quick discrimination make it suitable for implementation
in the DefNec training system. In addition, the high accuracy of
IBS discrimination by the SVM classifier using EEG data from
the frontal region indicates that the acquisition of electric poten-
tial from this region is sufficient for discrimination, which allows
the creation of a compact self-care training device.

Studies have reported the characteristics of the DMNwhen it
is not performing a particular function in humans [49]. In IBS, ex-

6

https://www.imrpress.com


Table 2. Characteristics of subjects in relation to IBS subtype and domains of quality of life.

Variables
IBS group (n = 28) Non-IBS group (n = 24)

Statistics
Male female male female

Participants (n) 6 22 8 16 n.s.
Age (mean years) 19 20 19 19 n.s.
IBS subtypes (n)

IBS-C 2 7 n/a n/a n.s.
IBS-D 0 6 n/a n/a n.s.
IBS-M 2 5 n/a n/a n.s.
IBS-U 2 4 n/a n/a n.s.

IBS quality of life

Dysphoria 74.0 ± 39.2 74.9 ± 16.8 90.2 ± 16.7 77.3 ± 20.7
1p = 0.25
2d = 0.32

Interference with activity 75.6 ± 33.5 76.0 ± 19.2 91.5 ± 14.5 77.9 ± 19.7
1p = 0.26
2d = 0.31

Body image 87.5 ± 19.0 79.6 ± 16.3 94.5 ± 10.3 78.5 ± 17.8
1p = 0.59
2d = 0.15

Health worry 86.1 ± 26.7 77.3 ± 16.1 88.5 ± 14.0 83.3 ± 18.8
1p = 0.24
2d = 0.33

Food avoidance 80.6 ± 36.0 67.8 ± 28.6 88.5 ± 18.3 70.3 ± 25.1
1p = 0.45
2d = 0.21

Social reaction 84.4 ± 35.3 88.6 ± 9.9 97.7 ± 4.65 90.2 ± 10.7
1p = 0.22
2d = 0.34

Sexual concerns 89.6 ± 25.5 91.5 ± 14.6 100.0 ± 0.0 96.1 ± 9.9
1p = 0.10
2d = 0.46

Relationships 81.9 ± 36.7 82.6 ± 12.0 89.6 ± 13.2 83.9 ± 22.9
1p = 0.54
2d = 0.17

For statistical analysis, we used the t-test corresponding to the IBS quality of life after the normality test.
1Test between two groups according to differences in IBS symptoms. 2Effect size in each test. n/a, not
applicable; n.s., not significant; IBS-C, IBS with predominant constipation; IBS-D, predominant diarrhea;
IBS-M, mixed bowel habits; IBS-U, unclassified.

Fig. 4. Comparison of power percentages of EEG bands in participants with and without IBS symptoms. The EEG data are shown
according to the frequency band in each channel, and the power percentages are compared. Error bars indicate the standard error of the
mean. *p < 0.05.
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Fig. 5. Three-dimensional discrimination map of electroencephalography (EEG) data according to the generated classifier. The
α and β bands of each measurement region are shown, as calculated by analyzing the EEG data. The x- and y-axes indicate the power
percentages in the α and β bands, respectively, and the numbers indicate the number of plots for each frequency band (z-values). A
higher z-axis area indicates the irritable bowel syndrome (IBS) group, and a lower z-axis area indicates the non-IBS group (that is, the
cut-off point for discriminating the presence of IBS symptoms). For example, in F3, patients with IBS have a lower α power percentage
and a higher β power percentage.

Fig. 6. Evaluation of the discriminative ability of the support vector machine classifier for each brain region. The model diagram
shows the discrimination accuracy of the classifier in the electroencephalography channels in the frontal, parietal, and occipital regions. A
3D discrimination map for each brain region (top) and accuracy rates (bottom) are shown. The graphs show the number of discrimination
trials (x-axis) and the accuracy rate (y-axis), and the accuracy rate of the whole brain is shown as a reference. Gray and orange error bars
indicate the 95% confidence interval of each data point.
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Table 3. Accuracy rates of support vector machine classifications.

Measure
Whole brain Frontal region Parietal region Occipital region

Mean SD Mean SD Mean SD Mean SD

Accuracy rate 91.75 1.44 90.35 2.29 84.40 2.56 77.50 2.16
Sensitivity 90.99 3.40 89.94 3.22 81.79 3.85 66.34 2.94
Specificity 92.56 3.01 90.88 2.47 87.30 2.36 89.98 3.30
Positive prediction 92.23 3.17 90.84 2.91 86.87 3.01 88.17 3.60
Negative prediction 91.43 3.21 89.82 3.60 82.00 4.85 70.58 3.89
SD, standard deviation.

cessive attention to body sensations (body vigilance) is accompa-
nied by gastrointestinal hypersensitivity [50]. However, analysis
of the characteristic DMN in this context is still in progress. Char-
acteristic DMNs are possible to discriminate based on the char-
acteristics of EEG spectra associated with biological responses
and emotional recognition [51]. Studies using positron emission
tomography (PET) and magnetic resonance imaging (MRI) have
reported that brain functions are different between asymptomatic
and symptomatic patients with IBS who have gastrointestinal hy-
persensitivity as a result of stimulation of the colon [52]. Ezra et
al. [53] reported that the insular cortex and periaqueductal gray
(PAG) area—which are important for perception—are connected
in patients with IBS who are prone to chronic repetitive abdomi-
nal pain. In addition, chronic pain has been shown to occur in the
dorsolateral prefrontal cortex and PAG [54] area. In patients with
IBS, brain function in response to chronic abdominal pain tends to
show dysregulation in the frontal-parietal region. Gastrointestinal
hypersensitivity (one of the symptoms of IBS) can be reproduced
by the repetitive mechanical stretching of an indwelling balloon
in the intestine [55]. Constant repetitive brain-gut disturbances
often induce abdominal pain and visceral hypersensitivity in IBS
patients. A comparison of intestinal and brain activity after food
intake between IBS patients and healthy participants revealed that
the amount of ascending colon gas increased equally, while the
activity in the brain region associated with intestinal pain was dif-
ferent [56]. Because the abnormalities in the brain–gut correlation
in IBS are usually reflected in an EEG, we speculate that the SVM
classifier developed here is highly accurate.

Classifiers generated by machine learning using PET and
MRI data have been used as DecNef for psychiatric disorders, and
their effectiveness has been verified [57,58]. However, the device
used for data acquisition using these techniques is too large to be
easily carried, and is difficult to access for people with IBS [59].
Several psychological interventions have shown therapeutic use-
fulness in IBS regarding the relationship between psychological
abnormalities and gastrointestinal symptoms. Web-based dietary
monitoring [60], mindfulness [61], and cognitive behavioral ther-
apy [62] have improved patients’ QOL and reduced their psycho-
logical distress [63]. Thus, support tools that are easily accessible
to patients are being more widely used. In the present study, we
generated a classifier based on the strength of functional connec-
tivity in the DMN, which is characteristic of symptomatic young
adults with IBS. This will be the basis for implementing the clas-
sifier in practical DecNef. We expect that a new EEG-DecNef
device will be developed that analyzes the EEGs of patients with
IBS, approximates the DMN characteristic of IBS symptoms, and
feeds back the results to the patients.

This study has several limitations. First, the participants
were young, and we did not conduct a stratified analysis by age.
However, EEG results are known to vary with age [64], and ner-
vous connectivity in brain networks is known to decrease with age
[65]. In addition, IBS symptoms differ between younger and older

adults [9]. Thus, considering the unique brain functions associ-
ated with aging can allowmore accurate assessment and diagnosis
of brain–gut interactions. Sex differences in IBS symptoms with
constipation and diarrhea have also been reported [66]. Moreover,
there are sex differences in the brain structure and abdominal or-
gans of humans. Therefore, it is advisable to create and verify a
classifier using age group and sex as determinants. Second, the
participants in this study had mild IBS symptoms, and we did
not conduct an analysis stratified by disease severity. EEG has
been used as a biomarker of depressive symptoms [67], and has
been proposed as a predictive tool based on the constant changes
caused by treatment with selective serotonin reuptake inhibitors
[68]. These results indicate that the EEG results change with men-
tal and physical burdens. EEG analysis according to the severity
of IBS can extend the means of support in patients with IBS, such
as by reducing disease severity from severe to moderate and from
moderate to mild. Third, the number of participants in this study
was insufficient to provide a generalization of the model. The
gut–brain axis is affected by eating behavior and food intake [56];
thus, a prospective study is recommended to implement a classi-
fier that discriminates IBS symptoms adjusting for food contents
and eating behavior. Fourth, the participants were not evaluated
with diagnostic procedures, such as laboratory examinations or
colonoscopy. Therefore, some of the participants could have had
an organic cause for their digestive symptoms. However, iden-
tification of individuals with IBS in this study was based on the
reliable IBS detection previously described [8]. We believe that
our inclusion of a checklist of organic diagnoses that might ac-
count for GI symptoms and exclusion of such cases from the IBS
diagnosis compensated at least partially for this possible selection
bias. Finally, the IBS sample in our study did not show any com-
plex symptoms associated with IBS, which limits the generality of
the results. In IBS patients with chronic recurrent abdominal pain,
pain is generally determined using the following factors: diet [69],
intestinal environment [70], psychological state [71], and physical
activity [72]. We did not investigate these factors in the present
study. To understand the DMN and its complex symptoms charac-
teristic of IBS, a cohort-based study investigating its relationship
with EEG is needed. The results of these investigations will help
generate classifiers for each subtype of abdominal pain, whichwill
form the basis for IBS diagnosis and intervention protocols.

5. Conclusions
In this study, we generated a support vector machine classi-

fier for discriminating IBS symptoms using the EEG power spec-
tra in young adults with mild IBS. We also confirmed the high
discriminative ability and accuracy of this classifier. This method
of discrimination can help improve our ability to identify young
adults with IBS symptoms using EEG data, and may be used as an
evaluation index for self-control training.
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