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Abstract

Background: DNA damage repair (DDR) related genes are associated with the development, progression, aggressiveness, and het-
erogeneity of low-grade gliomas (LGG). However, the precise role of DDR in LGG prognosis and molecular subtypes remains to be
elucidated. Methods: We analyzed 477 and 594 LGG samples from the Cancer Genome Atlas (TCGA) and Chinese Glioma Genome
Atlas (CGGA) to develop a prognostic model using the random forest algorithm and Cox regression. Independent prognostic factors
were incorporated into a nomogram, and its performance was assessed using receiver operating characteristic and calibration curves. We
also used Connectivity Map analysis to identify potential small molecule drugs targeting DDR. Molecular subtypes based on DDR were
identified by consensus cluster analysis, and the clinical characteristics, mutation landscape, immune tumor microenvironment, and drug
sensitivity of patients with different subtypes in the TCGA and CGGA datasets were further compared. The Boruta algorithm was used
to select features from the differentially expressed genes between clusters to generate DDR scores. Results were further validated in
the Glioma Longitudinal AnalySiS consortium dataset. Statistical analysis and tests were implemented using R software version 4.0.2.
Results: We developed a prognostic model containing six DDR-related genes, which served as a potential independent prognostic in-
dicator in LGG across three datasets. The area under the curve (AUC) values for 1-, 3-, and 5-year survival in the TCGA dataset were
0.901, 0.832, and 0.771, respectively. The nomogram demonstrated high accuracy in predicting 1-, 3-, and 5-year survival, with AUC
values greater than 0.8. Additionally, we identified and validated two molecular subtypes based on DDR genes. These subtypes exhibited
significant differences in somatic mutations, clinical prognosis, and immune cell infiltration. One subtype showed higher immune and
stromal scores, worse prognosis, and increased sensitivity to common chemotherapeutic agents. Finally, we established a DDR score
which served as another promising prognostic predictor for LGG. Conclusions: The prognostic model and molecular subtypes based
on DDR genes can help in more detailed classification and provide insights for personalized management of LGG and clinical drug
development.
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1. Introduction
Low-grade gliomas (LGG) are WHO grade II and III

gliomas and include oligodendroglioma and anaplastic as-
trocytoma [1]. Currently, even with the standard treatment
strategies, such as maximum safe resection, radiotherapy
and chemotherapy, the mean survival varies significantly
from 2 to 10 years [2,3]. Histopathological and clinical
results indicate that high heterogeneity and aggressiveness
contribute to the great variability in survival of LGG [4].
In fact, residual tumor cells may recur and develop malig-
nant progression soon after surgery, resulting in resistance
to treatment and making it more difficult [5]. Based on
the above characteristics of LGG, it is crucial to identify
biomarkers that may affect the prognosis of LGG and im-
prove the risk stratification of LGG.

Accumulated evidences revealed that molecular di-
agnosis is more important than tumor grade in the clas-
sification and prognosis of LGG [6–8]. Some biomark-

ers, including isocitrate dehydrogenase 1 (IDH1) muta-
tion, 1p/19q combined deletion (1p/19q co-deletion) and
O6-methylguanine-DNA methyltransferase (MGMT) pro-
moter methylation, revealed the histological characteristics
of LGG and could be used to guide LGG treatment regimen
[7]. However, in the genetically heterogeneous population,
the heterogeneity of LGG determined the low predictive
value of these widely used biomarkers, which can neither
fully elucidate individual variation nor correctly addressing
the problem of LGG risk stratification. With the advanced
molecular platforms, this enables the development of new
prognostic signatures, accurately identify LGG novel cate-
gorized methods and stratify risk based on molecular pro-
files [9].

In order to maintain genome integrity and stability,
cells develop DNA damage repair (DDR) mechanisms that
identify and repair damage to the DNA molecules encoded
by the genome. Previous studies have shown that DDR, as a
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widely concerned hallmark in tumor biology, plays a crucial
role in tumor genesis, progression and therapeutic response
[10–13]. Defects in DDR prevent cells from properly re-
pairing damaged DNA, leading to the accumulation of ge-
netic changes in normal cells that turn into cancer cells [14].
Consequently, cancer cells generally exhibit a decreased
ability to repair DNA compared with normal cells. As a re-
sult, DNA replication stress accumulates and DNA damage
is superimposed due to dependence on a subset of other re-
pair pathways. Studies have reported the abnormal expres-
sion of DNA repair genes contributed to tumorigenesis [15].
Indeed, cells lacking DDR are often associated with sensi-
tivities to DNA damaging agents, so DDR defects associ-
ated with cancer may also lead to vulnerabilities that can be
exploited therapeutically [16]. This evidence highlights the
importance of DDR regulatory molecules in targeted anti-
cancer therapy [17]. The current findings suggest that DDR
may be the underlying mechanism of gliomagenesis, rather
than a random secondary event [18]. Alterations in DDR
pathways have been considered to play essential roles in
many aspects of glioma biology such as genesis, progres-
sion, therapy resistance, and recurrence [19–22]. Gliomas
usually rely on intrinsic DNA repair pathways to handle the
adverse effects of DNA damage such as single- and double-
strand DNA breaks caused by radiotherapy and chemother-
apy. MGMT, for instance, repairs the cytotoxic DNA dam-
age caused by temozolomide (TMZ), which is considered
to be the common mechanism of chemotherapy resistance
in glioma [20,22]. Based on the above knowledge of DDR,
a recent glioma treatment strategy is to induce overwhelm-
ing DNA damage and inhibit glioma repair mechanisms,
and cause fatal cytotoxicity to gliomas, resulting in cell cy-
cle arrest and reduced drug resistance [21,22]. In addition,
targeting DDR with novel agents or therapeutic combina-
tions provides a promising adjuvant therapy for improving
the clinical prognosis of glioma [21,23]. Furthermore, a
DDR-related signature had been identified in glioblastoma
to predict prognosis [24]. Therefore, the inclusion of DDR-
related genes in the study of risk stratification, subtypes,
prognosis and treatment response of LGG is promising to
provide a new perspective for the clinical treatment of pa-
tients.

Based on the Cancer Genome Atlas (TCGA, training
set, n = 477) and Chinese Glioma Genome Atlas (CGGA,
validation set, n = 594) RNA sequencing datasets, Cox
regression and random forest analysis were performed to
identify a DDR-related signature and to construct a nomo-
gram for survival prediction of LGG patients. We also
demonstrated the underlying mechanism of risk character-
istics and screened small molecule drugs targeting for DDR.
Moreover, we systematically analyzed DDR-related genes
in LGG, and classified LGG subtypes according to DDR-
related genes. Mutations of each molecular subtype were
further presented, and the relationship between the molec-
ular subtype and the prognosis, immune tumor microen-

vironment (TME), chemotherapy and clinical characteris-
tics of patients were further explored. Finally, the DDR
score which could be served as an independent and effec-
tive prognostic factor was constructed. The results of the
analyses were validated in an additional validation dataset-
Glioma Longitudinal AnalySiS (GLASS) [25] consortium
dataset (https://www.glass-consortium.org). Robust prog-
nostic model, DDR-score system and molecular subtype
based on DDR-related genes will improve risk stratifica-
tion in LGG patients and provide more accurate personal-
ized clinical management assessments.

2. Materials and Methods
2.1 Data Acquisition

mRNA expression data with clinical information of
506 and 596 LGG patients were collected from TCGA
(training dataset) and CGGA (validation dataset), respec-
tively. The corresponding clinical data include: gender,
age, histology, subtype, IDH1 mutational status, MGMT
promoter status, 1p/19q co-deletion status and survival in-
formation. Somatic mutation data were obtained from the
TCGA portal. Considering that the GLASS dataset (https:
//www.glass-consortium.org) contained only the minimal
clinical information (n = 330) [25], the GLASS dataset only
served as an additional validation dataset to validate a por-
tion of results. A total of 150 genes (Supplementary Ta-
ble 1) associated with DDR were retrieved from Molecular
Signature Database V7.0 (MSigDB) [26] (http://www.broa
d.mit.edu/gsea/msigdb/, HALLMARK_DNA_REPAIR).

2.2 Data Pre-Processing
The mRNA expression data for samples were pre-

processed according to the following steps. Samples with
missing clinical information and those with an overall sur-
vival (OS) of less than 30 dayswere excluded, and 477 LGG
samples from TCGAwere eventually included in this study
for follow-up analysis (Supplementary Table 1). In addi-
tion, the GLASS dataset was used as an independent valida-
tion dataset, in which samples from TCGA were excluded.

The DDR-related genes shared among the TCGA,
CGGA, and GLASS datasets were retained for further anal-
ysis. Consequently, the final dataset comprised expression
profiles of these common DDR-related genes derived from
the aforementioned three datasets.

The CGGA mRNA sequencing data included both
mRNAseq_693 (Illumina HiSeq platform) and mR-
NAseq_325 (Illumina HiSeq 2000 and 2500 platforms).
Therefore, the batch effects between these two datasets
were removed using the “sva” R package [27] and a
total of 594 LGG patients in CGGA were retrieved
(Supplementary Table 1).
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2.3 Gene Signature Identification and Risk Score
Construction

In order to identify gene signature and construct risk
score, the R package (http://cran.r-project.org) “survival”
and “survminer” were used to perform univariate Cox pro-
portional hazard regression on 477 LGGs in TCGA dataset
to select DDR-related genes that are highly correlated with
prognosis (p < 0.05 was selected as the threshold). Then
“randomForest” R package was performed to ranked the
importance of the selected DDR-related genes related to
the prognosis by Random Survival Forest algorithm (nrep
and nstep respectively represent the number ofMonte Carlo
simulation iterations and the number of steps forward, with
values of 100 and 5). Genes with the relatively importance
value >0.2 were subsequently incorporated into the mul-
tivariate stepwise cox regression analysis to established a
prognostic signature. In three datasets, the Cox regression
coefficient and prognostic gene expressionwere used to cal-
culate the risk score for each patient. Finally, the risk model
containing 6 genes was established, and the final formula
was as follows:

Risk score=
∑N

i=1(βi× Expi), where βi represented
the coefficient of gene i, and Expi represented the expres-
sion value of gene i.

According to the risk score formula, samples from
the training and validation datasets were divided into high-
risk and low-risk groups based on the median risk scores.
Kaplan-Meier (KM) curves were used to estimate the sur-
vival divergence between different risk groups. To deter-
mine the independent predictive power of each variable, we
conducted multivariate and univariate regression analyses
using R “survival” package and visualized by the “forest-
plot” package in R. Additionally, we retrieved the gene pro-
tein expression level from the Human Protein Atlas (HPA)
database to evaluate the expression of prognostic genes.

2.4 Construction and Validation of a Nomogram Model
A nomogram is a graphical representation of a math-

ematical model that estimates the outcome or probability
of an event based on multiple variables or inputs, serving
as a visual tool to simplify complex calculations. Nomo-
grams facilitate clinicians’ decision-making processes, en-
abling them to tailor treatment strategies for individual pa-
tients according to their unique characteristics and risk fac-
tors. Univariate and multivariate Cox regression were con-
ducted to identify the independent prognostic risk fac-
tors for nomogram construction. Using the “rms” packages,
calibration curves were drawn to assess the OS probability
for LGG patients at 1-, 3-, and 5-years. In addition, nomo-
gram accuracy was also determined by concordance index
(C index).

2.5 Gene Set Enrichment Analysis (GSEA)
Gene set enrichment analysis (GSEA) was performed

using the GSEA V3 software (Broad Institute, Inc., Mas-

sachusetts Institute of Technology, and Regents of the Uni-
versity of California) [28] to identify gene sets that were
statistically different between different risk groups in LGG
samples of TCGA and CGGA mRNA expression pro-
files. GSEA V3 software was used to select the MSigDB
“c2.cp.kegg.v7.1.symbols.gmt” gene set as a reference to
screen out significantly enriched pathways with NOM p-
value and false discovery rate (FDR) less than 0.05 and
0.25, respectively.

2.6 Connectivity Map (CMap) Analysis

We consulted the recently updated Connectivity Map
(CMap, http://cmap.topcoder.com/) to screen for potential
small molecule compounds targeting DDR-related genes in
the hope of achieving new breakthroughs in LGG therapy.
“limma” R package [29] was applied to identify differen-
tial expression genes (DEGs) with FDR <0.05 and |Fold
change (FC)| ≥2 between different risk score groups. The
up- and down-regulated genes were uploaded to the CMap
(https://clue.io) database [30]. Small molecule compounds
with an absolute value of enrichment greater than or equal
to 0.7 and p < 0.05 were considered as candidates.

2.7 Consensus Clustering

“ConsensusClusterPlus” [31] R package was per-
formed for consensus clustering of the prognostic DDR-
related genes. Similarity distance among samples was cal-
culated using Euclidean distance and clustering was con-
ducted usingK-means. Resampling analysis was conducted
to estimate the optimal cluster number based on cumulative
distribution function (CDF) and consensus matrix. And the
clustering results determined by the above methods were
also validated in GLASS dataset. The principal component
analysis (PCA) was applied to evaluate the distribution of
the molecular subtypes in TCGA and GLASS datasets via
the “princomp” package. The differences in OS among dif-
ferent clusters in TCGA and GLASS datasets were present
using KM curves. We further estimated single nucleotide
polymorphism (SNP) distribution of each cluster. The so-
matic mutation profiles of LGG were firstly obtained from
TCGA data portal and were divided into distinct clusters
for analysis according to consensus clustering. The somatic
mutation data of each cluster were summarized, analyzed,
and visualized based on the Mutation Annotation format
(MAF) file using the “maftool” [32] R package, and the
driver genes were identified. The copy number alterations
(CNA) data in each cluster were also generated by GIS-
TIC2.0 from GDAC Firehose (https://gdac.broadinstitute.
org) [33].

2.8 Estimation of STromal and Immune Cells in MAlignant
Tumour Tissues using Expression Data (ESTIMATE) and
ssGSEA

782 marker genes for predicting the abundance of 28
tumor-infiltrating immune cells (TIICs) were obtained from
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Fig. 1. Construction of prognostic gene signature in the Cancer Genome Atlas (TCGA) dataset. (A) Risk score, survival time,
survival state and expression of the 6 genes in TCGA training dataset. The panel consists of three rows: top row showed the risk score
distribution for the high- and low-risk score group, color transition from green to red indicates the increasing risk score of corresponding
expression level of DNA damage repair (DDR) genes from low to high; middle row represents the low-grade gliomas (LGG) patients’
distribution and survival status; the bottom row shows that the heatmap of 6 prognostic DDR-related genes expression. (B) Kaplan–Meier
curves of prognostic models for high- (n = 238) and low-risk (n = 239) subgroups of patients with LGG in TCGA datasets. (C) Receiver
Operating Characteristic (ROC) curve and area under the curve (AUC) of the 6-gene signature classification.

Broad Institute and Bindea et al. [34]. According to the
characteristics of expressed genes, gene set variation anal-
ysis (GSVA) software “gsva” [35] R package was used for
single-sample gene set enrichment analysis (ssGSEA), and
the enrichment scores of 28 different immune cell types in
each LGG sample were quantitatively analyzed. The levels
and functions of immune infiltration were compared using
Kruskal-Wallis test, and heatmaps and boxplots were used
to visualize the results. In addition, the immune score and
matrix score were calculated through the ESTIMATE algo-
rithm [36].

2.9 Chemotherapy Drugs Response Prediction
The chemotherapy response of LGG samples in

TCGA and GLASS were predicted using the Genomics of
Drug Sensitivity in Cancer (GDSC) database [37]. GDSC is
a large-scale research project that aims to identify genomic
biomarkers associated with the response of cancer cells to
various anti-cancer drugs. We assessed the sensitivity of
eight chemotherapy drugs (Cisplatin, Erlotinib, Methotrex-
ate, Vincristine, Carmustine, TMZ, Rapamycin and Dox-
orubicin) in gliomas. By using the “pRRophetic” [38] R
package we estimated LGG’s half maximal inhibitory con-
centration (IC50) by ridge regression, and 10-fold cross-
validation was performed to determine the accuracy.

2.10 Construction and Validation of DDR Score
To construct a DDR-related score, the “limma” [29]

R package was applied to filter DEGs among DDR clus-
ters (adjusted p< 0.05 and |log2FC|>1). Boruta algorithm
was used for feature selection based on DEGs, and then fea-
ture genes were analyzed by univariate Cox regression. The
Boruta algorithm is a feature selection method used in ma-
chine learning and data analysis to identify the most rele-

vant and informative features in a dataset. It is based on the
Random Forest algorithm, a powerful ensemble learning
technique that constructs multiple decision trees to make
predictions or classifications. Further analysis was per-
formed on the genes with the significant prognosis. We then
performed PCA to establish DDR related gene signature.
Both the principal component 1 and 2 were selected to serve
as signature scores. We then define the DDR score similar
to genomic grade index [39,40]: DDR score = Ʃ (PC1i +
PC2i), where i represent the expression of the prognostic
genes. We subsequently validated the prognostic value of
DDR score in the disease special survival (DSS), progres-
sion free survival (PFS) and GLASS dataset, respectively.
In addition, we systematically searched the gene expression
profiles of DDR therapy, and a advanced urothelial cancer
with intervention of atezolizumab (IMvigor210 cohort) was
included in our analysis [41].

2.11 Statistical Analysis

Statistical analysis and tests were implemented
through R software version 4.0.2 (R Foundation for Sta-
tistical Computing, Vienna, Austria). One-way ANOVA
with Tukey’s test (q-value 0.05, ǀlog2FCǀ >1) was imple-
mented to determine DEGs between different risk groups
or molecular subgroups by employing the “limma” R pack-
age. Wilcoxon rank sum test was applied for continuous
data of two groups, while Kruskal-Wallis test was used for
continuous data of more than two groups. And the Chi-
Squared Test was used to the categorical data. The optimal
cut-off point of each subgroup in each dataset was deter-
mined by the “surv_cutpoint” function in the “survminer” R
package. Multivariate and univariate Cox regression anal-
yses were utilized to assess association between OS and

4

https://www.imrpress.com


Table 1. Six genes significantly associated with OS in the training set patients.
Gene coef HR Lower 95% CI Upper 95% CI p value Importance Relative importance

POLL –1.114708732 0.328010804 0.184609791 0.582802716 0.000144148 0.014227642 1
POLR3GL –1.10017873 0.332811595 0.178848352 0.619315506 0.000516393 0.009700665 0.681818182
SDCBP 0.433562531 1.542743818 0.920800243 2.584771783 0.099640942 0.004018847 0.282467532
POLD3 0.748353899 2.113518088 1.328505275 3.36239441 0.001582825 0.003972653 0.279220779
STX3 0.300994954 1.351202523 1.018388798 1.792781167 0.036954795 0.00392646 0.275974026
TARBP2 0.512574212 1.66958353 1.062467899 2.623617303 0.026234321 0.003603104 0.253246753
Abbreviations: CI, confidence interval; HR, hazard ratio; coef, coefficient; OS, overall survival.

clinicopathological characteristics and risk scores. Survival
curves among different clusters were generated using KM
curves with log-rank tests. To evaluate the predictive ef-
ficacy of the risk score, Receiver Operating Characteristic
(ROC) and area under the curve (AUC) were delineated us-
ing the “pROC” R package. p-value was corrected by Bon-
ferroni’s test. Statistical significance was defined as two-
sided p < 0.05.

3. Results
3.1 The Prognostic Risk Model Based on DDR-Related
Genes

An LGG prognostic risk model was constructed based
on DDR gene in training set. Firstly, the relationship be-
tween 150 DDR-related genes and survival was analyzed
by univariate Cox regression and 87DDR-related genes that
were associated with LGG survival (p < 0.05) were iden-
tified (Supplementary Table 2). Further, random forest
algorithm (“randomForestSRC” R software package) was
used for feature selection and the importance of survival-
related DDR genes was ranked. Finally, the genes with
relative importance greater than 0.2 were selected as the
final signature (as shown in Supplementary Fig. 1A,B).
We subsequently performed multivariate stepwise cox re-
gression analysis on the seven genes identified by the ran-
dom forest to established the prognostic signature, and the
importance and relative importance of the Hazard ratios
(HRs), coefficients, confidence intervals and out-of-bag es-
timates of the six genes are shown in Table 1. The gene
expression levels used for calculating the Risk score were
absolute values, and the unit of each gene expression level
was transcripts per million (TPM). The risk score formula
was as follows:

Risk Score = TARBP2 ×.512574212 + STX3 ×
0.300994954 + POLD3 × 0.748353899 + SDCBP ×
0.433562531 + POLR3GL × (-)1.10017873 + POLL × (-
)1.114708732

As shown in Fig. 1, there were more deaths in TCGA
cohort with a high-risk score than low-risk score, while
the heatmap (Fig. 1A) showed that changes in TARBP2,
POLR3GL, POLL, STX3, POLD3 and SDCBP gene ex-
pression increased the risk value in different samples. KM
curve analysis results indicated that the prognosis of pa-
tients in different risk groups was significantly distinct (p

< 0.00001), and patients in the low-risk group had a better
prognosis than those in the high-risk group (Fig. 1B). We
also evaluated the accuracy of risk score to predict progno-
sis. We performed the R software package “SurvivalROC”
to conduct ROC analysis on the prognostic classification of
risk score and evaluate the accuracy of risk signature. The
AUC value of the 1-, 3- and 5-year in TCGA dataset were
0.901, 0.832 and 0.771 (Fig. 1C).

To validate the survival risk score, we calculated the
risk score of patients in CGGA and GLASS validation
datasets with the same regression coefficient and repeated
the above analysis, and as expected, the validation datasets
also achieved consistent results (Supplementary Fig. 2A–
C and Supplementary Fig. 3A,B). We also compared
our signature with other previously reported risk models
[42–45], the result showed that our signature had excellent
AUC value when compared to the other signature, indicat-
ing that our risk model is the optimal (Supplementary Fig.
4). In addition, we also evaluated the protein expression
level through the HPA database and found that TARBP2 and
POLD3 were highly expressed in the tumor tissue, while
POLR3GL and SDCBP showed low expression in normal
tissue (Supplementary Fig. 5).

3.2 The Risk Signature Shows Strong Prognostic Efficacy

The association between risk score and major clinical
characteristics in LGG was investigated. We found a sig-
nificant divergence of risk score between different IDH1,
MGMT promoter methylation, 1p/19q deletion, and patho-
logical grades in TCGA and CGGA datasets. Patients
with IDH1-wildtype (WT), 1p/19q non-codel, G3 grade and
unmethylated MGMT promoter in LGG had significantly
higher risk scores than those with IDH1-Mutant (Fig. 2C),
1p/19q codel (Fig. 2D), G2 grade (Fig. 2F) and methylated
MGMT promoter (Fig. 2E) in TCGA and CGGA datasets
(Supplementary Fig. 6C–F). The above results were sim-
ilar to our previous studies [46].

However, differences in risk scores were not consis-
tent across age stratification and gender in both datasets.
In the TCGA dataset, patients over 50 years old had sig-
nificantly higher risk scores than those aged 50 years or
younger (Fig. 2A), and there was no difference between
male and female patients (Fig. 2B). However, in CGGA
dataset, patients of different ages (Supplementary Fig.
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Fig. 2. Comparisons of risk score plot between age (A), gender (B), IDH (C), 1p/19q (D), MGMT (E), and grade (F) in TCGA
dataset. IDH, isocitrate dehydrogenase; MGMT, O6-methylguanine-DNA methyltransferase.

6A) and genders (Supplementary Fig. 6B) did not have
significantly different risk scores. Possibly, this is due to
differences in basic clinical characteristics between the two
datasets, such as bias or ethnicity.

In addition, we validated the prognostic differences
between high- and low-risk group in stratified cohorts of
different clinical characteristics (e.g., IDH1-WT/-Mutant,
MGMT promoter methylated/unmethylated and 1p/19q
codel/non-codel cohorts). Results were consistent with ex-
pectations. In the stratified cohorts of TCGA (Fig. 3) and
CGGA (Supplementary Fig. 7) datasets with different
clinical characteristics, except for the IDH1-WT (Fig. 3F)
group of TCGA, grade G2 (Supplementary Fig. 7K) and
IDH1-WT (Supplementary Fig. 7F) of CGGA, the high-
risk groups showed poor prognosis. A possible reason for
this due to the small sample size of the IDH1-WT group in
TCGA and CGGA.

Clinical characteristics (age, gender, risk score, grade,
IDH1, MGMT promoter methylated, 1p/19q codeletion) in
TCGA and CGGA datasets were analyzed by conducting
univariate andmultivariate Cox regression. As shown in the

forest plot (Fig. 4), the risk score constructed by the 6 DDR-
related genes was an independent prognostic risk factor in
TCGA (p< 0.05). The independence was also validated in
CGGA dataset (Supplementary Fig. 8).

3.3 Construction and Validation of the Nomogram

To further improve the accuracy of prognosis, a nomo-
gram integrating risk score and independent clinical char-
acteristics was constructed to visualize the prognostic value
of different survival-related variables in TCGA and CGGA
datasets (Fig. 5A and Supplementary Fig. 9A). In addi-
tion, to assess the performance of nomogram, a calibration
curve analysis was conducted (“rms” R package) and we
observed that the prediction curve was close to the ideal
curve (Fig. 5B–D and Supplementary Fig. 9B–D), indi-
cating that the nomogram had excellent prediction function.
We discovered that the nomogram showed a high accuracy
in the prognosis of 1-, 3- and 5- year (AUC value >0.8)
(Fig. 5E and Supplementary Fig. 9E). Interestingly, the
prediction accuracy of nomogram was also higher than the
other clinical factors (Fig. 5F and Supplementary Fig. 9F).
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Fig. 3. Kaplan-Meier survival curves for the high- and low-risk groups stratified by clinical factors in TCGA dataset. (A,B) Age.
(C,D) Gender. (E,F) IDH. (G,H) 1p/19q. (I,J) MGMT. (K,L) Grade.

Fig. 4. DDR signature as an independent prognostic factor shows strong prognostic power. (A) Univariate and (B) multivariate Cox
regression analysis of clinical characteristics and DDR signature for survival of LGG in TCGA training dataset.

3.4 The Difference of Biological Processes between High-
and Low-Risk Groups

GSEA provides valuable insights into the biologi-
cal processes and pathways that are potentially dysregu-
lated in the context of the studied conditions, helping re-
searchers understand the underlyingmolecular mechanisms
and guiding the development of targeted therapies or in-
terventions. GSEA analysis of different risk groups in
the TCGA cohort revealed different biological processes.
Significant candidate pathways were selected according to

the criteria with FDR <0.25 and nominal p-value < 0.05.
GSEA showed that cancer-related signaling pathways in-
cluding focal adhesion, glioma, oocyte meiosis and apopto-
sis were significantly enriched in high-risk patients, while
none of these pathways were observed in low-risk patients
(Supplementary Fig. 10).
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Fig. 5. Construction of nomogram. (A) A nomogram constructed based on independent prognostic factors. The calibration plot for
internal validation of the nomogram in 1- (B), 3- (C) and 5-years (D) OS. (E) ROC curve and AUC of the Nomogram (F) Comparisons of
the ROC curve among the clinical factors and nomogram. Abbreviations: OS, overall survival; ROC, receiver operating characteristic;
AUC, area under the curve (AUC). * p < 0.05, *** p < 0.001.

3.5 Identification of Potential Compounds Targeting DDR
Prognostic Genes

In order to identify candidate compounds that may
potentially influence the expression of DDR prognostic
genes for the treatment of LGG, DEGs between differ-
ent risk groups (191 up-regulated genes and 81 down-
regulated genes, “limma” R package, Supplementary Ta-
ble 1) were uploaded to the CMap database. As a re-
sult, 35 compounds with 25 mechanisms of action (MoA)
were identified (Fig. 6). Results indicated that multiple
compounds shared the same MOA. For example, six com-
pounds (scriptaid, ISOX, vorinostat, belinostat, THM-I-
94 and HC-toxin) shared the MOA of histone deacetylase
(HDAC) inhibitor; four compounds including amsacrine,
irinotecan, teniposide and SN-38 shared the MoA of Topoi-
somerase inhibitor; another two compounds (NU-7441and
KU-0060648) shared the MoA of DNA dependent protein
kinase inhibitor. In addition, a total of five compounds
(TW-37, butein, everolimus, NVP-TAE684 and XMD-
892) shared the following five tumor-related MoAs, re-
spectively: B cell lymphoma 2 (BCL) inhibitor, epidermal
growth factor receptor (EGFR) inhibitor, mammalian target
of rapamycin (MTOR) inhibitor, anaplastic lymphoma ki-
nase (ALK) inhibitor and mitogen-activated protein (MAP)
kinase inhibitor. The present research identified potential
small molecule compounds that target DDR.

3.6 Association between Gene Signature and TME

We calculated the enrichment levels of 28 immune-
related cells for each risk group using ssGSEA algorithm.
We found that most immune-related cells have a signif-

icant divergence between different risk groups in TCGA
and CGGA dataset, such as Memory B cell, Regulatory T
cell, Eosinophil, Macrophage, Natural killer T cell. Inter-
estingly, the enrichment level was significantly higher in
high-risk group. (Fig. 7 and Supplementary Fig. 11).

3.7 Molecular Subtypes of LGG Based on DDR-Related
Genes

Consensus clustering was conducted for clustering
analysis of 477 samples and 150DDR-related genes expres-
sion profiles in TCGA RNA-seq dataset. All LGG samples
were divided into K clusters (K = 2–9) using the “Cons-
esusClusterPlus” R package. Based on the CDF curve, 477
samples were divided into two clusters after a thorough con-
sideration (Fig. 8A–C). OS significantly differed between
the two clusters based on the KM curve analysis (Fig. 8D).
PCA results showed that the two clusters were independent
of each other (Fig. 8E).

The above analyses were repeated in GLASS dataset
and the results obtained were shown in Supplementary
Fig. 12. Heatmap of the two clusters (the top 100 vari-
ably expressed genes) showed that a significant divergence
existed in the IDH1 status, 1p/19q co-deletion status and
MGMT methylation status (Fig. 9). Furthermore, we com-
pared the risk score differences among the two different
clusters in TCGA. Interestingly, as shown in Supplemen-
tary Fig. 13A, Cluster B with the worse prognosis had the
higher risk scores. Conversely, Cluster A with the better
prognosis had the lower risk scores. Therefore, we iden-
tified two LGG clusters based on DDR gene expression.
Clustering results showed that there was a wide range of
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Fig. 6. Identification of potential molecular compounds and its MoAs in LGG. Heatmap showed each compound from the CMap
that shares a MoA (rows), sorted by descending number of compounds with a shared MoA. The above compounds have an absolute value
of enrichment score ≥0.7 and might be capable of targeting the DDR-related signature. Abbreviations: MoA, mechanisms of action;
CMap, Connectivity Map; BCL, B cell lymphoma; HDAC, histone deacetylase; EGFR, epidermal growth factor receptor; MTOR,
mammalian target of rapamycin; ALK, anaplastic lymphoma kinase; MAP, mitogen-activated protein; FLT3, Fms-like tyrosine kinase
3; HIF, Hypoxia-Inducible Factor; IKK, IkappaB kinase; KIT, tyrosine kinase.

heterogeneity in LGG, and DDR-related genes were closely
associated with LGG malignancy grade and prognosis.

We further showed the mutant landscape in different
clusters of LGG patients. By analyzing the somatic muta-
tion data in TCGA dataset, we evaluated the somatic vari-
ation distribution of driver genes among LGG subtypes, to
clarify whether there are differences in the frequency of so-
matic mutation and observe the different patterns of mu-
tations among LGG clusters. LGG driver genes were ob-
tained by Maftools. The analysis of TCGA mutation anno-
tation files showed that there were obvious mutation char-
acteristics between Cluster A and Cluster B. Among them,
IDH1, TP53 and ATRX were the top three mutation genes
and Cluster A corresponded to more mutation frequency
than Cluster B (Supplementary Fig. 14A,B). Our cluster-

specific CNAs analysis revealed that chromosome deletions
and amplifications, for example, deletion of 9p21.3 were
significantly enriched in Cluster B. The 9p21.3 deletions
is associated with the poor survival outcome in LGG [47]
(Supplementary Fig. 15).

3.8 The Landscape of Subtypes and Immune TME
The scores of different clusters were compared, as

shown in Fig. 10A–C, Cluster B with the worst prognosis
in TCGA dataset had the higher immune and stromal scores
compared to Cluster A, while tumor purity was lower than
the other cluster (ANOVA, p < 0.001). Cluster A with the
better prognosis had the opposite result, with the lower im-
mune and stromal scores and the higher tumor purity.
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Fig. 7. The landscape of 28 immune cell infiltration level in high-risk (n = 238) and low-risk (n = 239) groups in TCGA dataset.
ns, not significant; * p < 0.05; ** p < 0.01; *** p < 0.001.

The correlation between LGG subtypes and TME fea-
tures was further explored in our present study. Results
of ssGSEA showed that in LGG patients of TCGA cohort,
the enrich scores of activated B cells (Ba), eosinophils and
monocytes in Cluster B patients with worse prognosis were
highly expressed compared to Cluster A. Fig. 10D shows
the high expression level of immune cells in Cluster A.

3.9 Sensitivity Prediction of Different Clusters to
Chemotherapies

Currently, surgery and chemotherapy are the most
common treatments for cancer. Therefore, we sought to
evaluate the differences in estimated IC50 levels between

the clusters for eight chemotherapeutic agents, including
Cisplatin, Erlotinib, Methotrexate, Vincristine, Carmus-
tine, TMZ, Rapamycin and Doxorubicin. Ridge regres-
sion was used to train the prediction model on the dataset
of GDSC cell lines, and 10-fold cross-validation was per-
formed to evaluate prediction accuracy. The IC50 value
of each LGG patient was then calculated according to the
prediction model of the eight chemotherapeutic drugs. Re-
sults showed that except for Erlotinib (Wilcoxon rank test,
p = 0.483 (Fig. 11D), the IC50 sensitivity of the seven
chemotherapeutic agents was statistically different in the
two clusters. Interestingly, the IC50 estimates for the seven
chemotherapeutic agents in Cluster B were significantly
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Fig. 8. DDR-related genes could distinguish LGG patients in TCGAwith different clinical and molecular features. (A) Consensus
clustering CDF for k = 2 to k = 9. (B) Delta area plot exhibits relative change in area under CDF curve when at a certain k value compared
with k-1. (C) Consensus clustering matrix heatmap plots of 477 samples from TCGA datasets for k = 2. (D) KM analysis of patients
among two clusters,the prognosis of Cluster A (n = 361) is better than Cluster B (n = 116). (E) PCA analysis of the DDR-related genes
expression when k = 2. Abbreviations: CDF, cumulative distribution function; KM, Kaplan-Meier.

lower than those in the other cluster, including Carmustine
(Wilcoxon rank test, p = 1.927 × 10−5) (Fig. 11A), Cis-
platin (Wilcoxon rank test, p = 1.985 × 10−11) (Fig. 11B),
Doxorubicin (Wilcoxon rank test, p = 1.857 × 10−6)
(Fig. 11C), TMZ (Wilcoxon rank test, p = 1.157 × 10−6)
(Fig. 11E), Methotrexate (Wilcoxon rank test, p = 0.0492)
(Fig. 11F), Vincristine (Wilcoxon rank test, p = 5.504 ×
10−6) (Fig. 11G) and Rapamycin (Wilcoxon rank test, p
= 1.587 × 10−7) (Fig. 11H), indicating that Cluster B was
more sensitive to the above seven chemotherapeutic agents.

3.10 Construction and Validation of DDR-Related Score

A total of 574 DEGs were identified between the two
clusters (Supplementary Fig. 16A,B). The GO enrichment
analysis exhibited that these DEGsmainly enriched in chro-
mosome segregation, nuclear division, and DNA replica-

tion (Supplementary Fig. 16C). The KEGG pathway en-
richment analysis result was shown as Supplementary Fig.
16D.

We first performed the univariate cox regression anal-
ysis and selected the genes with p-value < 0.05. We sub-
sequently performed feature selection for significant DEGs
exploiting Boruta algorithm. 95 genes from the feature se-
lection were eventually applied to construct the DDR score
based on the formula: DDRscore = Ʃ (PC1i + PC2i). The
KM curve analysis result revealed that low DDR score cor-
responded to a better survival outcome, while high DDR
score was associated with poor prognosis in TCGA dataset
(Fig. 12A) and GLASS dataset (Supplementary Fig. 17).
Moreover, the DDR score in Cluster B were significantly
increased compared to Cluster A (Wilcoxon rank test p <

2.2 × 10−16) (Supplementary Fig. 13B). The ROC anal-
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Fig. 9. The landscape of DDR-related genes among the two subtypes (Cluster A, n = 361; Cluster B, n = 116). Heatmap of two
clusters defined by the top 100 variable expression genes.

ysis revealed that the DDR score had high AUC value in
1-, 3- and 5-years, suggesting that the DDR score could
be used as potential biomarker to the prognosis of LGG
(Fig. 12B). In addition, we also retrieved the progression
free survival (PFS) and disease special survival (DSS) clin-
ical info of LGG to validate the prognostic value of DDR
score. As showed in Fig. 12C,E, the high DDR score group
had a significantly better survival outcome compared to the
low DDR score group in the PFS and DSS. The high AUC
value also demonstrated that DDR score had a good prog-
nostic value in PFS and DSS, respectively (Fig. 12D,F).

We further evaluated the response to immune check-
point blockade (ICB) of DDR score in the IMvigor210 co-
hort (bladder cancer). Of note, survival outcome was sig-

nificantly different from LGG, with low DDR scores asso-
ciated with poorer survival outcomes (Supplementary Fig.
18).

4. Discussion

In the present study, we conducted a comprehen-
sive and systematic data mining analysis on LGG, fo-
cusing on DDR-related genes, using two large-scale co-
hort datasets. Our research involves the development of a
prognosticmodel, molecular subtyping, immune landscape,
chemotherapy response, and drug development based on
DDR, as well as the establishment of a DDR scoring sys-
tem that shows promising potential as an independent prog-
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Fig. 10. The landscape of immune infiltration and TME characteristics in two subtypes. Violin diagram showed the differences
in stromal score (A), immune score (B) and tumor purity (C) among 2 clusters. (D) Unsupervised clustering of LGG patients from the
TCGA cohort using ssGSEA scores which represent the 28 cell infiltration. The cluster, age, survival status, gender, grade, IDH1 status,
1p/19q status and MGMT status are shown as patient annotations in the lower panel.

nostic factor. The validity of these findings has been con-
firmed through verification using additional datasets and
the GLASS consortium dataset. The prognostic model,
DDR scoring system, and molecular subtyping frame-
work based on DDR-related genes hold promising poten-
tial to improve risk stratification, prognostic assessment,
and treatment response prediction for LGG patients. This
research offers more precise personalized clinical manage-
ment decisions for patients and clinicians and has the poten-
tial to advance the development of small-molecule drugs for
LGG.

In recent years, the continuous development of high-
throughput whole genome sequencing technology hasmade
it possible to further explore the molecular pathogenesis of
LGG. It has been shown that DDR-related genes are related
to the genesis, development, and prognosis of gliomas by
some researchers. For example, Jin et al. [24] identified
5 prognostic DDR-related genes in primary GBM (pGBM)
patients according to the risk scoringmodel. However, Jin’s
study had a small sample size, with only 89 pGBM cases in
CGGA dataset. Similarly, Zeng et al. [45] developed and
verified DDR risk signatures (CRY2, HDAC1, DCLRE1B,
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Fig. 11. Cluster B is more sensitive to most chemotherapies. Box plots depicted the differences in the estimated IC50 levels of (A)
Carmustine; (B) Cisplatin; (C) Doxorubicin; (D) Erlotinib; (E) Temozolomide; (F) Methotrexate; (G) Vincristine and (H) Rapamycin
between two clusters.

KPNA2) related to the prognosis of LGG by Cox and Lasso
regression in two independent datasets: CGGA (172 sam-
ples) and TCGA (451 samples). In order to quantify the
prognosis of LGG patients, a nomogram prediction model
was developed. Pang et al. [48] further suggested that IDH
mutation may affect the prognosis of LGG by regulating the
DDR pathway. The above studies all focused on the value
of DDR in gene prognostic prediction of LGG, and some
studies had insufficient sample size to prove the robustness
and effectiveness of signature in population samples. In this
study, in comparison with other studies, we further system-
atically and comprehensively analyzed the differences of
DDR gene-based LGGmolecular subtypes, the relationship
between subtypes and immune microenvironment and their
mutation patterns, to assist in targeting LGG chemotherapy.
Finally, we also constructed a molecular subtype classifier.
These differences and innovations set our study apart.

Here, we systematically identified 6 prognosis-related
DDR-related genes including POLL, POLR3GL, SDCBP,
POLD3, STX3 and TARBP2. Multiple studies underscored
the tumor-driver roles of the hub genes identified in present
study. These hub genes were potential to be considered
as novel therapeutic targets and prognostic predictors in
LGG. POLL, also known as Pol or Pol λ, is the DNA
polymerase lambda. Studies have elucidated its crucial

role in cancer development through Base Excision Repair
(BER) and Nonhomologous End-joining (NHEJ) [49,50].
It is worth mentioning that in another study that used com-
prehensive analysis to identify DDR signature to predict
prognosis of LGG, Pang et al. [48] identified DDR sig-
natures (PLK3, WEE1, POLL, and PARPBP) related to
prognosis of LGG included POLL. The role of POLL in
glioma development and treatment warrants further inves-
tigation. SDCBP (Syndecan binding protein) is also called
Melanoma differentiation associated gene-9 (MDA-9) or
Syntenin-1 [51]. SDCBP is significantly increased in breast
cancer [52], prostate cancer [53,54], metastatic melanoma
[55], glioblastoma [56–59], small cell lung cancer [60] and
other malignant tumors. SDCBP is now considered to be
a unique gene promoting metastasis [61]. In addition, pre-
clinical studies have confirmed that genetic or pharmaco-
logical inhibition of SDCBP effectively inhibits cell metas-
tasis [53,59], especially in GBM cells [59]. In terms of
immunology, SDCBP can increase the immune infiltration
of B cells, CD8+ T cells, CD4+ T cells, macrophages,
neutrophils and dendritic cells in different types of lung
cancer [62]. POLD3 is an accessory subunit of replicat-
ing Pol δ polymerase and plays a unique role in replica-
tion stress-induced DNA fracture repair [63]. Oncogene-
induced DNA replication stress is considered to be the driv-
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Fig. 12. Construction and validation of the DDR score. (A) KM survival curve analysis in the overall survival (A), progression free
survival (C) and disease special survival (DSS) (E). ROC analysis was applied to evaluate the specificity and sensitivity of the DDR
score in overall survival (B), progression free survival (D) and DSS (F). Abbreviations: KM, Kaplan-Meier; OS, overall survival; DSS,
disease special survival.
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ing factor of tumorigenesis. Thus, different but generally
increased genomic instability is commonly found in cells
deficient in POLD1 or POLD3, manifested by DNA dis-
ruption, S phase progression disorder, and chromosomal
abnormalities [63,64]. Therefore, targeting POLD3 poten-
tially provides a priority opportunity to target tumor cells
[65–67]. TARBP2 plays multifaceted roles in many biolog-
ical and pathological conditions, including HIV-1 virus ex-
pression, microsatellite instability, cancer stem cell charac-
terization, and tumor progression [68]. TARBP2 expression
is inconsistent in many human cancers, such as high expres-
sion of TARBP2 in lung cancer [69], breast cancer [70] and
liver cancer [71], but down-regulated expression in colorec-
tal cancer [72] and gastric cancers [68]. Therefore, TARBP2
as a tumor suppressor or tumor promoter remains contro-
versial. Currently, there are few studies on STX3 in cancer.
Further studies have shown that STX3 promotes the growth
of breast cancer cells by regulating the PTEN-PI3K-Akt-
mTOR signaling pathway. STX3 may be a potential target
for treatment of human breast cancer [73]. The role of STX3
in LGG warrants further exploration in the future. In addi-
tion, the role of POLR3GL in the genesis and progression of
cancer and glioma has been largely unexplored. In conclu-
sion, the functions of 6 genes identified in our signature in
glioma remain to be further studied. By comparing changes
in gene expression across diseases, CMap identifies poten-
tial small molecule compounds that may treat different dis-
eases. CMap analysis helped us identify compounds that
had proven or might have potential efficacy on LGG by
comparing DEGs between different risk groups of LGG.
These compounds include HDAC inhibitor such as scrip-
taid [74], vorinostat [75], belinostat [76,77] and HC-toxin
[78]; topoisomerase inhibitor-amsacrine [79,80], irinote-
can [81–83], SN-38 [84] and teniposide [85,86]; DNA
dependent protein kinase inhibitor- NU-7441 [87,88] and
KU-0060648 [89,90]; MTOR inhibitor- everolimus [91–
93]; KIT inhibitor- cediranib [94,95] and aurora kinase
inhibitor- reversine [96]. The effects of HDAC inhibitor-
THM-I-94, HDAC inhibitor-ISOX, BCL inhibitor-TW-37,
EGFR inhibitor- butein, ALK inhibitor- NVP-TAE684,
MAP kinase inhibitor- XMD-892, IKK inhibitor- IKK-16,
casein kinase inhibitor- LY-303511, DNA alkylating agent-
mitomycin, acetylcholine receptor antagonist- oxybutynin,
RNA polymerase inhibitor- rifampicin, serotonin receptor
agonist- S-14506, FLT3 inhibitor- TG-101348 (also known
as fedratinib), HIF mudulator- VU-0418947-2, metallopro-
teinase inhibitor- WAY-170532 and leucine rich repeat ki-
nase inhibitor- XMD-1150 on LGG have not been eluci-
dated. In the future, the effect of the small molecule drugs
identified by CMap analysis on LGG remains to be further
studied.

Because of the heterogeneity of tumors, patients with
the same cancer may respond differently to specific drug
treatments. The identification of individual predictive
biomarkers of drug sensitivity is the key to improve the ac-

curacy of cancer medicine [97,98]. TMZ is the standard
first-line chemotherapy for glioma. Despite the use of a
uniform treatment regimen, the prognosis of glioma varies
greatly. Some patients have excellent results, while others
do not respond to TMZ [7,99]. Cisplatin is a commonly
used chemotherapy drug in clinical settings, and its main
target is DNA. By forming platinum-DNA adduct in cells,
it inhibits DNA replication and transcription, thus inducing
DNA damage and apoptosis in tumor cells. Cisplatin is an
important agent for clinical treatment of a variety of solid
tumors. Due to its high sensitivity to glioma [100,101], it
is also an effective chemotherapy agent for the treatment
of LGG in children [101,102]. In addition, TMZ combined
with platinum drugs exhibits a better effect in the treatment
of recurrent malignant tumors, which can effectively im-
prove the clinical symptoms of patients, control cancer pro-
gression and prolong the survival time of patients [100]. In
addition, the final results of the phase 3 randomized clini-
cal trial RTOG9802 [103] showed that compared with ad-
juvant radiotherapy(RT) and RT+ PCV (Procarbazine, Lo-
mustine, and Vincristine)× 6 cycles of treatment for newly
diagnosed high-risk low-grade gliomas, adjuvant radiother-
apy was less effective than adjuvant radiotherapy and PCV.
The median OS and PFS of LGG patients treated with PCV
were significantly improved. Therefore, we evaluated the
sensitivity of two chemotherapy agents in the PCV regi-
men (Procarbazine was not included in GDSC) to differ-
ent clusters of LGG, including Carmustine (Lomustine was
not included in GDSC, Wilcoxon rank test, p = 1.927 ×
10−5) and Vincristine (Wilcoxon rank test, p = 5.504 ×
10−6). Furthermore, we evaluated the sensitivity of several
other promising chemotherapeutic agents in the treatment
of glioma, including Doxorubicin (Wilcoxon rank test, p
= 1.857 × 10−6), Methotrexate (Wilcoxon rank test, p =
0.0492) and Rapamycin (Wilcoxon rank test, p = 1.587 ×
10−7). In addition to Erlotinib, the results of several other
chemotherapeutic agents showed that Cluster B was more
sensitive to chemotherapeutic agents than the other cluster.
In this study, we used the GDSC dataset to predict the com-
monly used chemotherapy drugs in the treatment of LGG.
The results showed that the sensitivity of DDR-based LGG
molecular typing to chemotherapy drugs was different, thus
identifying a cluster that was highly sensitive to TMZ, Cis-
platin, PCV and other chemotherapy drugs. Interestingly,
this cluster happened to be one of the subtypes with worse
prognosis. The results of this study can provide guidance
for LGG patients with different molecular types to choose
the treatment regimens.

Owing to their high diversity and plasticity, immune
cells can play a variety of roles in TME, such as anti-tumor
or pro-tumor [104]. The interaction among TIIc, malig-
nant cells and stromal cells leads to the formation of TME
[105]. In tumor progression and response to immunother-
apy, tumor infiltrating immune cells exhibit crucial effects
[106]. There is growing evidence that genetic perturba-
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tions in cancer cells determine the immune environment
of a tumor [104]. Tumor cells can circumvent anti-tumor
immune responses or immune checkpoint blockade ther-
apy by regulating TME, for example by down-regulating
antigen-presentation features and up-regulating repressor
proteins or cytokine release [107]. DDR gene mutations are
associated with increased tumor-infiltrating lymphocytes,
genomic instability, and tumor mutation burden in cancer
[108]. Additionally, DDR and immune response systems
work together by activating each other, leading to a bidirec-
tional connection. Disruption of DDR–immune response
cross talk compromises (multi)cellular integrity, leading to
cell-cycle-related and immune defects [109]. Therefore,
a growing number of studies have revealed the potential
therapeutic significance of the interaction between DDR
deficiency and immune TME components [104]. Here,
we quantified immune and stromal cells via ESTIMATE
and ssGSEA algorithm of each LGG samples in TCGA
and CGGA datasets. Our data suggested that different
LGG clusters were characterized by different immune and
stromal scores as well as tumor purity. Furthermore, we
found that the LGG cluster with a worse prognosis featured
by increased infiltration levels of activated B cells (Ba),
eosinophils andmonocytes. Andwe have observed a higher
enrichment of immune cells in the high-risk group of LGG
patients. This finding is consistent with previous studies
that have indicated the significance of immunobiology as
a dominant factor in malignant processes, particularly in
gliomas [110–112]. Additionally, the immune infiltrating
cell signature has been recognized as a prognostic marker
in gliomas [113,114]. These observations suggest that im-
mune processes play a crucial role in the development and
progression of LGG.

While it may seem counterintuitive that immune cells,
which are typically associated with an anti-tumor response,
are enriched in the high-risk group, it is important to note
that immune cells have complex and diverse functions in
TMEs. The specific roles of immune cells in cancer are
context-dependent and can vary based on their subtypes and
functional states [115,116]. In our study, we identified spe-
cific immune cell subtypes that were positively correlated
with a higher risk score, including Memory B cell, Regula-
tory T cell, Eosinophil, Macrophage, Natural killer T cell,
myeloid-derived suppressive cell (MDSC). The enrichment
of specific immune cell subtypes in the high-risk group of
LGG patients suggests their potential involvement in LGG
progression and aggressiveness. For instance, MDSCs
have been reported to promote B-cell-mediated immuno-
suppression in gliomas [117]. Infiltrated tumor-associated
macrophages have been associated with poor survival in
glioma patients [118]. T cells have been found to mediate
immunosuppression and resistance to treatment in gliomas
[119]. NK-cell-targeted therapies have also been high-
lighted in combating immune escape in IDHmut gliomas
[120]. By interactions with cancer cells, macrophages of-

fer a cancer-favorable microenvironment, which induce im-
mune escape and LGG proliferation and metastases [121].
Therefore, targeting these immune cells could potentially
benefit LGG patients with an unfavorable prognosis. How-
ever, the precise mechanisms through which immune cells
influence LGG development and progression are still being
actively investigated.

Although the results of our study contribute to the clin-
ical treatment of gliomas, there are inevitably some lim-
itations that need to be acknowledged. First, this study
is a retrospective analysis based on open datasets and rig-
orous validation, but more external datasets, multi-center
prospective studies even experimental studies are needed
to verify the clinical value and prognostic robustness of the
signature. It should be noted that while our findings are
promising, the limited amount of data analyzed in a specific
type of cancer (i.e., LGG) calls for cautious interpretation
and further validation. Furthermore, basic experiments are
necessary to verify our results and elucidate the molecular
mechanism that underlies them, thereby helping us better
understand DDR-related genes.

5. Conclusions
In summary, we identified the risk signatures of DDR-

related genes and combined risk score with clinical infor-
mation to construct a nomogram to optimize OS risk as-
sessment. And we further analyzed and compared enrich-
ment pathways between different risk groups and identi-
fied potential small molecule drugs targeting DDR.We sys-
tematically analyzed DDR-related genes in LGG to pro-
vide a comprehensive understanding of the molecular sub-
types, mutations, clinical prognosis, chemotherapy sensi-
tivity, and patient characteristics of LGG. Our study sug-
gests that the DDR score system developed in this research
could potentially serve as an independent prognostic indica-
tor, providing valuable insights into the prognosis of LGG
patients. In conclusion, the signature model and molecular
typing based on DDR genes are helpful for more detailed
classification and provide a useful clue for promoting per-
sonalized management of LGG and clinical drug develop-
ment.
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