
Front. Biosci. (Landmark Ed) 2022; 27(6): 192
https://doi.org/10.31083/j.fbl2706192

Copyright: © 2022 The Author(s). Published by IMR Press.
This is an open access article under the CC BY 4.0 license.

Publisher’s Note: IMR Press stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Review

The Role and Mechanisms of Action of Natural Compounds in the
Prevention and Treatment of Cancer and Cancer Metastasis
Yunqiao Wang1,†, Mingtai Chen1,2,†, Hao Yu1,†, Gang Yuan1,3,†, Li Luo4, Xiongfei Xu1,5,
Yanneng Xu1,3, Xinbing Sui6,7,*, Elaine Lai-Han Leung8,*, Qibiao Wu1,9,10,*
1Faculty of Chinese Medicine and State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology,
999078 Macau, China
2Department of Cardiovascular Disease, Shenzhen Traditional Chinese Medicine Hospital, 518020 Shenzhen, Guangdong, China
3Department of Intervention, Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, 646000 Luzhou, Sichuan, China
4Education Evaluation and Faculty Development Center, Guangxi Medical University, 530021 Nanning, Guangxi, China
5Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, 646000 Luzhou, Sichuan, China
6College of Pharmacy, Hangzhou Normal University, 310030 Hangzhou, Zhejiang, China
7Department of Medical Oncology, The Affiliated Hospital of Hangzhou Normal University, College of Medicine, Hangzhou Normal University,
310030 Hangzhou, Zhejiang, China
8Faculty of Health Sciences, University of Macau, Taipa, 999078 Macau, China
9Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, 510000 Guangzhou, Guangdong, China
10Zhuhai MUST Science and Technology Research Institute, 51900 Zhuhai, Guangdong, China
*Correspondence: qbwu@must.edu.mo (Qibiao Wu); laihanl@gmail.com (Elaine Lai-Han Leung); hzzju@hznu.edu.cn (Xinbing Sui)
†These authors contributed equally.
Academic Editors: Antonio Barbieri and Francesca Bruzzese
Submitted: 2 April 2022 Revised: 13 May 2022 Accepted: 26 May 2022 Published: 15 June 2022

Abstract

Cancer has emerged as one of the world’s most concerning health problems. The progression and metastasis mechanisms of cancer
are complex, including metabolic disorders, oxidative stress, inflammation, apoptosis, and intestinal microflora disorders. These pose
significant challenges to our efforts to prevent and treat cancer and its metastasis. Natural drugs have a long history of use in the prevention
and treatment of cancer. Many effective anti-tumor drugs, such as Paclitaxel, Vincristine, and Camptothecin, have been widely prescribed
for the prevention and treatment of cancer. In recent years, a trend in the field of antitumor drug development has been to screen the
active antitumor ingredients from natural drugs and conduct in-depth studies on the mechanisms of their antitumor activity. In this
review, high-frequency keywords included in the literature of several common Chinese and English databases were analyzed. The results
showed that five Chinese herbal medicines (Radix Salviae, Panax Ginseng C. A. Mey, Hedysarum Multijugum Maxim, Ganoderma,
and Curcumaelongae Rhizoma) and three natural compounds (quercetin, luteolin, and kaempferol) were most commonly used for the
prevention and treatment of cancer and cancer metastasis. The main mechanisms of action of these active compounds in tumor-related
research were summarized. Finally, we found that four natural compounds (dihydrotanshinone, sclareol, isoimperatorin, and girinimbin)
have recently attracted the most attention in the field of anti-cancer research. Our findings provide some inspiration for future research on
natural compounds against tumors and new insights into the role and mechanisms of natural compounds in the prevention and treatment
of cancer and cancer metastasis.
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1. Introduction

Cancer is one of the most concerning health problems
facing mankind. The progression and metastasis mecha-
nisms of cancer are complex, includingmetabolic disorders,
oxidative stress, inflammation, apoptosis, and intestinal mi-
croflora disorders. These pose a significant challenges to
our efforts to prevent and treat cancer and its metastases.
Natural drugs have a long history of use in the preven-
tion and treatment of cancer. Many effective anti-tumor
drugs, such as Paclitaxel, Vincristine, and Camptothecin,
have been widely prescribed for the prevention and treat-
ment of cancer [1]. In recent years, a trend in the field of
antitumor drug development has been to screen effective

and safe antitumor ingredients from natural drugs and to
conduct in-depth studies on the mechanisms of their antitu-
mor activity.

In this review, we searched Chinese and English elec-
tronic databases including the CNKI database, Wanfang
Data Knowledge Service Platform, VIP Chinese Science
and Technology Journal Database, PubMed Database, and
Web of Science Database, for relevant studies. All research
results from 2000 to the present were selected to obtain
the three most commonly used Chinese herbal medicines
through screening. The active compounds from the se-
lected medicines were identified using the Traditional Chi-
nese Medicine Systems Pharmacology Database (TCMSP)
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Fig. 1. The five most widely used single drugs in cancer and their active ingredients.

by analyzing oral bioavailability and drug similarity in-
dex. Subsequently, we searched the databases (PubMed
andWeb of Science) using the keywords for one of the com-
pounds from the TCMSP and “Cancer” or “Tumor” “Car-
cinoma” or “Malignancy” to obtain articles published from
January 2000 to the present.

Finally, we comprehensively analyzed and summa-
rized the literature on the pharmacological effects and
molecular mechanisms of these natural compounds against
cancer and cancer metastasis. This article presents some
new insights into the role of natural compounds in the pre-
vention and treatment of cancer and cancer metastasis.

2. Materials and Methods
Common Chinese and English databases, includ-

ing CNKI Database, Wanfang Data Knowledge Service
Platform, VIP Chinese Science and Technology Journal
Database, PubMed, and Web of Science, were searched,
screening for relevant literature published in China and
abroad from January 2000 to November 2021. The
databases were searched using the following terms: [“tra-
ditional Chinese medicine (TCM)” OR “Chinese medicine”
OR “herbal medicine”AND “cancer” OR “tumor”OR “car-
cinoma” OR “malignancy”]. According to the interface of
each database, the comprehensive retrieval of subject words
combined with keywords and free words was carried out to
ensure the systematic integrity of the literature retrieval.

We searched all the basic studies on the mechanism
of antitumor action of natural compounds and gathered all
proven targets. To ensure the authenticity and stability of

the results, only relevant studies with cell samples were se-
lected.

3. Results

A total of 31,878 articles were retrieved, after exclud-
ing review articles, studies on TCM formulas, active in-
gredients of herb combinations, and other articles not re-
lated to a single drug. 1793 single-drug articles were in-
cluded in our study, involving 39 commonly used Chi-
nese herbal medicines. The most commonly used five tra-
ditional Chinese medicines were Radix Salviae (Danshen,
162 articles), Panax Ginseng C. A. Mey (Renshen, 159 ar-
ticles), HedysarumMultijugumMaxim (Huangqi, 131 arti-
cles), Ganoderma (Lingzhi, 123 articles) and Curcumaelon-
gae Rhizoma (Jianghuang, 96 articles). We then searched
the active compounds of these five drugs separately through
TCMSP. The active compounds of each herb were sorted by
the screening criteria with oral bioavailability ≥30% and
drug-likeness ≥0.18 for the ADME (absorption, distribu-
tion, metabolism, and excretion) evaluation system. A to-
tal of 172 active compounds were obtained, excluding du-
plicates, and a total of 168 were identified (Fig. 1). We
searched our five databases using the keywords for one of
the natural compounds from the TCMSP and “cancer” or
“tumor” or “carcinoma” or “malignancy”. A total of 32,783
unscreened articles were obtained. Among them, the 3 ac-
tive compounds in the literature with more than 1000 ar-
ticles were quercetin (11427 articles), luteolin (2996), and
kaempferol (2702) (Fig. 2). Herein, we focused on eval-
uating these three active compounds by comprehensively
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Fig. 2. Study flow diagram.

reviewing the relevant articles and determined that they
have great anticancer potential, and also found that four
natural compounds (dihydrotanshinone, sclareol, isoimper-
atorin, and girinimbin) have recently attracted most atten-
tion in the field of anti-cancer therapy. At the same time,
we predicted the potential targets of these four compounds
through the SwissTargetPrediction database.

3.1 The Main Targets and Mechanisms of Quercetin in
Cancer Prevention and Cancer Metastasis

We summarized the reported targets of quercetin in the
articles, which involving 36 different cancer cells (Table 1,
Ref. [2–130]).

In breast cancer, the action of quercetin involves mod-
ulating SOD enzyme activity, the selective inhibition of
CYP1B1, CYP2, and CYP3 family of enzymes, G2/M ar-
rest, and apoptosis [5]. A study on human breast cancer
showed that quercetin triggered cell death of MDA-MB-
231 cells via mitochondrial- and caspase-3-dependent path-

ways [7]. In studies on MCF-7 cells, quercetin not only
induced cell cycle arrest but also induced significant apop-
tosis; the induction of apoptosis could be blocked by an-
tisense p21 CIP1/WAF1 expression [16]. Quercetin regu-
lated MCF-7 cell apoptosis through the AMPK-mTOR sig-
naling pathway [19] and promoted apoptosis by inducing
G0/G1 phase arrest [23].

In lung cancer, quercetin induced autophagy and
apoptosis in lung cancer cells through the SIRT1/AMPK sig-
naling pathway [32]. Quercetin also inhibited the metasta-
sis of lung cancer by modulating the Akt/MAPK signaling
pathway and reduced the nuclear translocation of β-catenin
[33]. Some studies have also found that quercetin induced
apoptosis of A549 cells, mainly through down-regulating
the IL-6/STAT-3 signaling and the activation of MEK-ERK
[40,43].

In liver cancer, quercetin could enhance the effect of
interferon-α in hepatocellular carcinoma cells and reduce
the proliferation ability of hepatocellular carcinoma cells
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Table 1. The model cell and reported targets of quercetin.
Model cell Reported targets

MDA-MB-468

cyclin B1 [2]
TNF alpha, CCL28 [3]
p53, Bcl2 [4]
SOD, CYP1B1, CYP2, and CYP3 [5]

MDA-MB-231

Cx43 [6]
caspase-3, -8 and -9 [7]
MMP-3 [8]
alpha5- and alpha9-nAChR [9]
Skp2, p27, FoxO1 [10]
p53, p21, Bcl-xL, cyclin B1 [11]
Skp2 [12]
miR-146a, EGFR, bax, and caspase-3 [13]
aldehyde dehydrogenase 1A1, C-X-C chemokine receptor type 4, mucin 1, and epithelial cell adhesion molecules [14]
NF-κB , Hsp27, Hsp70 and Hsp90 [15]

MCF-7

p21CIP1/WAF1 [16]
PKC, ERK, AP-1 [17]
p53, p57, CDK2, cyclins A and B, Bcl-2, DeltaPsi(m), caspase-6, -8 and -9 [18]
AMPK, mTOR [19]
AMPK, mTOR, HIF-1 [20]
Bcl-2, Bax [21,22]
survivin [23]
RAGE, HMGB1, NF-κB [24]
PTEN, Akt [25]
CyclinD1, p21, Twist, and phospho p38MAPK [26]
CDK6 [27]
TGF-β, Lef1, ABCG2, Vim, and Cav1 [28]
MMP-2/-9 [29]

SkBr3 HIF-1alpha, VEGF [30]

A549

Bax, Bcl-2 and caspase-3 [31]
SIRT1, AMPK p62, LC3-II, beclin 1, Atg5, Atg7 and Atg12 [32]
TIMP-2, Akt, MAPK, β-catenin, and EMT [33]
Bax, Bcl2 [34,35]
PDK3 [36]
aurora B [37]
nm23-H1, TIMP-2, MMP-2 [38]
MMP-9, TGF-β1 [39]
Bcl2, Bax, IL-6, STAT3, NF-κB [40]
p53 [41]
caspase-3 [42]
Bcl-2, Bcl-x, Bax, caspase-3, caspase-7 and PARP, ERK, MEK1/2, PI3k, p38, Akt [43]
p53, p21, survivin [44]
COX-2, iNOS [45]
Hsp72 [46]
Hsp27 [47]

H1299
SIRT1, AMPK, p62, LC3-II, beclin 1, Atg5, Atg7, and Atg12 [32]
p53, p21, survivin [44]
DR5, caspase-10/3, p300 [48]

H69 Bax, Bcl-2, and caspase-3 [31]
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Table 1. Continued.
Model cell Reported targets

HepG2

PDK3 [36]
ABCC6 [49]
p53, cyclin D1 [50,51]
m-TOR, Nrf-2 [52]
MEK1/ERK1/2, p38 MAPK, and JNK [53]
cyclin D1 [54]
SHP2, IFN-α, STAT1 [55]
Bad, Bax, Bcl-2, and Survivin [56]
BAX, BCL-2 [57]
miR-34a, p53, SIRT1 [58]
Sp1 [59]
PI3K, PKC, COX-2 and ROS, p53, and BAX [60]
FASN [61]
Nrf2, ARE [62]
p38-MAPK, Nrf2 [63]
NF-κB, COX-2 [64]
P53, caspase-3, caspase-9, survivin ,and Bcl-2 [65]
Nrf2, Keap1 [66]
caspase-3, caspase -9, Bcl-xL, Bcl-xS, Bax, Akt, ERK [67]

Huh-7

p53, cyclin D1 [50]
MEK1/ERK1/2, p38 MAPK, and JNK [53]
SHP2, IFN-α, STAT1 [55]
BAX, BCL-2 [57]

HeLa

Hsp72 [46]
Hsp27 [47]
MMP2, ezrin, METTL3, and P-Gp [68]
Bax, Bcl-2, Cyclin D1, Caspase-3, GRP78, CHOP IRE1, p-Perk, and c-ATF6 [69]
DNMTs, HDACs, HAT, HMTs and TSGs [70]
LC3-I/II, Beclin 1, active caspase-3, and S6K1 [71]
Rac1 [72]
ROS, cytochrome-c, bcl-2, Bax, PI3K, and p-Akt [73]
HPA [74]
AKT, Bcl-2, p53 and caspase-3 [75]
Bcl-2, Bcl-xL, Mcl1, Bax, Bad, p-Bad, cytochrome C, Apaf-1, caspases, surviving, p53, p21, cyclin D1, p50, p65,
IκB, p-IκB-α, IKKβ and ubiquitin ligase [76]
AMPK, ACC, AICAR, HSP70, caspase 3, PP2a and SHP-2 [77]

Caski HPA [74]

SiHa
MMP2, ezrin, METTL3 and P-Gp [68]
β-tubulin [78]

Hep-2
Hsp72 [46]
Hsp27 [47]

TFK-1 BAX, BCL-2 [57]

LNCaP

PI3K, Akt [79]
Bcl-2, VEGF, Akt, PI3K [80]
Bax, Bcl-2, caspase-3, AKT, VEGF [81]
PI3K, Akt, AR [82]
HSP27 [83]
Bcl-2, Bax [84]
PARP, Bad, Bcl-xL, Bax, procaspases-3, -8 and -9 [85]
HIF-1 alpha, VEGF [30]
caspase, PARP, IAP and Bcl-2 [86]
Sp1, AR [87]
AR, PSA, NKX3.1, ODC„ and hK2 [88]
hsp70 [89]
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Table 1. Continued.
Model cell Reported targets

PC-3

Bcl-2, VEGF, Akt, PI3K [80]
Bax, Bcl-2, caspase-3, AKT, VEGF [81]
Cyclin D1, ErbB-2, ErbB-3, c-Raf, MAPK kinase 1/2 (MEK1/2), MAPK, Elk-1, and Akt-1 [90]
hsp70 [89]
LC3, Beclin-1, PI3K, Akt, mTOR, LC3-II, LC3-I [91]
PI3K, Akt [92]
P53, PI3K, AKT, MMP-2, and MMP-9 [93]
TSP-1 [94]
TGF-β, vimentin, N-cadherin, E-cadherin, Twist, Snail, and Slug [95]
ATF, GRP78, GADD153, CDK2, cyclins E and D, Bcl-2, Bax, caspase-3, -8, and -9 [96]
N-cadherin, vimentin, E-cadherin, Snail, Slug, Twist, EGFR, PI3K, Akt, ERK 1/2 [97]
uPA, uPAR, EGF, EGF-R, β-catenin, NF-κB, p-EGF-R, N-Ras, Raf-1, c.Fos, c.Jun, and p-c.Jun [98]
Bad, IGFBP-3, cytochrome C, caspase-9, caspase-10, PARP, caspase-3, IGF-IRβ, PI3K, p-Akt, cyclin D1, IGF-I, II,
and IGF-IR [99,100]
PLC, PKC, and MEK1/2 [101]
Bcl-2, Bcl-x(L), and Bax [102]
MMP-2 andMMP-9 [103]
Cdc2/Cdk-1, cyclin B1, cyclin A, p21/Cip1, pRb, pRb2/p130, Bcl-2, Bcl-X(L), Bax, and caspase-3 [104]
HSP72 [105]

LAPC-4 PI3K, Akt, miR-21, miR-19b, miR-148a, AR [82]

RWPE-1 HSP27 [83]

TSU-Pr1 HSP27 [83]

DU-145
caspase, PARP, IAP , and Bcl-2 [86]
HSP72 [105]
DR 5, PARP, caspase-3, and caspase-9 [106]

JCA-1 hsp70 [89]

SW480

AIF and Caspase-3 [107]
TGF-β1, Twist1 [108]
cyclin D(1) and survivin [109]
beta-catenin and Tcf-4 [110]
ErbB2, ErbB3, Akt, Bax , and Bcl-2 [111]

HT-29

ErbB2, ErbB3, Akt, Bax, and Bcl-2 [111]
Bcl-2, mTOR, Akt, p53, Bax, p38 MAPK, and PTEN [112]
Akt, CSN6, Myc, p53, Bcl‑2, and Bax [113]
ROS, AMPK, p38, and sestrin 2 [114]
GSTA1, GSTM1, GSTP1, GSTT1, and UGT1 [115]
AMPK, p53, and p21 [116]
AMPK, COX-2 [117]

Caco-2

GSTA1, GSTM1, GSTP1, GSTT1, and UGT1 [115]
TNF-α, Cox-2, IL-6, MMP-2, MMP-9, E-cadherin, TLR4, and NF-κB p65 [118]
NF-κB, Bax, and Bcl-2 [119]
hOGG1 [120]
CDC6, CDK4, cyclin D1, beta-catenin, TCF and MAPK [121]
Ki67 [122]

SW-620 NF-κB, Bax and Bcl-2 [119]

HuTu 80
GSTA1, GSTM1, GSTP1, GSTT1 and UGT1 [115]
Ki67 [122]

CX-1 HIF-1alpha, VEGF [30]

Eca109
VEGF-A, MMP9 and MMP2 [123]
NF-κB, pIκBα
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Table 1. Continued.
Model cell Reported targets

EC9706 NF-κB, pIκBα [124]

KYSE-510 miR-1-3p, TAGLN2 [125]

TE-7 miR-1-3p, TAGLN2 [125]

SKMEL-103 AKT, AXL, PIM-1, ABLK, HSP90, HSP70, and GAPDH [126]

SKMEL-28 AKT, AXL, PIM-1, ABLK, HSP90, HSP70, and GAPDH [126]

PANC-1
c-Myc, TGF-β1, Gli2 Smad2/3, Zeb2, and Snail1 [127]
STAT3, EMT, and MMP [128]
Grp78/Bip, p-PERK, PERK, ATF4, ATF6, and GADD153/CHOP [129]

Patu8988
c-Myc, TGF-β1, Gli2 Smad2/3, Zeb2, and Snail1 [127]
STAT3, EMT, and MMP [128]

BGC823 uPAR, NF-κb, PKC, and ERK1/2 [130]

by activating the JAK/STAT pathway [55]. Quercetin in-
duced apoptosis in hepatocellular carcinoma cells by reg-
ulating Bcl-2, activating caspases, and inhibiting the ERK
and PI3K/Akt pathways [67].

In cervical cancer, quercetin reactivation suppressed
genes associated with cervical cancer by modulating epi-
genetic marks [70]. At the same time, quercetin induced
apoptosis via the PI3k/Akt pathway [73], leading to the ac-
cumulation of ROS and upregulation of apoptosis of cervi-
cal cancer cells [75]. Quercetin suppressed the viability of
cervical cancer cells in a dose-dependent manner [76].

In prostatic cancer, the combined use of metformin
and quercetin exerted significant anticancer effects through
the VEGF/Akt/PI3K pathway [80]. Quercetin increased the
heat-induced prostatic cancer cell toxicity, possibly related
to hsp70 [89]. Quercetin directly activated the caspase via
the mitochondrial pathway, leading to apoptosis in prostate
cancer cells [96].

In colon cancer, the anticancer effect of quercetin on
colon cancer cells was associated with the down-regulation
of survivin and cyclin D(1) expression [109]. The anti-
cancer effect of quercetin was also correlated with the Akt
and ErbB2/ErbB3 signaling pathways [111]. Quercetin in-
duced apoptosis via the Akt-CSN6-Myc signaling axis in
colon cancer cells [113].

In esophageal cancer, quercetin reduced the invasion
and proliferation of esophageal cancer cells, which is re-
lated to MMP9, MMP2, and VEGF-A [123]. Meanwhile,
inhibition ofmiR-1-3p could reduce the anticancer effect of
quercetin, resulting in the restoration of esophageal cancer
cell proliferation [125].

In pancreatic ductal adenocarcinoma, quercetin inhib-
ited tumor cell proliferation and induced tumor cell apop-
tosis, which is associated with the SHH and TGF-β/Smad
signaling pathways [127].

3.2 The Main Targets and Mechanisms of Luteolin in
Cancer Prevention and Cancer Metastasis

We summarized the reported targets of luteolin in the
articles, which involving 24 different cancer cells (Table 2,
Ref. [131–186]).

In lung cancer, luteolin reduced the invasive ability
of lung cancer cells, which is associated with Src/FAK-
related targets [134]. Luteolin demonstrated antitumor ef-
fects through the MEK-ERK pathway [140] and reduced
cell invasion via Sirt1-mediated apoptosis [146].

In cervical cancer, the expression of some proapop-
totic genes, such as FAS, BOK, BAK1, BAD, BAX, FADD,
TRADD, and Caspases 9 and 3, was increased by luteolin
treatment. At the same time, it was also found that the ex-
pression of some anti-apoptotic genes, such as NAIP,MCL-
1, and BCL-2, was significantly reduced. These results
confirm that luteolin has strong anti-proliferative and pro-
apoptotic effects, and this function is likely to be achieved
by inhibiting AKT andMAPK pathways [150].

In gastric cancer, luteolin could reduce the prolifera-
tive capacity of gastric cancer cells by reducing VEGF pro-
duction [160]. Luteolin could also cause cell death through
theMAPK and PI3K pathways [161].

In breast cancer, luteolin reduced breast cancer cell
proliferation and induced breast cancer cell apoptosis in two
different breast cancer cell studies [165]. The antitumor ef-
fect of luteolin is related to the STAT3, MAPK, and PI3K
signaling pathways [166]. The inhibitory effect of luteolin
on breast cancer cell invasion might be related to the reduc-
tion of VEGF production [174].

In colon cancer, alterations in the protein levels and
enzymatic activities ofHDACs andDNMTswere also found
in luteolin-treated colon cancer cells [180].

In liver cancer, luteolin affected the AMPK-NF-κB
signaling pathway by increasing the production of ROS.
The study also showed that AMPK was likely to be a new
regulator of NF-κB in the process of luteolin promoting the
apoptosis of liver cancer cells [186].
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Table 2. The model cell and reported targets of luteolin.
Model cell Reported targets
H929 isoQC, CD47 and SIRPα [131]

H1975
cyclin D1, caspase-3, Ki-67, p-LIMK and p-cofilin [132]
JNK, DR5, Drp1 [133]

H1650 cyclin D1, caspase-3, Ki-67, p-LIMK and p-cofilin [132]

A549

JNK, DR5, Drp1 [133]
pFAK, pSrc, Rac1, Cdc42, RhoA [134]
AIM2, caspase-1 and IL-1β [135]
p-PDK1 [136]
miR-34a-5p, Bcl-2, MDM4, p53, p21, Bax, caspase-3 and caspase-9 [137]
MEK, ERK, c-Fos , PI3K, Akt, NF-κB [138]
Tyro3, Axl and MerTK [139]
caspases-3 and -9, Bcl-2, Bax, MEK, ERK, Akt [140]
Nrf2 [141,142]
E-cadherin, TGF-β1 [143]
TRAIL [144]
JNK, Bax, pro caspase-9, caspase-3, TNFα, NF-κB [145]

H460

AIM2, caspase-1 and IL-1β [135]
miR-34a-5p, Bcl-2, MDM4, p53, p21, Bax, caspase-3 and caspase-9 [137]
Axl and Tyro3 [139]
Bad, Bcl‑2, Bax, caspase‑3 and Sirt1 [146]
Bcl‑2, caspase‑3, ‑8, and ‑9, MAPK and ROS [147]
Beclin-1, LC3II [148]

H1299 Bcl‑2, caspase‑3, ‑8, and ‑9, MAPK and ROS [147]
LNM35 caspase-3 and -7 [149]

HeLa

TRAIL [144]
APAF1, BAX, BAD, BID, BOK, BAK1, TRADD, FADD, FAS, Caspases 3 and 9, NAIP, MCL-1, BCL-2, CCND1, 2
and 3, CCNE2, CDKN1A, CDKN2B, CDK4, and CDK2, TRAILR2/DR5, TRAILR1/DR4, Fas/TNFRSF6/CD95,
TNFR1/TNFRSF1A, and Cytochrome C, HIF1α, BCL-X, MCL1, AKT1 and 2, ELK1, PIK3C2A, PIK3C2B,
MAPK14, MAP3K5, MAPK3 and MAPK1, GSK3b, PRAS 40, PTEN, AKT, ERK2, RISK2, P70S6k, PDK1, ERK1,
MTOR, P53 and P27 [150]
PKA, Jak1, Tyk2, STAT1/2, SHP-2 [151]
E6, E7, pRb, p53, E2F5, Fas/FasL, DR5/TRAIL, FADD, caspase-3, caspase-8, Bcl-2, and Bcl-xL [152]
caspase-8, caspase-3, XIAP, PKC [153]
TNFα, NF-kappa B, JNK, JNKK1, JNKK2 [154]

AGS Bcl-2, Cdc2, Cyclin B1, Cdc25C Caspase-3, Caspase-6, Caspase-9, Bax, and p53 [155]
CRL-1739 MUC1, ADAM-17, IL-8, IL-10 and NF-κB. [156]

SGC-7901
FOXO1 [157]
cMet, MMP9, Ki-67, caspase-3, PARP-1, Akt and ERK [158]
VEGF, HIF-1 alpha, Bcl-2, PGE2, caspase-3 and -9 [159]

Hs-746T VEGF, Notch1 [160]

BGC-823
Bax, Bcl-2, MAPK, pi3k, caspase-3, caspase-9 and cytochrome c [161]
VEGF-A and MMP-9 [162]

MKN45 cMet, MMP9, Ki-67, caspase-3, PARP-1, Akt and ERK [158]

MCF-7

caspase-3, caspase -8, caspase -9, Bcl-2, Bax, miR-16, miR-21 and miR-34a [163]
Bax, Bcl-2, Caspase-3, EMT, Vimentin, Zeb1, N-cadherin, E-cadherin, miR-203 [164]
Sp1, NF-κB, DNMT1 and OPCML [165]
EGFR, PI3K, Akt, MAPK, Erk 1/2, STAT3 [166]
Bcl-2, ROS [167]
DR5, caspase-8/-9/-3, PARP, cytochrome c, Bax, Bcl-2 [168]
Bcl-2, Bcl-2, AEG-1 and MMP-2 [169]
Erα, IGF-1 [170]
GTF2H2, NCOR1, TAF9, NRAS, NRIP1, POLR2A, DDX5, NCOA3, CCNA2, PCNA, CDKN1A, CCND1, PLK1
[171]
caspase-3 and -7 [149]
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Table 2. Continued.
Model cell Reported targets

MDA-MB-453 Bax, Bcl-2, Caspase-3, EMT, Vimentin, Zeb1, N-cadherin, E-cadherin, miR-203 [164]

BT474 Sp1, NF-κB, DNMT1 and OPCML [165]

MDA-MB-231

EGFR, PI3K, Akt, MAPK, Erk 1/2, STAT3 [166]
caspase-3 and -7 [149]
OPCML [172]
hTERT, NF-κB, c-Myc [173]
VEGF [174]
Notch-1 [175]
caspase-8, caspase-3, Fas, STAT3 [176]
AKT, PLK1, cyclin B(1), cyclin A, CDC2, CDK2, Bcl-xL and Bax [177]

MDA-MB-435 VEGF [174]

SW620 LC3B-I/II, Atg5, Bcl-2, Bax, caspase-3, PARP, ERK1/2, FOXO3a [178]

HCT116
p53 [179]
Nrf2, ARE, DNMTs, HDACs [180]

HT29
caspase-8, caspase-3, XIAP, PKC [153]
caspase-3 and -7 [149]
Nrf2, ARE, DNMTs, HDACs [180]

HepG2

PKA, Jak1, Tyk2, STAT1/2, SHP-2 [151]
caspase-8, caspase-3, XIAP, PKC [153]
caspase-3 and -7 [149]
p21, p53 [181]
USP47, p62 [182]
AMPK, NF-κB, ROS [183,186]
HGF, ERK1/2, Akt, JNK1/2, MEK, PI3K [184]
p53, CDK, p21 [185]

CNE1 caspase-8, caspase-3, XIAP, PKC [153]

3.3 The Main Targets and Mechanisms of Kaempferol in
Cancer Prevention and Cancer Metastasis

We summarized the reported targets of kaempferol in
the articles, which involving 25 different cancer cells (Ta-
ble 3, Ref. [187–213]).

In lung cancer, kaempferol promoted the apoptosis
of lung cancer cells by inhibiting Nrf2 [187]. Kaempferol
exerted antitumor effects through the PTEN, miR-340 and
PI3K/AKT pathways, thus inhibiting the growth of lung
cancer cells and inducing the death of lung cancer cells
[188].

In breast cancer, kaempferol reduced the invasive ef-
fect of breast cancer cells in both MCF-7 cells and MDA-
MB-231 cells, which might be related to the activation of
Rac1 and RhoA [191]. At the same time, some studies
have shown that the antitumor effect of kaempferol is inde-
pendent of the ER-dependent pathway [193]. Kaempferol
could block the signaling pathways related toMMP-9, thus
affecting the expression ofMMP-9 to reduce the migration
ability of breast cancer cells [195].

In gastric cancer, kaempferol could induce gastric
cancer cell apoptosis by affecting the JNK-CHOP sig-
naling pathway [197]. A study found that the expres-

sion of miR-181a increased in gastric cancer cells treated
with kaempferol. This may be one of the mechanisms of
kaempferol’s antitumor effect [198].

In cervical cancer, kaempferol promoted cervical can-
cer cell death by affecting the hTERT and PI3K/AKT path-
ways [200]. Kaempferol had an obvious regulatory effect
on ovarian cancer cell apoptosis, indicating that kaempferol
has the potential to be a promising drug for ovarian cancer
[203].

In colon cancer, kaempferol could reduce ROS
production and affect NF-κ, MAPK, PI3K/AKT, and
BJAK/STAT3 signaling pathways [208]. More in-depth re-
search has shown that kaempferol plays an antitumor effect
by inducing cell cycle arrest in colon cancer [210].

In liver cancer, kaempferol reduced AKT phosphory-
lation in human liver cancer cells and has been shown to
affect PARP, caspase-3, caspase-7, and caspase-9 [212].
Studies have also shown that kaempferol can significantly
affect the invasion and growth of liver cancer cells; this pro-
cess may be related to PTEN and miR-21, as well as the
PI3K pathway [213].
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Table 3. The model cell and reported targets of kaempferol.
Model cell Reported targets

A549

ROS, Nrf2, NQO1, HO1, AKR1C1 and GST [187]
miR-340, PTEN, PI3K, AKT [188]
ROS, SOD, GPx, CAT [189]
TGF-β1, EMT, E-cadherin, Smad3, Smad4, Snail, Akt1 [190]

NCIH460 ROS, Nrf2, NQO1, HO1, AKR1C1 and GST [187]

MCF-7

ROS, SOD, GPx, CAT [189]
ER, PR, HER2, RhoA, and Rac1 [191]
IRS-1, AKT, MEK1/2 [192]
ER, E2 [193]

MDA-MB-231

ER, PR, HER2, RhoA, and Rac1 [191]
γH2AX, caspase 9, caspase 3, p-ATM [194]
AP-1, MAPK, PKCδ, MMP-9 [195]
CYP1A1, CYP1B1, AHR, ERα [196]

BT474 γH2AX, caspase 9, caspase 3, p-ATM [194]

SK-BR-3 ER, PR, HER2, RhoA, and Rac1 [191]

BT-549 CYP1A1, CYP1B1, AHR, ERα [196]

AGS bcl-2, PARP, caspase 3, caspase 9, LC3-I, LC3-II, β-actin [197]

SGC-7901 ROS, SOD, GPx, CAT [189]

SNU-216
cyclin D1, bcl-2, bax, caspase 3, caspase 9, autophagy-related gene 7, LC3-I, LC3-II, Beclin 1, p62, MAPK, ERK,
PI3K, miR-181a [198]
bcl-2, PARP, caspase 3, caspase 9, LC3-I, LC3-II, β-actin [197]

MKN28 cyclin B1, Cdk1 and Cdc25C, Bcl-2, Bax, caspase-3 and -9, PARP, p-Akt, p-ERK, and COX-2 [199]

MKN-74 bcl-2, PARP, caspase 3, caspase 9, LC3-I, LC3-II, β-actin [197]

NCI-N87 bcl-2, PARP, caspase 3, caspase 9, LC3-I, LC3-II, β-actin [197]

NUGC-3 bcl-2, PARP, caspase 3, caspase 9, LC3-I, LC3-II, β-actin [197]

SGC7901 cyclin B1, Cdk1 and Cdc25C, Bcl-2, Bax, caspase-3 and -9, PARP, p-Akt, p-ERK, and COX-2 [199]

Hela
ROS, SOD, GPx, CAT [189]
PI3K, AKT, and hTERT [200]

A2780
GRP78, PERK, ATF6, IRE-1, LC3II, beclin 1, and caspase 4 [201]
Chk2, Cdc25C, Cdc2 [202]
Bcl-x(L), p53, Bad, and Bax [203]

CP70 Bcl-x(L), p53, Bad, and Bax [203]

HCT116

hnRNPA1, PTBP1, miR-339-5p [204]
AP-1 [205]
PARP, caspase-8, caspase-9, caspase-3, phospho-p38 MAPK, p53, and p21 [206]
caspase-3, Bcl-2, PUMA, ATM, and H2AX [207]

LS174-R ROS, JAK, STAT3, MAPK, PI3K, AKT, and NF-κB [208]

DLD1 hnRNPA1, PTBP1, miR-339-5p [204]

HT29
AP-1 [205]
IGF-II, IGF-IR, ErbB3, Akt, and ERK-1/2 [209]
CDK2, CDK4, cyclins D1, cyclin E, and cyclin A [210]

HCT15
hnRNPA1, PTBP1, miR-339-5p [204]
AP-1 [205]
PARP, caspase-8, caspase-9, caspase-3, phospho-p38 MAPK, p53, and p21 [206]

SW480 DR5 [211]

HepG2
AKT, caspase-9, caspase-7, caspase-3, and PARP [212]
miR-21, PTEN, PI3K, AKT, mTOR [213]
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Fig. 3. Increasing literature about dihydrotanshinone (A), Sclareol (B), Isoimperatorin (C), and girinimbin (D) (From PubMed).

3.4 Other Potential Natural Compounds in Cancer
Prevention and Cancer Metastasis

Using the name of natural compounds and “cancer”
OR “tumor” OR “carcinoma” OR “malignancy” as key-
words to search PubMed, we found a number of natural
compounds with the potential to treat cancer and cancer
metastasis. Although there were few studies on these nat-
ural compounds against cancer, they recently proliferated,
indicating that natural compounds, such as dihydrotanshi-
none, sclareol, isoimperatorin, and girinimbin have a great
anticancer potential, warranting further research (Fig. 3).
At the same time, we predicted the potential targets of these
four natural compounds through the SwissTargetPrediction
database and screened out the top ten targets with a proba-
bility score greater than 0 (Table 4).

4. Discussion
Malignant tumors are common diseases with biolog-

ical characteristics such as cell differentiation, abnormal
proliferation, infiltration, and metastasis, and have become

a worldwide problem. Western medicine treatments have a
significant effect on eliminating malignant tumors, but are
often accompanied by a variety of toxic and adverse effects
such as gastrointestinal reactions, myelosuppression, and
decreased immunity. Traditional Chinese medicine has a
history of more than 2000 years in the prevention and treat-
ment of tumors. It has played an important role in the treat-
ment of cancers: increasing evidence has shown that TCM,
usually combined with western medicine, can improve re-
sponse to western medicine, reduce the toxic and side ef-
fects, improve the quality of life of patients, stabilize the
tumor body, prevent tumor recurrence and metastasis, pro-
long the survival period, and increase the survival rate. Ac-
cordingly, the anti-tumor effects and mechanisms of TCM
have become focal points of research. The development
of modern science and technology, and the complementary
advantages of multi-disciplinary and multi-field modalities
help promite TCM’s broad prospects in anti-cancer field.
In anticancer treatment, the application of TCM is limited
due to the complex composition, difficult dosage control,
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Table 4. Other potential targets of potential natural
compounds.

Potential natural compounds Potential targets Probability score

Dihydrotanshinone

AKR1B1 1
ACHE 1
CES1 1
PTPN6 1
CES2 1

PTPN11 1
STAT3 0.114337559
IDO1 0.114337559
MALT1 0.106099949
KDM4E 0.097874534

Sclareol

UGT2B7 0.206265233
HSD11B1 0.182601417
PTGS1 0.174646372
NR1H3 0.111501865
AR 0.111501865

CYP19A1 0.111501865
NR3C2 0.111501865
TRPV1 0.111501865
IDO1 0.111501865
CNR2 0.111501865

Isoimperatorin

BACE1 0.149732594
KCNA3 0.108770969
SRD5A1 0.108770969
CA12 0.100578902
CA9 0.100578902

KCNA5 0.100578902
MAOA 0.100578902
ALOX5 0.100578902
MAOB 0.100578902
ALOX15 0.100578902

Girinimbin

DYRK1A 0.100578902
BCHE 0.100578902
CLK4 0.100578902
HTR2B 0.100578902
HTR2C 0.100578902
SLC6A3 0.100578902
HTR6 0.100578902
AKT1 0.100578902
CLK2 0.100578902
DYRK3 0.100578902

and unclear mechanisms of action. With the standardiza-
tion andmodernization of TCM, through themulti-field and
multi-level objective, accurate, qualitative, and quantitative
research on the anti-cancer efficacy of TCM, the shortcom-
ings of TCM (such as complex composition), unclear mech-
anisms, and unclear targets have been gradually overcome.
Traditional Chinese medicine played an increasingly im-
portant role in the field of anti-cancer treatment.

With the continuous research on the natural ingredi-
ents of TCM, we found that these ingredients can exert anti-

tumor activities in various stages of tumor growth, reflected
in the following aspects: Improve the immune activity of
the body, reduce the immunosuppressive effect of tumor
cells, and inhibit the growth of tumor cells; regulate spe-
cific signaling pathways, inhibit tumor cell proliferation,
and promote their apoptosis and autophagy; inhibit tumor
angiogenesis; inhibit cancer cell invasion and metastasis
ability; induce cancer cell cycle arrest, promoting its apop-
tosis, etc.

In this review, we found five commonly used anti-
cancer Chinese herbal medicines and 168 qualified natu-
ral compounds extracted from them (oral bioavailability
≥30% and drug-likeness≥0.18). In our analysis, we found
that, based on TCM, natural active ingredients still have
many contents worthy of in-depth exploration in the preven-
tion and treatment of cancer and cancer metastasis. They
have multiple targets and complex but effective mecha-
nisms. Some natural compounds have been widely used
in clinical practice and have attracted increasing attention
in recent years. Traditional Chinese medicines and their
active compounds have provided inspiration and options
for the treatment of cancer, both in the past and in the fu-
ture. Among the three most deeply studied natural com-
pounds (quercetin, luteolin, and kaempferol), we should
pay more attention to how to expand the curative effect and
specific application research. For the natural compounds
(dihydrotanshinone, sclareol, isoimperatorin, and girinim-
bin) that have recently garnered increased attention, we still
need to strengthen basic research as we anticipate better nat-
ural drugs for cancer.

Although this paper searched and screened the rele-
vant literature to the greatest extent possible, there are still
certain limitations. In order to ensure the stability and re-
liability of the results, we selected human-related cell ex-
periments and excluded clinical studies and animal experi-
ments, but this did not ensure the comprehensive inclusion
of all eligible studies. Further, we only provided a prelim-
inary summary of the mechanisms and targets, and did not
perform a systematic analysis.

5. Conclusions
Within the five most widely used anti-cancer Chinese

herbal medicines,168 effective natural compounds were
identified. The three most common natural compounds and
their mainmechanisms of action in the prevention and treat-
ment of cancer and cancer metastasis were reviewed and
summarized. In addition, our review found that four natu-
ral compounds have recently attracted the most attention in
the field of anti-cancer study, indicating they are worthy of
further research. Our findings provide some inspiration for
future research on natural compounds against tumors and
new insights into the role and mechanisms of natural com-
pounds in the prevention and treatment of cancer and cancer
metastasis.
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