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Abstract

Background: Ovarian cancer (OV) is a severe and common gynecological disease. Ferroptosis can regulate the progression and invasion
of tumors. The immune system is a decisive factor in cancer. The present study aimed to use gene expression data to establish an immunity
and ferroptosis-related risk score model as a prognostic biomarker to predict clinical outcomes and the immune microenvironment of OV.
Methods: Common gene expression data were searched from the Gene Expression Omnibus and The Cancer Genome Atlas databases.
Immunity-related genes and ferroptosis-related genes were searched and downloaded from the ImmPort and FerrDb databases, followed
by the analysis of the overall survival of patients with OV and the identification of genes. Subsequently, the status of the infiltration of
immune cells and the association between immune checkpoints and risk score were assessed. Results: A total of 10 prognostic genes
(C5AR1, GZMB, IGF2R, ISG20, PPP3CA, STAT1, TRIM27, TSHR, RB1, and EGFR) were included in the immunity and ferroptosis-
related risk score model. The high-risk group had a higher infiltration of immune cells. The risk score, an independent prognostic feature
of OV was negatively associated with each immune checkpoint. The risk score may thus help to predict the response to immunotherapy.
Conclusions: The immunity and ferroptosis-related risk score model is an independent prognostic factor for OV. The established risk
score may help to predict the response of patients to immunotherapy.

Keywords: immunity; ferroptosis; ovarian cancer; signature genes; prognosis; tumor immune microenvironment; immune checkpoint;
immunotherapy

1. Introduction

Ovarian cancer (OV) is a severe and common gyne-
cological disease, which often leads to mortality. It causes
~150,000 deaths each year, severely endangering women’s
health and safety [1,2]. OV-associated mortality ranks first
in mortality from gynecological tumors [3]. Moreover, due
to the early non-specific symptoms, 75% of women with
OV are diagnosed at an advanced stage, and the majority
of patients relapse following treatment [4]; in addition, the
survival rates are not satisfactory [5]. Hence, it is nec-
essary to identify reliable prognostic models for patients
with OV [6–8]. However, the single-gene/factor predic-
tion model is often less accurate. In comparison, the poly-
genic model generally yields better results in tumor predic-
tion [9]. Thus, the subset of patients with a poor survival
can be more accurately identified for more rigorous follow-
up and post-treatment adjuvant therapy, which may aid in
decision-making and individualized treatments.

Iron is a trace element required by the human body;
thus, a lack or excess in iron can have multiple effects on bi-
ological processes [10]. Iron deficiency affects cancer cell
proliferation [11]. However, it is worth noting that high iron
concentrations cause cell death through membrane lipid

peroxidation, which is known as ferroptosis [12]. Basuli et
al. [13] reported that abnormal iron accumulation in high-
grade serous OV tissue was significantly higher than that in
normal OV tissue. In addition, iron transport-related genes
have also been shown to be dysregulated in a genetic model
of OV primary cells. The activation of ferroptosis is asso-
ciated with progressive disease, and ferroptosis regulates
the occurrence, progression and invasion of OV [14]. Fer-
roptosis may influence the progression of OV by mediating
tumor metastasis and the immune landscape.

The immune system, a critical system in the human
body, is a decisive factor in the occurrence and progression
of cancer [15,16]. There is evidence to indicate that OV is
an immunogenic tumor [17–19]. Immunotherapy is effec-
tive in treating humanmalignancy [20]. It has been reported
that the phenotypes and functions of immune cell subsets in
the OV microenvironment are altered by immunotherapy
[21].

There are complex mechanisms of action between im-
munity and ferroptosis. For example, T-cells induce fer-
roptosis in ovarian tumor-bearing mice [22]. Based on the
association between immunity, ferroptosis and OV, in the
present study, mRNA analysis data were used to establish
an immunity and ferroptosis risk score model to predict the
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immune microenvironment of OV. In the future, this ap-
proach may aid clinicians in making important treatment-
related decisions.

2. Materials and Methods
2.1 Data Set Sources and Preprocessing

Common gene expression data were obtained from the
Gene Expression Omnibus (GEO) and The Cancer Genome
Atlas (TCGA) databases. In TCGA dataset, RNA sequenc-
ing data for gene expression were downloaded from UCSC
Xena. For the three datasets of GSE26712, GSE32062 and
GSE18521, RNA sequencing data were downloaded from
the easyGEO dataset. Among these, TCGA dataset was
used as the training set, and the GEO dataset was used as
the validation set. The details of the datasets are presented
in Table 1, including number of patients, overall survival
(OS), tumor stage, and tumor grade.

2.2 Identification of Immunity and Ferroptosis-Related
Genes

Immunity-related genes (IRGs) were obtained from
the immunology and ImmPort databases. A comprehen-
sive gene list (involving 1793 IRGs) was downloaded.
Ferroptosis-related genes (FRGs) were obtained from the
FerrDb database and the related literature [23]. The Fer-
rDb database is the first database that provides updated data
of regulators and markers connected with ferroptosis and
disease. Finally, 267 FRGs were obtained, including 259
FRGs from the FerrDb database, and 8 genes from the lit-
erature [23] as a complement.

2.3 Construction of an Immunity and Ferroptosis-Related
Risk Score Model

According to the data of the TCGA training set and
the GSE26712 validation set, the IRGs and FRGs were
screened using univariate Cox analysis. The intersection
of the genes in the two datasets was considered as the
prognosis-related genes (p ≤ 0.05). The least absolute
shrinkage and selection operator (Lasso) method was ap-
plied to calculate the coefficient (β) to screen prognostic
genes in TCGA dataset for reducing the number of genes
in the risk score model. Eventually, the multivariate Cox
regression analysis was applied to construct the risk score
model. The calculation formula was as follows: Risk score
= (βA × gene A expression) + (βB × gene B expression)
+ ··· + (βN × gene N expression).

In this formula, βA, βB...βN represent the coefficients
of genes. Genes from which the risk score was constructed
were defined as signature genes. The patients were then di-
vided into high- and low-risk groups using the median risk
score as the cut-off point. Survival curves were then plotted
using Kaplan-Meier from R package (version 3.5.3). Ac-
curacy was verified by time-dependent receiver operating
characteristic (ROC) curves.

2.4 Molecular Characterization of Signature Genes
The signature genes in each sample were divided into

the high- and low-expression groups according to the me-
dian expression in TCGA dataset. Kaplan-Meier analysis
was applied to analyze the influence of signature genes on
survival. The expression of signature genes in cancer and
paracancerous tissues was searched from the Gene Expres-
sion Profiling Interactive Analysis (GEPIA) database and
verified in the GSE26712 and GSE18521 datasets. At the
same time, the Human Protein Atlas database was applied
to detect the protein expression of signature genes in cancer
tissues.

2.5 In Vitro Expression Analysis of Signature Genes Using
Real Time Polymerase Chain Reaction (RT-PCR)

To further validate the expression of signature genes
at the mRNA level, RT-PCR assays were performed using
the tissue samples. Tumor tissues and paracancerous tis-
sues were collected from 8 patients with OV. The clinical
data of the patients are provided in detail in Table 2, mainly
including age, tumor size, stage, grade, tumor metastasis,
alcohol, smoking and family history. In addition, the in-
crease of CA125, HE4 and CA199 suggests the possibility
of malignancy.

The inclusion criteria for the patients with OV were
as follows: (1) Patients were diagnosed with OV for the
first time; (2) patients had not undergone other treatments
prior to diagnosis; (3) patients had no other malignancy; (4)
patients had no other autoimmune disease; (5) the age of the
patients was 18 to 70 years. The exclusion criteria were as
follows: (1) Patients had other malignancies; (2) patients
received other treatments prior to surgery; (3) patients had
incomplete clinical data; (4) patients had a history of cancer.
The Ethics Committee of The Second Affiliated Hospital of
Xi’an Jiaotong University approved this study (2021241).
Patient informed consent was obtained.

RNA was extracted from the tissue samples. The
SYBR-GreenⅠReal Time PCR method was used to detect
the changes in gene expression. Relative gene expression
values were determined using the 2−∆∆ct method (com-
pared to healthy controls). 2−∆∆ct >1 and 2−∆∆ct <1 rep-
resent up- and downregulation, respectively. ACTB was
used as an internal reference gene.

2.6 Drug Predictions of Signature Genes
Based on the DGIdb database (https://dgidb.org/),

those drugs related to signature gene were screened out,
which may provide new perspectives for OV diagnosis,
treatment and research.

2.7 Association of Risk Score with Clinical Feature
For the purpose of further investigating the association

between clinical features of OV and risk score, univariate
and multivariate Cox analysis were first applied to deter-
mine the independent prognostic factors of the risk score
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Table 1. Basic information of datasets.

Accession number Platform Number of normal controls
Number of OS (years) Tumor stage Tumor grade

patients 1/4 quartile Median 3/4 quartile I II III IV Other 1 2 3 4 Other

GSE26712 GPL96 10 185 1.81 3.19 5.15 0 0 144 41 0 0 0 40 144 1
GSE32062 GPL6480 0 260 2.22 3.41 4.68 0 0 204 56 0 0 0 131 129 0
GSE18521 GPL570 10 53 N/A N/A N/A late high
TCGA Illumina RNAseq 0 378 1.44 2.81 4.55 1 23 294 57 3 1 45 321 1 10
OS, overall survival.

Table 2. Clinical Information Registry.

Number Age (years)
Tumor size

(cm)
CA125 (U/mL) HE4 (pmol/L) CA199 (U/mL) Roma index (%) Tumor stage Tumor grade

Tumor
metastasis

Alcohol
history

Smoking
history

Family history
of OV

1 58 1 811.6 96.10 7.94 82.66 IIIB G3 Yes No No No
2 62 10 305 58.86 19.18 58.31 IA G1 No No No No
3 70 8 631.3 736.7 7.94 97.06 IIIC G3 Yes No No No
4 73 20 982.6 >1500 5.18 98.96 IIIC G3 Yes No No No
5 56 10 148 51.65 10.8 15.29 IA G1 No No No No
6 47 12 437.9 219.9 4.65 77.14 IIIC G2-G3 Yes No No No
7 61 15 766.2 184.9 <0.6 60.63 IIIB G1 Yes No No No
8 52 15 60.34 128.1 24.61 48.95 IIIA G2-G3 Yes No No No
CA125, carbohydrate antigen 125; HE4, human epididymis protein 4; CA199, Carbohydrate antigen199; Roma index, Risk of Ovarian Malignancy Algorithm index; OV, ovarian cancer.
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different from other clinical factors. After testing for
collinearity, the independence of risk was also verified.
All independent prognostic parameters and associated clin-
ical parameters were applied to construct prognostic nomo-
grams through stepwise Cox regression models to predict
the overall survival (OS) of patients with OV. A nomogram
was used to forecast the OS. In addition, differences in risk
score in the various clinical subgroups were compared.

2.8 Analysis of Tumor Immune Microenvironment (TIME)
Cell Infiltration

The relative abundance of each cell infiltration in the
TIME of OV was quantified using single-sample Gene Set
Enrichment Analysis (ssGSEA). In the study by Charoen-
tong, gene sets that marked each immune cell type infiltrat-
ing the TIME, which is enriched in multiple human immune
cell subtypes, were obtained [24,25]. The stromal score, tu-
mor purity and ESTIMATE score of each patient with OV
were calculated using ESTIMATE from R package (version
3.5.3). The Wilcoxon test was applied to compare the dif-
ferences in immune cell infiltration, stromal score, tumor
purity and the ESTIMATE score.

2.9 Gene Set Variation Analysis (GSVA)
Differences in biological processes were investigated

using GSVA between the high- and low-risk groups.
“C2.cp.kegg.v7.2.Symbols” was downloaded from the
Molecular Signature Database. The R package “limma”
was applied to calculate significantly enriched pathways.
A false discovery rate (FDR) <0.05 was considered as sta-
tistically significant.

2.10 Gene Ontology (GO) Analysis
The R package “limma” was applied to identify dif-

ferentially expressed genes (DEGs) between the high- and
low-risk groups under the screening thresholds of FDR
<0.05 and |log2(FC)| >0.5. The Database for Annota-
tion, Visualization and Integrated Discovery (DAVID) was
applied to perform enrichment analysis, and the screening
threshold was FDR <0.05.

2.11 Tumor Mutation Burden (TMB) Analysis
First, the “maftools” package in R was utilized to cal-

culate the TMB score. Tumor samples were divided into the
high- and low-TMB groups based on the median of TMB.
The survival curve between risk and TMB was analyzed
using the Kaplan-Meier method. In addition, a correlation
analysis between the risk score and TMB was performed.

2.12 Immune Checkpoints and Immunotherapy
For the purpose of exploring the predictive power of

tumor risk score in patients treatedwith immunotherapy, the
expression of multiple immune checkpoints was assessed
in the high- and low-risk groups and their correlation with
the risk score was determined. Based on immunotherapy

cohorts, the responses of patients were analyzed in the high-
and low-risk groups. The difference in the risk score in the
response and non-response groups was analyzed.

2.13 Statistical Analysis
Based on the clinical data of OV cases in TCGA and

the GEO datasets, univariate Cox proportional hazards re-
gression analysis was used to screen genes associated with
immunity and ferroptosis for survival (p< 0.05). The Lasso
method was used to screen variables to prevent over-fitting
and build a prognostic model. Survival curves for risk score
were analyzed using Kaplan-Meier analysis, and the 1-, 3-,
and 5-year time ROC curves of the model were plotted us-
ing the R package “timeROC”. Univariate and multivariate
Cox analyses were used to determine whether risk was an
independent prognostic factor distinct from other clinical
factors. Statistically significant differences were assessed
using the two-tailed t-test in the RT-PCR experiments. The
ssGSEA algorithm was used to quantify the relative abun-
dance of each cell infiltration in the OV TIME, and the
stromal score, tumor purity and the ESTIMATE score were
calculated for each patient with OV using the ESTIMATE
algorithm through the R package “ESTIMATE”. In addi-
tion, based on the Wilcoxon test, the differences in various
immune cells, stromal scores, tumor purity and the ESTI-
MATE score between the high- and low-risk groups were
compared. In addition, the correlation between key genes
and immune cells was explored based on Pearson’s correla-
tion analysis. GSVA enrichment analysis was performed
using the R package “GSVA” and based on the R pack-
age “limma” was used to calculate differentially expressed
pathways (FDR <0.05). DEG analysis was performed us-
ing the R package “limma” between the high- and low-risk
groups (FDR<0.05 and |log2(FC)|>0.5). Multiple testing
correction was performed in the GSVA and GO enrichment
analysis in the high- and low-risk groups. An FDR <0.05
was considered statistically significant. DAVID was used
for the enrichment analysis of DEGs between the high- and
low-risk groups (FDR <0.05). TMB was calculated using
the “maftools” package in R.

3. Results
3.1 Construction of an Immunity and Ferroptosis-Related
Risk Score Model

To investigate the impact of immunity and ferropto-
sis genes on the prognosis of patients with OV, univari-
ate Cox regression analysis was applied in TCGA and the
GSE26712 datasets with a screening criterion of p≤ 0.05; a
total of 220 and 118 genes were identified. After taking the
intersection of the genes in the two datasets, 12 prognos-
tic genes were finally identified (Fig. 1), including C5AR1,
COLEC12, EGFR, GZMB, IGF2R, ISG20, PPP3CA, RB1,
STAT1, TAP1, TRIM27 and TSHR.

Given the possible interaction between immunity and
ferroptosis, 12 prognostic genes were used for the construc-
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Fig. 1. Screening of prognostic genes in OV. (A) Forest diagram of 12 prognosis-related genes in TCGA training set. (B) Forest diagram
of 12 prognosis-related genes in the GEO validation set.

tion of the prediction model of OV. The optimal λ (lambda)
was obtained by the minimum partial likelihood devia-
tion. Finally, 10 signature genes were obtained, including
8 immunity-related genes (C5AR1, GZMB, IGF2R, ISG20,
PPP3CA, STAT1, TRIM27 and TSHR), 1 ferroptosis-related
gene (RB1) and 1 immunity and ferroptosis-related gene
(EGFR). The immunity and ferroptosis-related risk score
model was constructed, as shown in Fig. 2A,B. The formula
is as following:

Risk score = (C5AR1 × 0.167018542) + (EGFR ×
0.024944649) + (GZMB × –0.114825674) + (IGF2R ×
0.223153693) + (ISG20 × –0.145695011) + (PPP3CA ×
0.137679588) + (RB1 × 0.176152429) + (STAT1 × –
0.157629949) + (TRIM27 × –0.446534567) + (TSHR ×
0.14287582)

The influence of the risk score obtained from the con-
struction of 10 immunity and ferroptosis-related genes on
OS was further investigated. The risk score was calculated
using a formula (detailed results are presented in Supple-
mentary Table 1), the samples were divided into the high-
and low-risk groups based on the median risk score. The
low-risk group had a higher survival proportion, as shown
in Fig. 2C. The OS was significantly lower in patients in
the high-risk group (Fig. 2D). The AUC values at 1, 3 and 5
years were 0.639, 0.645 and 0.716, respectively (Fig. 2E).
In TCGA training set, the risk score had good predictive
power for the OS of patients.

To further evaluate the robustness of the risk score
in predicting the OS of patients with OV, two datasets
(GSE26712 and GSE32062) were applied to test the predic-
tion capacity of the risk score for OS. First, the risk scores
of the tumor samples in the two datasets were calculated
separately using the same formula. The samples were di-
vided into the high and low-risk group based on the median
risk score (Supplementary Fig. 1A,D). The low-risk group
had a higher OS rate. The OS of the patients in the high-risk
groupwas significantly lower (Supplementary Fig. 1B,E).
In the GSE26712 dataset, the AUC values were 0.713, 0.73
and 0.731 at 1, 3 and 5 years, respectively (Supplementary

Fig. 1C). In the GSE32062 dataset, the AUC values were
0.643, 0.620 and 0.629 at 1, 3 and 5 years, respectively
(Supplementary Fig. 1F). In the validation set, it was fur-
ther demonstrated that the risk score model had a better pre-
dictive ability for patients with OV.

3.2 Influence of Signature Genes on OS
The results of survival analysis with the risk score re-

vealed that the OS of the high-risk group was significantly
lower than that of the low-risk group. Based on the expres-
sion values of signature genes in each sample of the TCGA
training set, the samples were divided into the high- and
low-expression groups according to the median expression.
The influence of signature genes on survival was analyzed
using the Kaplan-Meier method. The C5AR1, EGFR, RB1
and TSHR genes had no significant effect on survival (p
> 0.05), while patients with a high expression of GZMB,
ISG20, STAT1 and TRIM27 had a longer OS. In addition,
patients with a low expression of IGF2R and PPP3CA had
a longer OS (Supplementary Fig. 2).

Since there were no data available for the control
group in TCGA dataset, the expression of signature genes
in cancer and paracancerous tissues was searched from the
Gene Expression Profiling Interactive Analysis (GEPIA)
database. STAT1 and GZMB were highly expressed in pa-
tients with OV, while EGFR was expressed at low lev-
els in patients with OV. No significant differences were
found for the remaining genes examined (Fig. 3). Sub-
sequently, the expression of 10 signature genes was ver-
ified in the GSE26712 and GSE18521 datasets. GZMB,
ISG20 and TSHR were significantly upregulated in patients
with OV, while EGFR, PPP3CA and RB1 in GSE26712
were significantly downregulated in patients with OV. In
the GSE18521 dataset, C5AR1 was significantly expressed
at low levels in patients with OV, while GZMB, ISG20,
STAT1, and TSHR were significantly highly expressed in
patients with OV (Supplementary Fig. 3). Of note,GZMB
was significantly highly expressed in patients with OV in all
data analyzed.
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Fig. 2. Construction of risk model in TCGA training set. (A) Change trajectory of each independent variable. The horizontal axis
and vertical axis represents the log value of the independent variable lambda and the coefficient of the independent variable, respectively.
(B) LASSO Cox regression with 10-time cross-validation for optimal parameter (λ) selection, in which the vertical dashed lines showed
minimum λ value and 1 × standard error λ value, respectively. (C) Risk score distribution map, the dotted line indicates the optimal
cut-off value of the risk score. All OV patients are divided into high and low risk groups. In survival status, the blue dots represent the
surviving OV patients and the red dots represent death, and the corresponding risk gene cluster expression profiles were visualized as a
heatmap. (D) Survival Curve, blue represents low risk score, red represents high risk score. (E) The yellow, blue and red lines represent
1, 3 and 5 years of the ROC curve, respectively.

At the same time, the Human Protein Atlas database
was applied to analyze the protein expression levels of
STAT1, GZMB and EGFR (Supplementary Fig. 4A).
Based on the analysis using the UALCAN database, no
significant expression difference was observed for STAT1;
however, EGFR and PPP3CA proteins were expressed at
low levels in patients with OV (Supplementary Fig. 4B–
D).

In addition, RT-PCR detection indicated that GZMB,
STAT1 and ISG20 were markedly upregulated in patients
with OV (Supplementary Fig. 4E). The OS analysis with
individual signature genes revealed that a high expression
of the GZMB, STAT1, ISG20 and TRIM27 genes, and a low
expression of the IGF2R and PPP3CA genes corresponded
to a longer OS rate. However, the analysis of signature
genes in cancer and paracancerous tissues revealed that the
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Fig. 3. Signature genes expression of C5AR1, GZMB, IGF2R, ISG20, PPP3CA, STAT1, TRIM27, TSHR, RB1, and EGFR in the
GEPIA database. Red and gray represent the patients with tumor group and normal control group (T: tumor; N: normal control),
respectively. ∗p < 0.05.

GZMB, STAT1 and ISG20 genes still had higher expression
levels, and that the EGFR and PPP3CA genes had lower
expression levels in cancer tissues.

3.3 Drugs Predictions of Signature Genes

Based on the DGIdb database, drugs related to anti-
tumor and immunotherapy for 10 signature genes were
screened out (Supplementary Fig. 5), including 32 drugs
and 4 genes (EGFR, PPP3CA, RB1 and STAT1). Among
these, cisplatin is widely used in the treatment of var-
ious solid tumors [26]. Sunitinib is a novel, multi-
targeted oral treatment for cancer. Etoposide, docetaxel and
decitabine are cell cycle-specific antitumor agents. Topote-
can is indicated for metastatic advanced OV that has failed
chemotherapy. Paclitaxel, vorinostat and other drugs are
associated with OV treatment [27,28].

3.4 Independent Prognosis for OV

Univariate and multivariate Cox analyses determined
the association of the risk score with clinical signatures.
Age and risk could be used as independent prognosis factors
(Fig. 4A). The independence of risk was verified in the val-
idation set (Fig. 4B). A nomogram was constructed to pre-
dict OS probabilities by combining risk and age with signif-
icance for independent prognostic indicators in a multivari-
ate Cox analysis (Fig. 4C,D). Each factor was allocated pro-
portionally to its risk contribution to survival. The calibra-
tion curve indicated that the combined model (nomogram)
revealed a high accuracy in OS at 1 year. In addition, dif-
ferences in risk scores across clinical subgroups were com-

pared. The risk scores significantly differed by age, status
and stage (Fig. 4E).

3.5 Association of Risk Score with Immune Cell Infiltration

The infiltration status of 23 immune cells in TCGA
dataset was evaluated using ssGSEA. The majority of the
immune cells in the high-risk group had more infiltra-
tion (Fig. 5A). However, there was no corresponding sur-
vival advantage for patients in the high-risk group, and
the OS of patients in the high-risk group was significantly
lower (Fig. 2D). Epithelial-mesenchymal transition (EMT)
1, EMT2 and EMT3 was significantly higher in the high-
risk group subtypes (Fig. 5B). Moreover, the ESTIMATE
score, stromal score and tumor purity for each patient with
OV was calculated using ESTIMATE. The ESTIMATE
score and stromal score were significantly higher in the
high-risk group, although tumor purity was low (Fig. 5C–
E).

Furthermore, the ferroptosis status was also predicted
based on suppressor genes (SOFs) and activators (DOFs)
of ferroptosis in the literature [29]. Among the 16 repres-
sors of ferroptosis, CD44 and HMOX1 were significantly
highly expressed in the high-risk group, while HELLS,
HSF1, HSPA5, NQO1, OTUB1 and SLC7A11 were signif-
icantly expressed at low levels. In the 22 ferroptosis acti-
vators, ANO6, EGFR and ZEB1 were significantly highly
expressed in the high-risk group, and CHAC1, ELAVL1,
PEBP1 and SAT1 was significantly expressed at low lev-
els. Taken together, the findings indicated that ferrop-
tosis may be more pronounced in the high-risk group
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Fig. 4. Association of risk score with clinical features. (A) Multivariate Cox analysis in TCGA training set. (B) Multivariate Cox
analysis in the GSE32062 validation set. (C) Nomogram of clinical features and risk score. (D) Calibration plot of 1-, 3-, and 5-years.
(E) Risk score differences in age, status, stage and grade subgroups. ∗p < 0.05; ∗∗p < 0.01 and ∗∗∗∗p < 0.0001; ns, not significant.

(Supplementary Fig. 6).

3.6 GSVA Analysis

Significantly enriched pathways were calculated us-
ing the R package “limma” and screened on the condi-
tion of FDR <0.05. A total of 103 metabolic pathways
were screened out. The top 10 pathways were selected
from the high- and the low-risk groups, respectively. Some
metabolic pathways, such as ECM receptor interaction, fo-
cal adhesion and axon guidance were more active in the
high-risk group; while in the low-risk group, proteasome,
DNA replication, spliceosome, protein export, aminoacyl
TRNA biosynthesis and other metabolic pathways were

more active (Supplementary Fig. 7A).

3.7 DEGs and GO Enrichment Analysis

The cancer tissue samples were grouped according
to the risk score in TCGA dataset and DEG analysis was
performed. Finally, 158 DEGs were screened, of which
102 upregulated genes and 56 downregulated genes were
identified (Supplementary Fig. 7B). DAVID was used
to analyze the function of the DEGs under the screening
threshold of FDR<0.05. GO enrichment analysis revealed
that the DEGs were mainly enriched in the extracellular re-
gion under cellular component (CC). As regards molecular
function (MF), the DEGs were mainly enriched in colla-
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Fig. 5. Comparison of the immune microenvironment in the high- and low-risk groups. (A) Difference in the infiltration degree
of 23 types of immune cells. Red and blue represent high-risk and low-risk groups, respectively. (B) Difference in infiltration degree
of EMT, green and pink represent high-risk and low-risk groups, respectively. (C) Difference in ESTIMATE score, orange and blue
represent high-risk and low-risk groups, respectively. (D) Difference in stromal score, brown and blue represent high-risk and low-risk
groups, respectively. (E) Difference in tumor purity, purple and green represent high-risk and low-risk groups, respectively. ∗p < 0.05;
∗∗p < 0.01; ∗∗∗p < 0.001 and ∗∗∗∗p < 0.0001; ns, not significant.

gen binding. In terms of biological process (BP), the DEGs
were significantly enriched in the type I interferon signaling
pathway, as shown in Supplementary Fig. 7C.

3.8 Association between TMB and Risk Score

It was considered meaningful to explore the inner link
between the risk score and TMB in order to elucidate the ge-
netic characteristic of each subgroup. Kaplan-Meier analy-
sis of the survival curve revealed that the high-TMB group
had a longer survival rate. The increase in the TMB level
led to an improvement in survival, while the low-risk and
high-TMB group survived the longest (Fig. 6A,B). There
was no significant difference in TMB between the high- and

low risk groups (Fig. 6C). Furthermore, there is no corre-
lation between risk score and TMB (Fig. 6E). A high TMB
induces antitumor immune cell activation and improves the
prognosis of patients with OV.

3.9 Immune Checkpoints and Immunological Therapy

The expression of immune checkpoints, including
CD274, CTLA4, KLRC1, LAG3, PDCD1 and TIGIT was
assessed in the high- and low-risk groups, followed by the
evaluation of the relevance between these immune check-
points, and risk score and signature genes. In the low-risk
group, CD274, CTLA4, KLRC1, LAG3 and PDCD1 were
significantly highly expressed. GZMB exhibited a positive
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Fig. 6. Differences in TMB between high and low-risk groups. (A,B) Survival curves of the different groups. (C) Violin plot of TMB.
(D) Bar chart of proportional distribution. (E) Correlation between TMB and risk score.

association with each immune checkpoint, while the risk
score was negatively associated with each immune check-
point (Fig. 7A,B).

Immunotherapy represented by the blocking of pro-
grammed cell death ligand 1 (PD-L1) and programmed
cell death 1 (PD-1) has become a key breakthrough in the
treatment of cancer. The present study then investigated
whether the risk score can forecast the response of pa-
tients to immune checkpoint blockade treatment based on
an immunotherapy cohort. In the anti-PD-L1 cohort, pa-
tients demonstrated significant clinical benefits and a no-
table prolonged survival was observed in the low-risk group
(Fig. 7D). The therapeutic advantage was confirmed in the
low-risk patients (Fig. 7D–F). Finally, the ability of the risk
score to distinguish between the disease progression group
(PD/SD) and disease remission group (CR/PR) treated with
anti-PD-L1 immunotherapy was examined using the ROC
curve (Fig. 7G). Overall, the findings of the present study
strongly suggest that the risk score is significantly associ-
ated with the tumor response to immunotherapy. The risk
score established herein may contribute to the prediction of
the response to immunotherapy.

4. Discussion

OV is a malignant ovarian tumor; 90–95% of cases are
primary OV, and the remaining 5–10% cases are metastatic,
with the tumor in the ovaries originating from a primary
tumor elsewhere in the body. Diagnosis is difficult in the
early stages of OV [30]. Among the gynecological malig-
nancies, the high mortality rate associated with OV poses a
severe threat to the lives of women [31].

In the present study, a risk score model was con-
structed consisting of 10 IRGs and FRGs (C5AR1, GZMB,
IGF2R, ISG20, PPP3CA, STAT1, TRIM27, TSHR, RB1 and
EGFR), which can predict the prognosis of patients with
OV. Some genes were involved in pathophysiological fea-
tures of OV. GZMB is a serine protease with the highest
content secreted by cytotoxic T-lymphocytes and natural
killer cells [32]. Previous studies have demonstrated that
GZMB is detected in lung carcinomas [33], primary breast
carcinomas [34], urothelial carcinomas [35] and nasal-type
NK/T-cell lymphoma [36]. Wang et al. [37] demon-
strated that GZMB was associated with OS and could af-
fect prognosis through its effect on immune cell infiltra-
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Fig. 7. Immune checkpoints and anti-PD-1/L1 immunotherapy. (A) Differences in immune checkpoints between high- and low- risk
groups. Red and blue represent high-risk and low-risk groups, respectively. (B) Correlation analysis of immune checkpoints. (C) Survival
curves of high- and low- risk groups. (D) Differences in risk scores between different anti-PD-1 clinical response groups. (E) Proportion
of patients responding to anti-PD-1/L1 immunotherapy in high- and low- risk groups. (F) Accuracy of risk score in differentiating the
PD/SD and CR/PR groups. (G) Correlation of risk score with clinical response to anti-PD-1/L1 immunotherapy. ∗p< 0.05; ∗∗p< 0.01;
∗∗∗p < 0.001 and ∗∗∗∗p < 0.0001; ns, not significant. SD, stable disease; PD, progressive disease; CR, complete response; PR, partial
response.

tion, thus being a potential target for immunotherapy of
OV. The expression of ISG20 is associated with a variety of
chemokines, resulting in the infiltration of various immune
cells into tumors, and the level of ISG20 is positively re-
lated to the expression of PD-1/PD-L1 and CTLA4, which
further inhibits T-cell function, resulting in tumor evasion
to the immune response [38]. The overexpression of STAT1
has been shown to attenuate the TGF-β signaling pathway
in OV cells, implying that the high expression of STAT1
may be beneficial to the OS of patients with OV [39]; this
is consistent with the results of the present study. EGFR
can activate a variety of downstream signaling pathways,
thereby promoting the proliferation, invasion and metasta-
sis of tumor cells [40]. Tang et al. [41] found PPP3CAwas

associated with a poor survival of patients with cholangio-
carcinoma. In summary, the expression of prognostic genes
is associated with OV. It was hypothesized that highly ex-
pressed genes were associated with the occurrence of OV,
and that genes expressed at low levels were involved in the
development of OV. Each gene does not function alone, and
may interact with other genes [42].

The independence of the risk score remained robust in
the training and validation sets. The nomogram constructed
by the combined model could better predict the short-term
survival of patients with OV than a single prognostic factor.
The OS of patients in the high-risk group was significantly
lower than that of those in the low-risk group.

In addition, the present study screened out drugs re-
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lated to antitumor and immunotherapy. Sunitinib has been
shown to suppress the migration of OV cells through the
negative modulation of TGF-β-mediated EMT [43]. Pal-
bociclib, a member of a class of drugs known as CDK4/6
inhibitors, can disrupt the proliferation of cancer cells and
treat recurrent OV [44]; tacrolimus is a potent new immuno-
suppressant that inhibits the release of IL-2 and compre-
hensively inhibits the action of T-lymphocytes. Sirolimus
inhibits the expression of hypoxia-inducible factor 1α and
tumor growth in a SKOV3 OV model [45].

Furthermore, in the present study, in the high-risk
group, a greater number of immune cells were infiltrated.
However, the OS of patients in the high-risk group was
significantly lower. Macrophages (TAMs) and regulatory
T-cells (Tregs) promote OV immune surveillance evasion
and tumor transfer. Immune cells in immune-rejecting tu-
mors reside in the stroma surrounding tumor cells, instead
of penetrating the tumor. The activation of the stroma in the
TIME is considered to be associated with T-cell suppression
[46,47]. Therefore, it was hypothesized that stromal activa-
tion inhibited the antitumor function of immunocytes in the
high-risk group. EMT is a key process in cancer progres-
sion and metastasis, promoting OV invasion [48]. In addi-
tion, in the present study, the ESTIMATE score and stro-
mal score were significantly higher in the high-risk group,
although the tumor purity was low, which is in line with the
findings of previous studies [49–53]. Low tumor purity and
a high stroma infiltrates were negatively associated with a
shorter survival [54].

TMB is a hallmark of immunotherapy due to the bio-
logical mechanisms and immune responses to somatic mu-
tations [55–58]. That is, mutations in neoantigens increase
when the TMB is higher. It is easier for the immune system
to recognize and remove tumor cells. In addition, the sur-
vival rate of patients will be improved. The OS of patients
with OV with a high TMB is significantly increased [59].
Herein, the combined analysis of the TMB and risk score
found that patients with a high TMB and a low risk score
had the best prognosis, while those with a low TMB and a
high risk score had the worst prognosis. This implies that
the risk score and TMB may play a role in different aspects
of OV immunotherapy. This statement is also confirmed by
the lack of a correlation between the risk score and TMB.

Immune checkpoints regulate the degree of immune
activation and prevent the immune system from overacti-
vation. This regulatory mechanism maintains the immune
responsewithin the normal physiological range and protects
the host against autoimmunity. Based on immune check-
point analysis, the present study found thatCD274, CTLA4,
KLRC1, LAG3 and PDCD1were overexpressed in the low-
risk group. Tu et al. [60] assessed the expression and ther-
apeutic response of PD-1 in different types of cancer. No-
tably, the upregulation of PD-1 expression had a positive
effect on OV, and the OS of patients with OVwith an upreg-
ulated expression of CTLA4 was improved. The inhibitory

checkpoint targets may be more efficient in patients with a
high risk score in OV [61]. In addition, immune check-
points were inversely associated with higher risk scores.
Using the risk score to predict biological response to anti-
immunotherapy in tumor samples may be helpful for OV
immunotherapy. In the present study, patients in the low-
risk group demonstrated significant clinical benefits and a
significantly prolonged survival.

However, there are limitations to the study. Firstly,
this study was carried out by using bioinformatics analy-
sis. Although we verified the expression of the genes by
RT-PCR in vitro, the sample size is relatively small. In
the later stage, the sample size can be increased. Sec-
ondly, some various experiments are needed to make the
results more convincing, such as cell and animal models
experiments. Lastly, the association between clinical value
and immunotherapy are needed to further investigate in
prospective trials.

5. Conclusions
In conclusion, the present study constructed a 10-gene

risk model that can function as an independent prognostic
factor in patients with OV and predict the response to im-
munotherapy. In addition, the findings obtained may still
provide a rational basis for the study of immunotherapy in
OV, and the identified signature genes may provide aid fu-
ture research in OV.
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