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Abstract

Background: Drug design is one of the important applications of biological science. Extensive studies have been done on computer-aided
drug design based on inverse quantitative structure activity relationship (inverseQSAR), which is to infer chemical compounds from given
chemical activities and constraints. However, exact or optimal solutions are not guaranteed in most of the existing methods. Method:
Recently a novel framework based on artificial neural networks (ANNs) andmixed integer linear programming (MILP) has been proposed
for designing chemical structures. This framework consists of two phases: an ANN is used to construct a prediction function, and then
an MILP formulated on the trained ANN and a graph search algorithm are used to infer desired chemical structures. In this paper, we
use linear regression instead of ANNs to construct a prediction function. For this, we derive a novel MILP formulation that simulates the
computation process of a prediction function by linear regression. Results: For the first phase, we performed computational experiments
using 18 chemical properties, and the proposed method achieved good prediction accuracy for a relatively large number of properties,
in comparison with ANNs in our previous work. For the second phase, we performed computational experiments on five chemical
properties, and the method could infer chemical structures with around up to 50 non-hydrogen atoms. Conclusions: Combination of
linear regression and integer programming is a potentially useful approach to computational molecular design.

Keywords: machine learning; linear regression; integer programming; chemoinformatics; materials informatics; QSAR/QSPR; molec-
ular design

1. Introduction
Analysis of the activities and properties of chemical

compounds is important not only for chemical science but
also for biological science because chemical compounds
play important roles in metabolic and many other path-
ways. Computational prediction of chemical activities from
their structural data has been studied for several decades
under the name of quantitative structure activity relation-
ship (QSAR) [1]. In addition to traditional regression-
based methods, various machine learning methods have
been applied to QSAR [2,3]. Recently, neural networks and
deep-learning technologies have extensively been applied
to QSAR [4].

Inference of chemical structures with desired chemical
activities under some constraints is also important because
of its potential applications to drug design, and the prob-
lem has been studied under the name of inverse quantita-
tive structure activity relationship (inverse QSAR). Chem-
ical compounds are commonly represented by undirected
graphs called chemical graphs in which vertices and edges
correspond to atoms and chemical bonds, respectively. Due
to the difficulty of directly handling chemical graphs in
both QSAR and inverse QSAR, chemical compounds are
usually represented as vectors of integer or real numbers,

which are called descriptors in chemoinformatics and cor-
respond to feature vectors in machine learning. In inverse
QSAR, one major approach is to first infer feature vectors
from given chemical activities and constraints, and then re-
construct chemical structures from these feature vectors [5–
7]. However, the reconstruction itself is not an easy task
because the number of possible chemical graphs is huge.
For example, the number of chemical graphs with up to 30
atoms (vertices) C, N, O, and S may exceed 1060 [8]. In-
deed, the problem to infer a chemical graph from a given
feature vector is known as a computationally difficult prob-
lem (precisely, NP-hard) except for some simple cases [9].
Most existing methods for inverse QSAR do not guarantee
exact or optimal solutions due to these inherent difficulties.

Recently, artificial neural networks (ANNs), in
particular, graph convolutional networks [10] are exten-
sively used for inverse QSAR. For example, recurrent
neural networks [11,12], variational autoencoders [13],
grammar variational autoencoders [14], invertible flow
models [15,16], and generative adversarial networks [17]
have been applied. However, these methods do not yet
guarantee exact or optimal solutions.
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Fig. 1. An illustration of a framework for inferring a set of chemical graphs C∗.

Akutsu and Nagamochi [18] proved that the computa-
tion process of a given ANN can be simulated as a mixed
integer linear programming (MILP). Based on this result,
a novel framework for inferring a set of chemical graphs
has been developed [19,20], which is illustrated in Fig. 1.
This framework consists of two phases. In the first phase,
it constructs a prediction function and in the second phase,
it infers a chemical graph. There are three stages in the first
phase of the framework. In Stage 1, a chemical property π
and a class G of graphs are selected, and a property function
a is defined so that a(C) is the value of π for a compound
C ∈ G. Then we collect a data setDπ of chemical graphs in
G such that a(C) is available for everyC ∈ Dπ . In Stage 2,
a feature function f : G → RK for a positive integer K
is introduced. In Stage 3, a prediction function η is con-
structed with an ANN N that, given a vector x ∈ RK , re-
turns a value y = η(x) ∈ R so that η(f(C)) serves as a pre-
dicted value to a(C) of π for each C ∈ Dπ . Given a target
chemical value y∗, the second phase consists the next two
phases to infer chemical graphs C∗ with η (f (C∗)) = y∗.
A feature function f and a prediction function η are ob-
tained in the first phase, and we call an additional constraint
on the substructures of target chemical graphs a topological
specification. In Stage 4, the following two MILP formu-
lations are designed:

- MILP M(x, y; C1) with a set C1 of linear constraints
on variables x and y (and some other auxiliary variables)
simulates the process of computing y := η(x) from a
vector x; and
- MILP M(g, x; C2) with a set C2 of linear constraints
on variable x and a variable vector g that represents a
chemical graph C (and some other auxiliary variables)
simulates the process of computing x := f(C) from a
chemical graph C and chooses a chemical graph C that
satisfies the given topological specification σ.

Given a target value y∗ ∈ R, the combined MILP
M(g, x, y; C1, C2) is solved to find a feature vector x∗ ∈
RK and a chemical graph C† that satisfies the specification
σ such that f(C†) = x∗ and η(x∗) = y∗ (where if theMILP
is infeasible then this suggests that such a desired chemi-
cal graph does not exist). In Stage 5, by using the inferred
chemical graph C†, we generate other chemical graphs C∗

such that η(f(C∗)) = y∗.

Stage 4 MILP formulations to infer chemical graphs
with cycle index 0, 1 and 2 are proposed in [20–23], respec-
tively, but no sophisticated topological specification was
available yet. A restricted class of acyclic graphs that is
characterized by an integer ρ, called a “branch-parameter”
is introduced by Azam et al. [21]. This restricted class
still covers most of the acyclic chemical compounds in the
database. Akutsu and Nagamochi [24] extended the idea
to define a restricted class of cyclic graphs, called “ρ-lean
cyclic graphs” and introduced a set of flexible rules for
describing a topological specification. Tanaka et al. [25]
used a decision tree instead of ANNs to construct a predic-
tion function η in Stage 3 in the framework and an MILP
M(x, y; C1) that simulates the computation process of a de-
cision tree.

Recently Shi et al. [26] proposed a new model to
deal with an arbitrary graph in the framework called a two-
layered model to represent the feature of a chemical graph.
Also, the set of rules for describing a topological specifica-
tion in [27] was refined so that a prescribed structure can be
included in both of the acyclic and cyclic parts of a chem-
ical graph C. In this model, a chemical graph C with an
integer ρ ≥ 1, we consider two parts, namely, the exterior
and the interior of the hydrogen-suppressed graph ⟨C⟩ that
is obtained by removing hydrogen from C. The exterior
consists of maximal acyclic induced subgraphs with height
at most ρ in ⟨C⟩ and the interior is the connected subgraph
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of ⟨C⟩ obtained by excluding the exterior. Shi et al. [26]
also defined a feature vector f(C) of a chemical graph C
as a combination of the frequency of adjacent atom pairs
in the interior and the frequency of chemical acyclic graphs
among the set of chemical rooted trees Tu rooted at interior-
vertices u. Recently, Tanaka et al. [25] extended the model
in order to directly treat a chemical graph with hydrogens
so that the feature of the exterior can be represented with
more variety of chemical rooted trees.

The contribution of this paper is as follows. Firstly, we
make a slight modification to a model of chemical graphs
proposed by Tanaka et al. [25] so that we can treat a chemi-
cal element with multi-valence such as sulfur S and a chem-
ical graph with cations and anions. Then, we consider the
prediction function. One of the most important factors in
the framework is the quality of a prediction function η con-
structed in Stage 3. Also, overfitting is pointed out as a
major issue in ANN-based approaches for QSAR because
many parameters need to be optimized for ANNs [4]. In
this paper, to construct a prediction function in Stage 3, we
use linear regression instead of ANNs or decision trees. A
learning algorithm for an ANNmay not find a set of weights
and biases that minimizes the error function since the al-
gorithm simply iterates modification of the current weights
and biases until it terminates at a local minimum value, and
linear regression is much simpler than ANNs and decision
trees and thereby we regard the performance of a prediction
function by linear regression as the basis for other more so-
phisticated machine learning methods. In this paper, we
derive an MILP formulationM(x, y; C1) in Stage 4 to sim-
ulate the computation process of a prediction function by
linear regression. For an MILP formulation M(g, x; C2)
that represents a feature function f and a specification σ
in Stage 4, we can use the same formulation proposed by
Tanaka et al. [25] with a slight modification (the detail
of the MILP M(g, x; C2) can be found in Supplementary
Material). In Stage 5, we can also use the dynamic pro-
gramming algorithm due to Tanaka et al. [25] with a slight
modification to generate target chemical graphs C∗ and the
details are omitted in this paper.

We implemented the framework based on the refined
two-layered model and a prediction function by linear re-
gression. The results of our computational experiments re-
veal a set of chemical properties to which a prediction func-
tion constructed by linear regression on our feature func-
tion performs well, in comparison with ANNs in our pre-
vious work. We also observe that chemical graphs with up
to 50 non-hydrogen atoms can be inferred by the proposed
method.

The paper is organized as follows. Section 2 intro-
duces some notions and terminologies on graphs, modeling
of chemical compounds and our choice of descriptors. Sec-
tion 3 describes our modification to the two-layered model.
Section 4 reviews the idea of linear regression and formu-
lates an MILP M(x, y; C1) that simulates the computing

process of a prediction function constructed by linear re-
gression. Section 5 reports the results of some computa-
tional experiments conducted for 18 chemical properties
such as vapor density and optical rotation. Section 6 gives
conclusions with future work. Some technical details are
given in Supplementary Material.

2. Preliminary
In this section, we review some notions and terminolo-

gies related to graphs, modeling of chemical compounds in-
troduced by Tanaka et al. [25] and our choice of descriptors.

Let R, R+, Z and Z+ denote the sets of reals, non-
negative reals, integers and non-negative integers, respec-
tively. For two integers a and b, let [a, b] denote the set of
integers i with a ≤ i ≤ b.

Graph Given a graph G, let V (G) and E(G) denote the
sets of vertices and edges, respectively. For a subset V ′ ⊆
V (G) (resp., E′ ⊆ E(G)) of a graph G, let G− V ′ (resp.,
G−E′) denote the graph obtained fromG by removing the
vertices in V ′ (resp., the edges in E′), where we remove
all edges incident to a vertex in V ′ in G − V ′. An edge
subset E′ ⊆ E(G) in a connected graph G is called sepa-
rating (resp., non-separating) if G − E′ becomes discon-
nected (resp., G − E′ remains connected). The rank r(G)
of a connected graph G is defined to be the minimum |F |
of an edge subset F ⊆ E(G) such that G − F contains
no cycle, where r(G) = |E(G)| − |V (G)| + 1. Observe
that r(G−E′) = r(G)− |E′| holds for any non-separating
edge subset E′ ⊆ E(G). An edge e = u1u2 ∈ E(G) in
a connected graph G is called a bridge if {e} is separating,
i.e., G − e consists of two connected graphs Gi contain-
ing vertex ui, i = 1, 2. For a connected cyclic graph G,
an edge e is called a core-edge if it is in a cycle of G or is
a bridge e = u1u2 such that each of the connected graphs
Gi, i = 1, 2, of G − e contains a cycle. A vertex incident
to a core-edge is called a core-vertex ofG. A path with two
end-vertices u and v is called a u, v-path.

A vertex designated in a graph G is called a root. In
this paper, we designate at most two vertices as roots, and
denote by Rt(G) the set of roots of G. We call a graph G
rooted (resp., bi-rooted) if |Rt(G)| = 1 (resp., |Rt(G)| =
2), where we call G unrooted if Rt(G) = ∅.

For a graph G possibly with roots, a leaf-vertex is de-
fined to be a non-root vertex v ∈ V (G) \ Rt(G) with de-
gree 1. Call the edge uv incident to a leaf vertex v a leaf-
edge, and denote by Vleaf (G) and Eleaf (G) the sets of leaf-
vertices and leaf-edges in G, respectively. For a graph or
a rooted graph G, we define graphs Gi, i ∈ Z+ obtained
from G by removing the set of leaf-vertices i times so that

G0 := G; Gi+1 := Gi − Vleaf (Gi) , (1)

where we call a vertex v ∈ Vleaf (Gk) a leaf k-branch and
we say that a vertex v ∈ Vleaf (Gk) has height ht (v) = k
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in G. The height ht (T ) of a rooted tree T is defined to be
the maximum of ht(v) of a vertex v ∈ V (T ). For an integer
k ≥ 0, we call a rooted tree T k-lean if T has at most one
leaf k-branch. For an unrooted cyclic graph G, we regard
that the set of non-core-edges in G induces a collection T
of trees each of which is rooted at a core-vertex, where we
call G k-lean if each of the rooted trees in T is k-lean.

Modeling of Chemical Compounds

We introduce a set of chemical elements such as H (hy-
drogen), C (carbon), O (oxygen), N (nitrogen) and so on to
represent a chemical compound. To distinguish a chemical
element a with multiple valences such as S (sulfur), we de-
note a chemical element a with a valence i by a(i), where
we do not use such a suffix (i) for a chemical element a
with a unique valence. Let Λ be a set of chemical elements
a(i). For example, Λ =

{
H,C,O, N, P, S(2), S(4), S(6)

}
.

Let val : Λ → [1, 6] be a valence function. For exam-
ple, val(H) = 1, val(C) = 4, val(O) = 2, val(P) = 5,
val

(
S(2)

)
= 2, val

(
S(4)

)
= 4 and val

(
S(6)

)
= 6. For

each chemical element a ∈ Λ, let mass(a) denote the mass
of a.

To represent a chemical compound, we use a chemical
graph introduced by Tanaka et al. [25], which is defined to
be a tuple C = (H,α, β) of a simple, connected undirected
graph H and functions α : V (H) → Λ and β : E(H) →
[1, 3]. The set of atoms and the set of bonds in the com-
pound are represented by the vertex set V (H) and the edge
set E(H), respectively. The chemical element assigned to
a vertex v ∈ V (H) is represented by α(v) and the bond-
multiplicity between two adjacent vertices u, v ∈ V (H) is
represented by β(e) of the edge e = uv ∈ E(H). We say
that two tuples (Hi, αi, βi), i = 1, 2 are isomorphic if they
admit an isomorphism ϕ, i.e., a bijection ϕ : V (H1) →
V (H2) such that uv ∈ E (H1) , α1(u) = a, α1(v) =

b, β1(uv) = m ↔ ϕ(u)ϕ(v) ∈ E (H2) , α2(ϕ(u)) =

a, α2(ϕ(v)) = b, β2(ϕ(u)ϕ(v)) = m. When Hi is rooted
at a vertex ri, i = 1, 2, (Hi, αi, βi), i = 1, 2 are rooted-
isomorphic (r-isomorphic) if they admit an isomorphism ϕ

such that ϕ(r1) = r2.
For a notational convenience, we use a function βC :

V (H) → [0, 12] for a chemical graph C = (H,α, β) such
that βC(u) means the sum of bond-multiplicities of edges
incident to a vertex u; i.e.,

βC(u) ≜
∑

uv∈E(H)

β(uv) (2)

for each vertex u ∈ V (H). For each vertex u ∈ V (H),
define the electron-degree eledegC(u) to be

eledegC(u) ≜ βC(u)− val(α(u)). (3)

For each vertex u ∈ V (H), let degC(u) denote the number
of vertices adjacent to the vertex u in C.

For a chemical graph C = (H,α, β), let Va(C), a ∈ Λ

denote the set vertices v ∈ V (H) such that α(v) = a in C
and define the hydrogen-suppressed chemical graph ⟨C⟩ to
be the graph obtained from H by removing all the vertices
v ∈ VH(C).

3. Two-layered Model
This section reviews the idea of the two-layeredmodel

introduced by Shi et al. [26], and describes our modifica-
tions to the model.

Let C = (H,α, β) be a chemical graph and ρ ≥ 1 be
an integer, which is called a branch-parameter.

A two-layered model of C introduced by Shi et al.
[26] is a partition of the hydrogen-suppressed chemical
graph ⟨C⟩ into an “interior” and an “exterior” in the fol-
lowing way. We call a vertex v ∈ V (⟨C⟩) (resp., an edge
e ∈ E(⟨C⟩)) of G an exterior-vertex (resp., exterior-edge)
if ht(v) < ρ (resp., e is incident to an exterior-vertex) and
denote the sets of exterior-vertices and exterior-edges by
V ex(C) and Eex(C), respectively and denote V int(C) =

V (⟨C⟩) \ V ex(C) and Eint(C) = E(⟨C⟩) \ Eex(C), re-
spectively. We call a vertex in V int(C) (resp., an edge in
Eint(C)) an interior-vertex (resp., interior-edge). The set
Eex(C) of exterior-edges forms a collection of connected
graphs each of which is regarded as a rooted tree T rooted
at the vertex v ∈ V (T ) with the maximum ht(v). Let
T ex(⟨C⟩) denote the set of these chemical rooted trees in
⟨C⟩. The interior Cint of C is defined to be the subgraph
(V int(C), E int(C)) of ⟨C⟩.

Fig. 2 illustrates an example of a hydrogen-suppressed
chemical graph ⟨C⟩. For a branch-parameter ρ = 2, the in-
terior of the chemical graph ⟨C⟩ in Fig. 2 is obtained by
removing the set of vertices with degree 1 ρ = 2 times;
i.e., first remove the set V1 = {w1, w2, . . . , w14} of ver-
tices of degree 1 in ⟨C⟩ and then remove the set V2 =

{w15, w16, . . . , w19} of vertices of degree 1 in ⟨C⟩ − V1,
where the removed vertices become the exterior-vertices of
⟨C⟩.

For each interior-vertex u ∈ V int(C), let Tu ∈
T ex(⟨C⟩) denote the chemical tree rooted at u (where pos-
sibly Tu consists of vertex u) and define the ρ-fringe-
tree C[u] to be the chemical rooted tree obtained from
Tu by putting back the hydrogens originally attached to
Tu in C. Let T (C) denote the set of ρ-fringe-trees
C[u], u ∈ V int(C). Fig. 3 illustrates the set T (C) =

{C [ui] | i ∈ [1, 28]} of the 2-fringe-trees of the example C
in Fig. 2.
Feature Function We extend the feature function of a
chemical graph C introduced by Tanaka et al. [25]. The
feature of an interior-edge e = uv ∈ Eint(C) such that
α(u) = a, deg⟨C⟩(u) = d, α(v) = b, deg⟨C⟩(v) = d′ and
β(e) = m is represented by a tuple (ad, bd′,m), which is
called the edge-configuration of the edge e, where we call
the tuple (a, b,m) the adjacency-configuration of the edge
e.
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Fig. 2. An illustration of a hydrogen-suppressed chemical graph ⟨C⟩ obtained from a chemical graphCwith r(C) = 4 by removing
all the hydrogens, where for ρ = 2, V ex(C) = {wi | i ∈ [1, 19]} and V int(C) = {ui | i ∈ [1, 28]}

Fig. 3. The set C [ui] , i ∈ [1, 28] of the example C in Fig. 2, where the root of each tree is depicted with a gray circle and the
hydrogens attached to non-root vertices are omitted in the figure.

For an integerK, a feature vector f(C) of a chemical
graph C is defined by a feature function f that consists of
K descriptors. We call RK the feature space.

Tanaka et al. [25] defined a feature vector f(C) ∈ RK

to be a combination of the frequency of edge-configurations
of the interior-edges and the frequency of chemical rooted
trees among the set of chemical rooted trees C[u] over all
interior-vertices u. In this paper, we introduce the rank and
the adjacency-configuration of leaf-edges as new descrip-
tors in a feature vector of a chemical graph. See Supple-
mentaryMaterial for a full description of descriptors used
in Stage 2 of the framework.

Topological Specification

A topological specification is described as a set of the
following rules proposed by Shi et al. [26] and modified by
Tanaka et al. [25]:
(i) a seed graphGC as an abstract form of a target chem-

ical graph C;
(ii) a set F of chemical rooted trees as candidates for a
tree C[u] rooted at each exterior-vertex u in C; and

(iii) lower and upper bounds on the number of components
in a target chemical graph such as chemical elements,
double/triple bounds and the interior-vertices in C.

Fig. 4a,b illustrate examples of a seed graphGC and a
set F of chemical rooted trees, respectively. Given a seed
graph GC, the interior of a target chemical graph C is con-
structed from GC by replacing some edges a = uv with
paths Pa between the end-vertices u and v and by attaching
new paths Qv to some vertices v. For example, a chemical
graph ⟨C⟩ in Fig. 2 is constructed from the seed graph GC
in Fig. 4a as follows.

- First replace five edges a1 = u1u2, a2 = u1u3, a3 =

u4u7, a4 = u10u11 and a5 = u11u12 in GC with new
paths Pa1

= (u1, u13, u2), Pa2
= (u1, u14, u3), Pa3

=

(u4, u15, u16, u7), Pa4
= (u10, u17, u18, u19, u11) and

5
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Fig. 4. (a) An illustration of a seed graphGC with r(GC) = 5 where the vertices in VC are depicted with gray circles, the edges in E(≥2)

are depicted with dotted lines, the edges in E(≥1) are depicted with dashed lines, the edges in E(0/1) are depicted with gray bold lines
and the edges in E(=1) are depicted with black solid lines; (b) A set F = {ψ1, ψ2, . . . , ψ30} ⊆ F(Dπ) of 30 chemical rooted trees
ψi, i ∈ [1, 30], where the root of each tree is depicted with a gray circle, where the hydrogens attached to non-root vertices are omitted
in the figure.

Pa5 = (u11, u20, u21, u22, u12), respectively to obtain a
subgraph G1 of ⟨C⟩.
- Next attach to this graph G1 three new paths Qu5 =

(u5, u24), Qu18 = (u18, u25, u26, u27) and Qu22 =

(u22, u28) to obtain the interior of ⟨C⟩ in Fig. 2.
- Finally attach to the interior 28 trees selected from
the set F and assign chemical elements and bond-
multiplicities in the interior to obtain a chemical graph
C in Fig. 2. In Fig, 3, ψ1 ∈ F is selected for C [ui],
i ∈ {6, 7, 11}. Similarly ψ2 for C[u9], ψ4 for C[u1],
ψ6 for C [ui], i ∈ {3, 4, 5, 10, 19, 22, 25, 26}, ψ8 for
C[u8], ψ11 for C [ui], i ∈ {2, 13, 16, 17, 20}, ψ15 for
C[u12], ψ19 for C[u15], ψ23 for C[u21], ψ24 for C[u24],
ψ25 for C[u27], ψ26 for C[u23], ψ27 for C[u14] and ψ30

for C[u28].

Our definition of a topological specification is analo-
gous with the one by Tanaka et al. [25] except for a nec-
essary modification due to the introduction of multiple va-
lences of chemical elements, cations and anions (see Sup-
plementary Material for a full description of topological
specification).

4. Linear Regressions

For an integer p ≥ 1 and a vector x ∈ Rp, the j-th
entry of x is denoted by x(j), j ∈ [1, p].

Let D be a data set of chemical graphs C with an ob-
served value a(C) ∈ R, where we denote by ai = a(Ci)

for an indexed graph Ci.

Let f be a feature function that maps a chemical graph
C to a vector f(C) ∈ RK where we denote by xi = f(Ci)

for an indexed graph Ci. For a prediction function η :

RK → R, define an error function

Err(η;D) ≜
∑

Ci∈D

(ai − η (f (Ci)))
2 =

∑
Ci∈D

(ai − η (xi))
2 , (4)

and define the coefficient of determination R2(η,D) to be

R2(η,D) ≜ 1−
Err(η;D)∑

Ci∈D (ai − ã)2
for ã =

1

|D|

∑
C∈D

a(C). (5)

For a feature space RK , a hyperplane is denoted by a
pair (w, b) of a vector w ∈ RK and a real b ∈ R. Given
a hyperplane (w, b) ∈ RKw, a prediction function ηw,b :

RK → R is defined by setting

ηw,b(x) ≜ w · x+ b =
∑

j∈[1,K]

w(j)x(j) + b. (6)

We wish to find a hyperplane (w, b) that minimizes
the error function Err(ηw,b;D). In many cases, a feature
vector f contains descriptors that do not play an essential
role in constructing a good prediction function. When
we solve the minimization problem, the entries w(j) for
some descriptors j ∈ [1,K] in the resulting hyperplane
(w, b) become zero, which means that these descriptors
were not necessarily important for finding a prediction
function ηw,b. It is proposed that solving the minimization
with an additional penalty term τ to the error function
often results in more number of entries w(j) = 0,
reducing a set of descriptors necessary for defining a
prediction function ηw,b. For an error function with such
a penalty term, a Ridge function 1

2|D| Err (ηw,b;D) +

λ
[∑

j∈[1,K] w(j)
2 + b2

]
[28] and a Lasso function
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1
2|D| Err (ηw,b;D) + λ

[∑
j∈[1,K] |w(j)|+ |b|

]
[29] are

known, where λ ∈ R is a given real number.
Given a prediction function ηw,b, we can simulate a

process of computing the output ηw,b(x) for an input x ∈
RK as an MILPM(x, y; C1) in the framework. By solving
such an MILP for a specified target value y∗, we can find
a vector x∗ ∈ RK such that ηw,b(x

∗) = y∗. Instead of
specifying a single target value y∗, we use lower and upper
bounds y∗, y∗ ∈ R on the value a(C) of a chemical graph
C to be inferred. We can control the range between y∗ and
y∗ for searching a chemical graphC by setting y∗ and y∗ to
be close or different values. A desired MILP is formulated
as follows.

M(x, y; C1): An MILP formulation for the inverse prob-
lem to prediction function .

constants:
- A hyperplane (w, b) with w ∈ RK and b ∈ R;
- Real values y∗, y∗ ∈ R such that y∗ < y∗;
- A set IZ of indices j ∈ [1,K] such that the j-th de-
scriptor dcpj(C) is always an integer;
- A set I+ of indices j ∈ [1,K] such that the j-th de-
scriptor dcpj(C) is always non-negative;
- ℓ(j), u(j) ∈ R, j ∈ [1,K]: lower and upper bounds
on the j-th descriptor;

variables:
- Non-negative integer variable x(j) ∈ Z+, j ∈ IZ ∩
I+;
- Integer variable x(j) ∈ Z, j ∈ IZ \ I+;
- Non-negative real variable x(j) ∈ R+, j ∈ I+ \ IZ;
- Real variable x(j) ∈ R, j ∈ [1,K] \ (IZ ∪ I+);

constraints:

ℓ(j) ≤ x(j) ≤ u(j), j ∈ [1,K];

y∗ ≤
∑

j∈[1,K]

w(j)x(j) + b ≤ ȳ∗ (7)

objective function:
none.

The number of variables and constraints in the above
MILP formulation is O(K). It is not difficult to see that
the above MILP is an NP-hard problem. The entire MILP
for Stage 4 consists of the two MILPs M(x, y; C1) and
M(g, x; C2) with no objective function. The latter repre-
sents the computation process of our feature function f and
a given topological specification. See SupplementaryMa-
terial for the details of MILPM(g, x; C2).

5. Results
We implemented our method of Stages 1 to 5 for in-

ferring chemical graphs under a given topological specifi-
cation and conducted experiments to evaluate the compu-

tational efficiency. We executed the experiments on a PC
with Processor: Core i7-9700 (3.0 GHz; 4.7 GHz at the
maximum) and Memory: 16 GB RAM DDR4.
Results on Phase 1. We have conducted experiments of
linear regression for 37 chemical properties among which
we report the following 18 properties to which the test
coefficient of determination R2 attains at least 0.8: oc-
tanol/water partition coefficient (KOW), heat of combustion
(HC), vapor density (VD), optical rotation (OPTR), electron
density on the most positive atom (EDPA), melting point
(MP), heat of atomization (HA), heat of formation (HF),
internal energy at 0K (U0), energy of lowest unoccupied
molecular orbital (LUMO), isotropic polarizability (ALPHA),
heat capacity at 298.15K (CV), solubility (SL), surface ten-
sion (SFT), viscosity (VIS), isobaric heat capacities in liquid
phase (IHCLIQ), isobaric heat capacities in solid phase (IHC-
SOL) and lipophilicity (LP).

We used data sets provided by HSDB from Pub-
Chem [30] for KOW, HC, VD and OPTR, M. Jalali-Heravi
and M. Fatemi [31] for EDPA, Roy and Saha [32] for MP,
HA and HF, MoleculeNet [33] for U0, LUMO, ALPHA, CV
and SL, Goussard et al. [34] for SFT and VIS, R. Naef [35]
for IHCLIQ and IHCSOL, and Figshare [36] for LP.

Properties U0, LUMO, ALPHA and CV share a common
original data set D∗ with more than 130,000 compounds,
and we used a set Dπ of 1,000 graphs randomly selected
fromD∗ as a common data set of these four properties π in
this experiment.

Stages 1, 2 and 3 in Phase 1 are implemented as fol-
lows.
Stage 1. We set a graph class G to be the set of all chemical
graphs with any graph structure, and set a branch-parameter
ρ to be 2.

For each of the properties, we first select a set Λ of
chemical elements and then collect a data setDπ on chemi-
cal graphs over the setΛ of chemical elements. During con-
struction of the data set Dπ , chemical compounds that do
not satisfy one of the following are eliminated: the graph is
connected, the number of non-hydrogen neighbors of each
atom is at most four, and the number of carbon atoms is at
least four.

Table 1 shows the size and range of data sets that we
prepared for each chemical property in Stage 1, where we
denote the following:

- Λ: the set of elements used in the data set Dπ;
Λ is one of the following 11 sets: Λ1 = {H,C,O};
Λ2 = {H,C,O,N}; Λ3 = {H,C,O, S(2)}; Λ4 =

{H,C,O, Si}; Λ5 = {H,C,O,N,Cl, P(3), P(5)}; Λ6 =

{H,C,O,N, S(2), F}; Λ7 = {H,C,O,N, S(2), S(6),Cl};
Λ8 = {H,C(2),C(3),C(4),O,N(2),N(3)};
Λ9 = {H,C,O,N, S(2), S(4), S(6),Cl}; Λ10 =

{H,C(2),C(3),C(4),C(5),O,N(1),N(2),N(3), F}; and
Λ11 = {H,C(2),C(3),C(4),O,N(2),N(3), S(2), S(4), S(6),Cl},
where e(i) for a chemical element e and an integer i ≥ 1

means that a chemical element e with valence i.
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Table 1. Results in Phase 1.
π Λ |Dπ | n, n a, a |Γ| |F| K λπ K′ test R2

KOW Λ2 684 4, 58 –7.5, 15.6 25 166 223 6.4E−5 80.3 0.953
KOW Λ9 899 4, 69 –7.5, 15.6 37 219 303 5.5E−5 112.1 0.927
HC Λ2 255 4, 63 49.6, 35099.6 17 106 154 1.9E−4 19.2 0.946
HC Λ7 282 4, 63 49.6, 35099.6 21 118 177 1.9E−4 20.5 0.951
VD Λ2 474 4, 30 0.7, 20.6 21 160 214 1.0E−3 3.6 0.927
VD Λ5 551 4, 30 0.7, 20.6 24 191 256 5.5E−4 8.0 0.942
OPTR Λ2 147 5, 44 –117.0, 165.0 21 55 107 4.6E−4 39.2 0.823
OPTR Λ6 157 5, 69 –117.0, 165.0 25 62 123 7.3E−4 41.7 0.825
EDPA Λ1 52 11, 16 0.80, 3.76 9 33 64 1.0E−4 10.9 0.999
MP Λ2 467 4, 122 –185.33, 300.0 23 142 197 3.7E−5 82.5 0.817
HA Λ3 115 4, 11 1100.6, 3009.6 8 83 115 3.7E−5 39.0 0.997
HF Λ1 82 4, 16 30.2, 94.8 5 50 74 1.0E−4 34.0 0.987
U0 Λ10 977 4, 9 –570.6, –272.8 59 190 297 1.0E−7 246.7 0.999
LUMO Λ10 977 4, 9 –0.11, 0.10 59 190 297 6.4E−5 133.9 0.841
ALPHA Λ10 977 4, 9 50.9, 99.6 59 190 297 1.0E−5 125.5 0.961
CV Λ10 977 4, 9 19.2, 44.0 59 190 297 1.0E−5 165.3 0.961
SL Λ9 915 4, 55 –11.6, 1.11 42 207 300 7.3E−5 130.6 0.808
SFT Λ4 247 5, 33 12.3, 45.1 11 91 128 6.4E−4 20.9 0.804
VIS Λ4 282 5, 36 –0.64, 1.63 12 88 126 8.2E−4 16.3 0.893
IHCLIQ Λ2 770 4, 78 106.3, 1956.1 23 200 256 1.9E−5 82.2 0.987
IHCLIQ Λ7 865 4, 78 106.3, 1956.1 29 246 316 8.2E−6 139.1 0.986
IHCSOL Λ8 581 5, 70 67.4, 1220.9 33 124 192 2.8E−5 75.9 0.985
IHCSOL Λ11 668 5, 70 67.4, 1220.9 40 140 228 2.8E−5 86.7 0.982
LP Λ2 615 6, 60 –3.62, 6.84 32 116 186 1.0E−4 98.5 0.856
LP Λ9 936 6, 74 –3.62, 6.84 44 136 231 6.4E−5 130.4 0.840

- |Dπ|: the size of data set Dπ over Λ for the property
π.
- n, n: the minimum and maximum values of the num-
ber n(C) of non-hydrogen atoms in compoundsC inDπ .
- a, a: the minimum and maximum values of a(C) for
π over compounds C in Dπ .
- |Γ|: the number of different edge-configurations of
interior-edges over the compounds in Dπ .
- |F|: the number of non-isomorphic chemical rooted
trees in the set of all 2-fringe-trees in the compounds in
Dπ .
- K: the number of descriptors in a feature vector f(C).

Stage 2. The newly defined feature function in our chem-
ical model without suppressing hydrogen in Section 3 is
used. We standardize the range of each descriptor and
the range {t ∈ R | a ≤ t ≤ ā} of property values
a(C),C ∈ Dπ .
Stage 3. For each chemical property π, we select a penalty
valueλπ in the Lasso function from 36 different values from
0 to 100 by conducting linear regression as a preliminary
experiment.

We conducted an experiment in Stage 3 to evaluate
the performance of the prediction function based on cross-
validation. For a property π, an execution of a cross-
validation consists of five trials of constructing a prediction
function as follows. First partition the data setDπ into five

subsets D(k), k ∈ [1, 5] randomly. For each k ∈ [1, 5],
the k-th trial constructs a prediction function η(k) by con-
ducting a linear regression with the penalty term λπ using
the set Dπ \ D(k) as a training data set. We used scikit-
learn version 0.23.2 with Python 3.8.5 for executing lin-
ear regression with Lasso function. For each property, we
executed ten cross-validations and we show the median of
test R2(η(k), D(k)), k ∈ [1, 5] over all ten cross-validations.
Recall that a subset of descriptors is selected in linear re-
gression with Lasso function and let K ′ denote the aver-
age number of selected descriptors over all 50 trials. The
running time per trial in a cross-validation was at most one
second.

Table 1 shows the results on Stages 2 and 3, where we
denote the following:

- λπ: the penalty value in the Lasso function selected
for a property π, where aEb means a× 10b.
- K ′: the average of the number of descriptors selected
in the linear regression over all 50 trials in ten cross-
validations.
- test R2: the median of test R2 over all 50 trials in ten
cross-validations.

Recall that the adjacency-configuration for leaf-edges
was introduced as a new descriptor in this paper. Without
including this new descriptor, the test R2 for property VIS
was 0.790, that for LUMO was 0.799 and that for MP was

8

https://www.imrpress.com


0.796, while the test R2 for each of the other properties in
Table 1 was almost the same.

From Table 1, we observe that a relatively large num-
ber of properties admit a good prediction function based on
linear regression. The number K ′ of descriptors used in
linear regression is considerably small for some properties.
For example of property VD, the four descriptors most fre-
quently selected in the case of Λ = {H,O,C,N} are the
number of non-hydrogen atoms; the number of interior-
vertices v with degCint(v) = 1; the number of fringe-
trees r-isomorphic to the chemical rooted tree ψ1 in Fig. 5;
and the number of leaf-edges with adjacency-configuration
(O,C, 2). The eight descriptors most frequently selected in
the case of Λ =

{
H,O,C,N,Cl, P(3), P(5)

}
are the num-

ber of non-hydrogen atoms; the number of interior-vertices
v with degCint(v) = 1; the number of exterior-vertices
v with α(v) = Cl; the number of interior-edges with
edge-configuration γi, i = 1, 2, where γ1 = (C2,C2, 2)
and γ2 = (C3,C4, 1); and the number of fringe-trees r-
isomorphic to the chemical rooted tree ψi, i = 1, 2, 3 in
Fig. 5.

Fig. 5. An illustration of chemical rooted trees ψ1, ψ1 and ψ3 that
are selected in Lasso linear regression for constructing a prediction
function to property VD, where the root is depicted with a gray
circle.

For the 18 properties listed in Table 1, we used ANN
to construct prediction functions. For this purpose, we used
our newly proposed feature vector and the experimental
setup as explained in Tanaka et al. [25]. From these compu-
tation experiments, we observe that for the properties HC,
VD, HA, HF, U0, ALPHA and CV, the test R2 scores of the
prediction functions obtained by Lasso linear regression is
at least 0.05 more than those obtained by ANN. For the
properties OPTR, SL and SFT, the test R2 scores of the pre-
diction functions obtained by ANN is at least 0.05 more
than those obtained by Lasso linear regression. For the
other properties, the test R2 scores obtained by Lasso linear
regression and ANN are comparable.
Results on Phase 2. We used a set of seven instances Ia,
Iib, i ∈ [1, 4], Ic and Id based on seed graphs prepared by
Shi et al. [26] to execute Stages 4 and 5 in Phase 2. We here
present their seed graphs GC (see Supplementary Mate-
rial for the details of instances Ia, Iib, i ∈ [1, 4], Ic and Id).
The seed graph GC of instance Ia is illustrated in Fig. 4a.
The seed graph G1

C (resp., Gi
C, i = 2, 3, 4) of instances I1b

and Id (resp., Iib, i = 2, 3, 4) is illustrated in Fig. 6.

Instance Ic has been introduced by Shi et al. [26] in
order to infer a chemical graphC† such that the core ofC† is
the same as the core of chemical graph CA: CID 24822711
in Fig. 7a and the frequency of each edge-configuration in
the non-core of C† is the same as that of chemical graph
CB : CID 59170444 illustrated in Fig. 7b. This means that
the seed graphGC of Ic is the core ofCA which is indicated
by a shaded area in Fig. 7a.

Instance Id has been introduced by Shi et al. [26]
in order to infer a monocyclic chemical graph C† such
that the frequency vector of edge-configurations in C† is
a vector obtained by merging those of two chemical graphs
CA: CID 10076784 and CB : CID 44340250 illustrated in
Fig. 7c,d, respectively.
Stage 4. We executed Stage 4 for five properties π ∈ {HC,
VD, OPTR, IHCLIQ, VIS}.

For the MILP formulation M(x, y; C1) in Section 4,
we use the prediction function ηw,b that attained the median
test R2 in Table 1. We used CPLEX version 12.10 to solve an
MILP in Stage 4. Tables 2,3,4,5,6 show the computational
results of the experiment in Stage 4 for the five properties,
where we denote the following:

- y∗, y∗: lower and upper bounds y∗, y∗ ∈ R on the
value a(C) of a chemical graph C to be inferred;
- #v (resp., #c): the number of variables (resp., con-
straints) in the MILP in Stage 4;
- I-time: the time (sec.) to solve the MILP in Stage 4;
- n: the number n

(
C†) of non-hydrogen atoms in the

chemical graph C† inferred in Stage 4; and
- nint: the number nint

(
C†) of interior-vertices in the

chemical graph C† inferred in Stage 4;
- η(f(C†)): the predicted property value η(f(C†)) of
the chemical graph C† inferred in Stage 4.

FromTables 2,3,4,5,6 we observe that an instancewith
a large number of variables and constraints takes more run-
ning time than those with a smaller size in general. We
solved all instances in this experiment with our MILP for-
mulation in a few seconds to around 30 seconds.

Fig. 8a–e illustrate the chemical graphs C† inferred
from Ic with (y∗, y∗) = (13700, 13800) of HC, I2b with
(y∗, y∗) = (21, 22) of VD, I4b with (y∗, y∗) = (70, 71) of
OPTR, Id with (y∗, y∗) = (1190, 1210) of IHCLIQ, and I3b
with (y∗, y∗) = (1.85, 1.90) of VIS, respectively.

Similarly, we executed Stage 4 for these seven in-
stances Ia, Iib, i ∈ [1, 4], Ic and Id for five properties
π ∈ {HC, VD, OPTR, IHCLIQ, VIS} by using the predic-
tion functions obtained by ANN. We list the running time
to solve MILP formulation for each of these instances in
Tables 7,8. From the computation experiments, we observe
that for many instances, the running time is significantly
faster than that of Stage 4 based on ANN.
Inferring a chemical graph with target values in mul-
tiple properties Once we obtained prediction functions
ηπ for several properties π, include MILP formulations for
these functions ηπ into a single MILP M(x, y; C1) so as
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Fig. 6. (i) Seed graph G1
C for I1b and Id; (ii) Seed graph G2

C for I2b ; (iii) Seed graph G3
C for I3b ; (iv) Seed graph G4

C for I4b .

Fig. 7. An illustration of chemical compounds for instances Ic and Id: (a) CA: CID 24822711; (b) CB: CID 59170444; (c) CA:
CID 10076784; (d) CB: CID 44340250, where hydrogens are omitted.

Table 2. Results of Stages 4 and 5 for HC using Lasso linear regression.
inst. y∗, y∗ #v #c I-time n nint η(f(C†)) D-time C-LB #C
Ia 5950, 6050 9902 9255 4.6 44 25 5977.9 0.068 1 1
I1b 5950, 6050 9404 6776 1.7 36 10 6007.1 0.048 6 6
I2b 5950, 6050 11729 9891 16.7 50 25 6043.7 38.7 2.4×105 100
I3b 5950, 6050 11510 9894 16.3 47 25 6015.4 0.353 8724 100
I4b 5950, 6050 11291 9897 9.0 49 26 5971.6 0.304 84 84
Ic 13700, 13800 6915 7278 0.7 50 33 13703.3 0.016 1 1
Id 13700, 13800 5535 6781 4.9 44 23 13704.7 0.564 4.3×105 100

Table 3. Results of Stages 4 and 5 for VD using Lasso linear regression.
inst. y∗, y∗ #v #c I-time n nint η(f(C†)) D-time C-LB #C
Ia 16, 17 9481 9358 1.6 38 23 16.83 0.070 1 1
I1b 16, 17 9928 6986 1.5 35 12 16.68 0.206 48 48
I2b 21, 22 12373 10101 10.0 48 25 21.62 0.104 20 20
I3b 21, 22 12159 10104 6.5 48 25 21.95 3.65 8.6×105 100
I4b 21, 22 11945 10107 8.1 48 25 21.34 0.057 6 6
Ic 21, 22 7073 7438 0.7 50 34 21.89 0.016 1 1
Id 17, 18 5693 6942 2.1 41 23 17.94 0.161 216 100

Table 4. Results of Stages 4 and 5 for OPTR using Lasso linear regression.
inst. y∗, y∗ #v #c I-time n nint η(f(C†)) D-time C-LB #C
Ia 70, 71 8962 9064 3.5 40 23 70.1 0.061 1 1
I1b 70, 71 9432 6662 2.7 37 14 70.1 0.185 2622 100
I2b 70, 71 11818 9773 10.0 50 25 70.8 0.041 4 4
I3b 70, 71 11602 9776 10.2 50 25 70.2 0.241 60 60
I4b 70, 71 11386 9779 24.7 49 25 70.9 6.39 4.6×105 100
Ic –112, –111 6807 7170 1.8 50 32 -111.9 0.016 1 1
Id 70, 71 5427 6673 6.1 42 23 70.2 0.127 78768 100
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Table 5. Results of Stages 4 and 5 for IHCLIQ using Lasso linear regression.
inst. y∗, y∗ #v #c I-time n nint η(f(C†)) D-time C-LB #C
Ia 1190, 1210 10180 9538 3.9 48 26 1208.5 0.071 2 2
I1b 1190, 1210 10784 7191 2.4 35 14 1206.7 0.082 12 12
I2b 1190, 1210 13482 10302 14.1 47 25 1206.7 0.11 12 12
I3b 1190, 1210 13275 10301 9.0 49 27 1209.9 0.090 24 24
I4b 1190, 1210 13128 10306 16.5 50 25 1208.4 0.424 2388 100
Ic 1190, 1210 7193 7560 0.8 50 33 1196.5 0.016 1 1
Id 1190, 1210 5813 7063 2.2 44 23 1198.8 5.63 5.2×105 100

Table 6. Results of Stages 4 and 5 for VIS using Lasso linear regression.
inst. y∗, y∗ #v #c I-time n nint η(f(C†)) D-time C-LB #C
Ia 1.25, 1.30 6847 8906 1.3 38 22 1.295 0.042 2 2
I1b 1.25, 1.30 7270 6397 2.5 36 15 1.272 0.155 140 100
I2b 1.85, 1.90 8984 9512 8.9 45 25 1.879 0.149 288 100
I3b 1.85, 1.90 8741 9515 16.2 45 26 1.880 0.137 4928 100
I4b 1.85, 1.90 8498 9518 8.1 45 25 1.851 0.13 660 100
Ic 2.75, 2.80 6813 7162 1.0 50 33 2.763 0.025 4 4
Id 1.85, 1.90 5433 6665 2.7 41 23 1.881 0.138 4608 100

Fig. 8. (a) C† with η(f(C†)) = 13703.3 inferred from Ic with (y∗, y∗) = (13700, 13800) of HC; (b) C† with η(f(C†)) = 21.62

inferred from I2b with (y∗, y∗) = (21, 22) of VD; (c) C† with η(f(C†)) = 70.9 inferred from I4b with (y∗, y∗) = (70, 71) of OPTR; (d)
C† with η(f(C†)) = 1198.8 inferred from Id with (y∗, y∗) = (1190, 1210) of IHCLIQ; (e) C† with η(f(C†)) = 1.880 inferred from I3b

with (y∗, y∗) = (1.85, 1.90) of VIS; (f) C† inferred from I4b with lower and upper bounds on the predicted property value ηπ(f(C†)) of
property π ∈ {KOW, LP, SL} in Table 9.
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Table 7. Running time of Stage 4 for HC, VD and OPTR using ANN.
HC VD OPTR

inst. y∗, y∗ I-time inst. y∗, y∗ I-time inst. y∗, y∗ I-time
Ia 13350, 13450 24.7 Ia 18, 19 18.1 Ia 62, 63 35.6
I1b 9650, 9750 13.5 I1b 13, 14 9.4 I1b 109, 110 15.5
I2b 16750, 16850 70.4 I2b 15, 16 40.9 I2b 23, 24 192.6
I3b 12350, 12450 87.0 I3b 20, 21 46.3 I3b -2, -1 936.4
I4b 14250, 14350 70.9 I4b 22, 23 27.1 I4b 19, 20 63.9
Ic 10400, 10500 31.3 Ic 20, 21 20.5 Ic 86, 87 16.4
Id 12500, 12600 44.3 Id 18, 19 6.1 Id 30, 31 31.8

Table 8. Running time of Stage 4 for IHCLIQ and VIS using
ANN.

IHCLIQ VIS
inst. y∗, y∗ I-time inst. y∗, y∗ I-time
Ia 980, 1000 56.6 Ia 1.85, 1.90 2.0
I1b 1000, 1020 40.4 I1b 1.95, 2.00 3.5
I2b 1130, 1150 71.6 I2b 1.85, 1.90 19.7
I3b 1240, 1260 45.0 I3b 2.35, 2.40 26.0
I4b 1240, 1260 105.7 I4b 2.50, 2.55 9.3
Ic 810, 830 9.7 Ic 3.90, 3.95 1.8
Id 1100, 1120 25.8 Id 3.30, 3.35 8.3

to infer a chemical graph that satisfies given target val-
ues y∗ for these properties at the same time. As an addi-
tional experiment in Stage 4, we inferred a chemical graph
that has a desired predicted value each of three properties
KOW, LP and SL, where we used the prediction function
ηπ for each property π ∈ {KOW, LP, SL} constructed in
Stage 3. Table 9 shows the result of Stage 4 for inferring
a chemical graph C† from instances I2b , I3b and I4b with
Λ =

{
H,C,N,O, S(2), S(6),Cl

}
, where we denote the fol-

lowing:
- π: one of the three properties KOW, LP and SL used in
the experiment;
- y∗

π
, y∗π: lower and upper bounds y∗

π
, y∗π ∈ R on

the predicted property value ηπ(f(C†)) of property π ∈
{KOW, LP, SL} for a chemical graph C† to be inferred;
- #v (resp., #c): the number of variables (resp., con-
straints) in the MILP in Stage 4;
- I-time: the time (sec.) to solve the MILP in Stage 4;
- n: the number n(C†) of non-hydrogen atoms in the
chemical graph C† inferred in Stage 4;
- nint : the number nint (C†) of interior-vertices in the
chemical graph C† inferred in Stage 4; and
- ηπ(f(C†)): the predicted property value ηπ(f(C†))

of property π ∈ {KOW, LP, SL} for the chemical graph
C† inferred in Stage 4.

Fig. 8f illustrates the chemical graph C† inferred from
I4b with (y∗

π1
, y∗π1

) = (−7.50, −7.40), (y∗
π2
, y∗π2

) =

(−0.70,−0.60) and (y∗
π3
, y∗π3

) = (−11.4,−11.2) for
π1 =KOW, π2 =LP and π3 =SL, respectively.
Stage 5. We executed Stage 5 to generate more target

chemical graphs C∗, where a chemical graph C∗ is called a
chemical isomer of a target chemical graphC† of a topolog-
ical specification σ if f(C∗) = f(C†) and C∗ also satisfies
the same topological specification σ. We computed chem-
ical isomers C∗ of each target chemical graph C† inferred
in Stage 4. We executed an algorithm to generate chemical
isomers of C† up to 100 when the number of all chemi-
cal isomers exceeds 100. We can obtain such an algorithm
from the dynamic programming proposed by Tanaka et al.
[25] with a slight modification. The algorithm first decom-
posesC† into a set of acyclic chemical graphs, next replaces
each acyclic chemical graph T with another acyclic chemi-
cal graph T ′ that admits the same feature vector as that of T ,
and finally assembles the resulting acyclic chemical graphs
into a chemical isomer C∗ of C†. Also, a lower bound on
the total number of all chemical isomers of C† can be com-
puted by the algorithm without generating all of them.

Tables 2,3,4,5,6 show the computational results of the
experiment in Stage 5 for the five properties, where we de-
note the following:

- D-time: the running time (sec.) to execute the dy-
namic programming algorithm in Stage 5 to compute a
lower bound on the number of all chemical isomers C∗

of C† and generate all (or up to 100) chemical isomers
C∗;
- C-LB: a lower bound on the number of all chemical
isomers C∗ of C†; and
- #C: the number of all (or up to 100) chemical isomers
C∗ of C† generated in Stage 5.

From Tables 2,3,4,5,6, we observe that for many cases
the running time for generating up to 100 target chemical
graphs in Stage 5 is less than 0.4 seconds. For some chem-
ical graph C†, no chemical isomer was found by our al-
gorithm. This is because each acyclic chemical graph in
the decomposition of C† has no alternative acyclic chem-
ical graph than the original one. On the other hand, some
chemical graphC† such as the one in Id in Table 2 admits an
extremely large number of chemical isomers C∗. Remem-
ber that we know such a lower bound C-LB on the number
of chemical isomers without generating all of them.
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Table 9. Results of Stage 4 for instances Iib , i = 2, 3, 4 with specified target values of three properties KOW, LP and SL using
Lasso linear regression.

inst. π y∗
π
, y∗π #v #c I-time n nint ηπ(f(C†))

KOW –7.50, –7.40 –7.41
I2b LP –1.40, –1.30 14574 11604 62.7 50 30 –1.33

SL –11.6, –11.5 –11.52
KOW –7.40, –7.30 –7.38

I3b LP –2.90, –2.80 14370 11596 35.5 48 25 –2.81
SL –11.6, –11.4 –11.52
KOW –7.50, –7.40 –7.48

I4b LP –0.70, –0.60 14166 11588 71.7 49 26 –0.63
SL –11.4, –11.2 –11.39

6. Conclusions
In this paper, we studied the problem of inferring

chemical structures from desired chemical properties and
constraints, based on the framework proposed and devel-
oped in [18–20]. In the previous applications of the frame-
work of inferring chemical graphs, artificial neural network
(ANN) and decision tree have been used for the machine
learning of Stage 3. In this paper, we used linear regression
in Stage 3 for the first time and derived an MILP formula-
tion that simulates the computation process of linear regres-
sion. We also extended a way of specifying a target value
y∗ in a property so that the predicted value η(f(C†)) of a
target chemical graph C† is required to belong to an inter-
val between two specified values y∗ and y∗. Furthermore,
we modified a model of chemical compounds so that multi-
valence chemical elements, cation and anion are treated,
and introduced the rank and the adjacency-configuration of
leaf-edges as new descriptors in a feature vector of a chem-
ical graph.

We implemented the new system of the framework
and conducted computational experiments for Stages 1 to 5.
We found 18 properties for which linear regression delivers
a relatively good prediction function by using our feature
vector based on the two-layered model. We also observed
that an MILP formulation for inferring a chemical graph
in Stage 4 can be solved efficiently over different types of
test instances with complicated topological specifications.
The experimental result suggests that our method can in-
fer chemical graphs with up to 50 non-hydrogen atoms.
Therefore, combination of linear regression and integer pro-
gramming is a potentially useful approach to computational
molecular design.

It is an interesting future work to use other learning
methods such as graph convolution networks, random for-
est and an ensemble method to construct a prediction func-
tion and derive the corresponding MILP formulations in
Stages 3 and 4 in the framework.
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