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Abstract

Background: Metabolic reprogramming is an important player in the prognosis of cancer patients. However, metabolism-related genes
(MRGs) that are essential to the prognosis of bladder cancer (BLCA) are nor yet fully understood. The purpose of this study is to use
bioinformatics methods to establish prognostic models based on MRGs in BLCA to screen potential biomarkers. Methods: Based on the
transcriptomic data fromBLCA patients in The Cancer GenomeAtlas Program (TCGA) and Gene Expression Omnibus (GEO) databases,
we identified the differentially expressed genes related to metabolism and analyzed the functional enrichment by edgeR package. A
prognostic model was generated using univariate Cox regression analysis and validated using GEO dataset. The prognostic risk model
was analyzed by the Kaplan-Meier curve. The single cell RNA sequencing (scRNA-seq) revealed the gene interaction networks and
traced the development trajectories of distinct cell lineages. The levels of key metabolism-related biomarkers in vitro were verified by
quantitative real-time polymerase chain reaction (qRT-PCR).Results: We screened 201 differentially expressedmetabolism-related genes
(DEMRGs), which were significantly enriched in oxidative phosphorylation. The risk model was constructed by 5 biomarkers. qRT-
PCR analysis verified that there is a significant higher expression of FASN andMTHFD1L in carcinoma tissue. Conclusions: This study
constructed a novel prognostic model based on a combination of clinical and molecular factors that related to metabolic reprogramming,
which has the potential to improve the prediction of independent prognosis indicators and management of BLCA patients, leading to
better treatment outcomes and survival rates.
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1. Introduction
Bladder cancer (BLCA) is one of the most invasive

malignant tumors in the urinary system, and it is associ-
ated with a high recurrence rate and high mortality rate [1].
In 2020, there were 573,000 new cases and 213,000 deaths
worldwide [2]. Urothelial cancer, is the most common type
of BLCA, accounting for 95% of cases. It is typically clas-
sified into two main subtypes based on the depth of in-
vasion into the bladder wall: non-muscular invasive blad-
der cancer (NMIBC) and muscular invasive bladder can-
cer (MIBC). The treatment for BLCA depends on the stage
and grade of the tumor, and the main treatment options
include transurethral resection of bladder tumor, intraves-
ical instillation, radical cystectomy, chemotherapy, radio-
therapy, immunotherapy, and targeted therapy [3,4]. Al-
though there are various therapy methods that have made
great progress, more than half of the patients may still re-
lapse or progress after treatment, and the cystectomy rate
and cancer-specific mortality rate of these patients are sig-
nificantly higher. It is a serious threat to the quality of life
and even the lives of patients with BLCA [5,6]. One of

the reasons may be the lack of reliable biomarkers to accu-
rately predict the prognosis and the inability to stratify the
risk in advance, which makes it impossible for us to adjust
the treatment plan accordingly [7].

Studies have indicated that all kinds of cancer cells
undergo great metabolic changes in order to maintain their
proliferation and evolution under adverse environment,
mainly as follows: glucose metabolism dominated by aero-
bic glycolysis, oxidative phosphorylation weakened, pen-
tose phosphate metabolic pathway enhanced, glutamine
catabolism active, fatty acid ab initio synthesis and β-
oxidation active [8,9]. These metabolic changes are called
metabolic reprogramming, which is one of the markers of
cancer cells [10] and a critical factor in regulating the for-
mation and progression of cancer [11]. At the same time,
the accumulation of somatic gene mutations results in the
occurrence and development of cancer , and some of these
gene mutations will induce metabolic reprogramming of
newborn tumor cells to obtain these metabolic characteris-
tics that support their survival, evade immune surveillance
and proliferative growth, and constantly adapt to the dy-
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namic tumor microenvironment [12]. Therefore, it is great
significance to in-depth study of these somatic mutation-
driven cancer metabolism-related genes (MRGs), which
would lead to the development of potential biomarkers for
early diagnosis and prognosis, as well as new therapeutic
targets and approaches.

Previous studies have confirmed that some MRGs are
closely associated with the occurrence and pregression of
BLCA. Fructose-1 receptor 6-diphosphatase 1 (FBP1), as
a potential biomarker of BLCA molecular subtypes, is in-
volved in glycolysis flow and gluconeogenesis [13]. Fork
frame transcription factor J1 (FOXJ1) also plays a role in
glycolysis phenotype of BLCA [14]. Forthermore, fatty
acid desaturase 1 (FADS1), which is a member of the fatty
acid desaturase gene family, has been shown that its over-
expression is positively correlated with BLCA tumor grade
[15]. The epigenetic crosstalk of SAT1 and ASS1 genes
might play a role in chemotherapy and personalized treat-
ment of BLCA by regulating the amino acid metabolism of
BLCA [16]. While certain MRGs have been shown to be
associated with BLCA, the potential value of these genes
in predicting the prognosis of BLCA independently is lim-
ited. Futheromore, the important role of somatic mutation
is not included in the research system, which requires us to
further develop and explore.

The development of single cell sequencing (scRNA-
seq) technology has given us a new and profound un-
derstanding of cancer evolution, tumor microenvironment
(TME) and tumor heterogeneity. This has led to new in-
sights into the mechanisms of tumorigenesis, tumor metas-
tasis, and therapeutic resistance, and has helped identify
norvel drugs targets and treatment strategies [17]. For ex-
ample, the application of scRNA-seq in the field of BLCA
has enhanced our understanding of the origin and driving
genes of BLCA. scRNA-seq analysis of the somatic mutant
alleles spectrum and clone structure of muscle infiltrating
bladder urothelial cell carcinoma has ide tified four non-
silent mutant alleles of CFTR, NIPBL, ASTN1 and DHX57
that might contribute to maintain the ancestral clones and
the muscle invasion ability of subclones [18]. Further-
more, scRNA-seq has shed light on the potential origin of
BLCA stem cells, which may be derived from non-stem
cells within the bladder or bladder epithelial stem cells, and
identified co-mutations of ARIDA1, GPRC5A, and MLL2
that can enhance the stem cell nature of BLCA [19].

Therefore, a series of bioinformatics analysis methods
were used to screen the valuable somatic mutation-driven
MRGs of BLCA, and the survival risk prediction model
based on these potential biomarkers was established and
verified. Meanwhile, the correlation analysis of immune
cell infiltration, immune checkpoint and chemotherapeutic
drug sensitivity were performed in this study. In addition,
scRNA-seq data analysis revealed the changes in the ex-
pression of these biomarkers with the changes of epithelial
cell status, and the key epithelial cell subsets that may affect

the prognosis of BLCA were identified. The goal of this
study is to explore the mechanism and potential biomark-
ers of BLCA, and develop new therapeutic targets and ap-
proaches.

2. Materials and Methods
2.1 Data Collection

We downloaded the RNA-seq data of 433 BLCA pa-
tients from the TCGA database (https://portal.gdc.cancer.
gov/) as training sets, of which 19 control samples and 414
tumour cases. 399 BLCA samples with complete survival
information and 338 BLCA samples with somatic muta-
tion data were retrieved. The GSE13507 and GSE135337
datasets were downloaded from the GEO database (http
s://www.ncbi.nlm.nih.gov/geo/). GSE13507 dataset, in-
cluding 165 BLCA cases with survival information, was
used as a validation set. The GSE135337 dataset incor-
porated scRNA-seq data of 7 BLCA samples. And 2751
MRGswere obtained from literature reports [20].

2.2 Identification of DEMRGs and Functional Enrichment
Analyses

The expression matrix of 2751 MRGs was ex-
tracted from the TCGA-BLCA. The differentially ex-
pressedmetabolism-related genes (DEMRGs) between nor-
mal and BLCA samples were screened using limma (ver-
sion 3.48.3) [21] package in the R (version 4.2.3, Univer-
sity of Auckland, New Zealand). Based on p < 0.05 and
|log2FC|>1, the statistically significant DEMRGswere de-
termined. The ggplot2 (version 3.3.5) was used to gener-
ate volcano plots to visualize gene expression data by plot-
ting the log2 fold change on the x-aixs and the gegative
log10 of the p-value on the u-axis. Heatmaps of DEMRGs
were performed using the heatmap (version 1.0.12) pack-
age. Moreover, the ClusterProfiler (version 4.0.2) was used
to perform Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) analyses, and only results
with a significance level of p< 0.05were considered signif-
icant [22]. The GO analysis yielded three main categories:
molecular function (MF), biological process (BP), and cel-
lular component (CC) [23].

2.3 Construction of Prognostic Model
Firstly, the mutation frequency of DEMRGs was cal-

culated using maftools package (Version 2.8.05) [24] ac-
cording to TCGA-BLCA somatic mutation data. 399
BLCA samples with complete survival information from
the TCGA-BLCA were randomly assigned to a training set
of 279 cases and a test set of 120 cases. Survival pack-
age (Version 3.2-13) in R was used to perform univariate
and multivariate COX proportional risk regression analy-
sis. The COX model is used to evaluate whether the mu-
tated DEMRGs were associated with patient survival. R
package forestPlot (Version 1.10) was used to draw COX
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forest plots. The mutated DEMRGs that were found to be
associated with BLCA patients were then used as prognos-
tic biomarkers.

We developed a risk models for BCLA patients using
the predict.coxph function of survival package. The risk
score we had calcuted using this model is based on the pa-
tient’s clinical and demographic variables, represented by
X1 to Xn. The coefficients (β1 to βn) were derived from
the COX model and representd the effect of each variable
on the risk of death. The prognostic formula was as follows:
Riskscore = h0(t) × exp(β1X1 + β2X2 + … + βnXn). The
Hazard Rati (HR) value was obtained by exponentiating the
coefficient and represented the ratio of the hazard rates be-
tween two grops of patients with different levels of the cor-
responding variable. The baseline hazard function h0(t) was
a function of time that represents the risk of deatch due to
BLCA in the absence of any other variable. By dividing the
patients into high- and low-risk groups based on the median
risk score, we identified the BLCA patients who are more
likely to experience poor outcomes.

2.4 Validation of the Prognostic Risk Model
We employed the ggplot2 to generate risk curves and

heat maps for two groups, survminer (version 0.4.9) to as-
sess the correlations between the groups through K-M sur-
vival curves, and survivalROC package (version 1.0.3) to
plot Receiver Operating Characteristic (ROC) curves for
survival time points. We next verified the models ap-
plicability by repeating these analyses on a test set and
GSE13507 validation dataset. Finally, we calculated mu-
tation frequency of biomarkers to illustrate the importance
of biomarkers in diseases.

2.5 Independence Prognostic of the Risk Model
The difference between the prognostic risk score

and clinical traits (age, stage, gender, T-pathologic, M-
pathologic, N-pathologic) in 399 BLCA patients were eval-
uated. The clinical traits were presented in Supplemen-
tary Table 1. BLCA patients were divided into two groups
based on their disease stages: non-muscle invasive blad-
der cancer (NMIBC) and muscle-invasive bladder cancer
(MIBC). NMIBC included Tis, Ta and T1 stage and MIBC
included T2, T3 and T4 stage. To more closely under-
stand the differences of two groups in the different T-
stages, Kaplan-Meier survival curves were plotted. Fi-
nally, based on independent prognostic indicators identi-
fied through Cox analysis, we constructed nomogram using
RMS (version 6.2-0) and Regplot (version 1.1). The nomo-
gram was then evulated using the calibration curves of 1-,
3-, 5-year, which was used to observe deviations between
predicted and actual survival rates.

2.6 GSEA
In order to further explore related signaling path-

ways and potential biological mechanisms, the enrich-

ment analysis for biomarkers was performed using Clus-
terProfiler and org.Hs.eg.db Bioconductor annotation data
package (version 3.12.0), respectively. The GSEA en-
riched gene set files (GO: c5.go.v7.4.entrez.gmt, KEGG:
c2.cp.kegg.v7.4.entrez.gmt) were acquired from the GSEA
website (http://www.gsea-msigdb.org/gsea/msigdb). The
GSEA was performed for all genes in two risk groups,
the threshold was set to |NES| >1, NOM p < 0.05, q <

0.05. The top 10 GO enrichment biological process and
the KEGG pathway were plotted using enrichplot packages
(version 1.12.3).

2.7 Immune Checkpoint and Immune Microenvironment
Analysis

The ICI of targeting immune checkpoints can
upgrade the therapeutic efficacy of tumors. The
conventional immune checkpoints CD274(PD-L1),
CTLA-4(CTLA4), LAG-3(LAG3), LGALS(GAL9),
HAVCR2(TIM3), PDCD1(PD-1), PDCD1LG2(PD-
1LG2), and TIGHT(TIGIT) on patient survival were ana-
lyzed, and the K-M curves were plotted using survminer.
We then used the ggplot2 to plot the checkpoints ex-
pression in two risk groups. In addition, we used the
corrplot package (Version 0.92) to display the correlation
between immune checkpoint and risk score. Ultimately,
the correlation of 22 immune cells was investigated using
the corrplot package. The CIBERSORT calculated the
proportions of tumor infiltrating immune cells, and then
the proportion of immune cells in two risk groups was
plotted through the vioplot (version 0.3.7).

2.8 Sensitivity Analysis of Anticancer Drug

According to the list of 198 drugs in Genomics of
Drug Sensitivity in Cancer database (GDSC, https://www.
cancerrxgene.org/), the oncoPredict package (Version 0.2)
[25] was used to evaluate the chemotherapy response by
the IC50 of each patient, and evaluated the response of two
groups to anticancer drugs. The smaller the IC50 value of
the drug, the stronger the ability of the drug to inhibit cell
growth, the better the effect of cancer treatment.

2.9 Single-Cell Analysis of Biomarkers in BLCA

The Seurat (Version 4.10) package [26] was used
to conducte quality control of scRNA-seq data in the
GSE135337 dataset. The low quality cells were removed
to obtain the core cells, the anova was then performed. The
core cells gene expression were normalized. The analy-
sis of available dimensions were used using the JackStraw
and ScoreJackStraw function. The dimension reduction
was executed for the principal component using the tSNE
algorithm. Then FindAllMarkers were used to identify
biomarkers in each cluster, with min.pct = 0.2 and only-pos
= TRUE, and Wilcoxon rank sum test was used to identify
differential genes. SingleR (Version 1.6.1) was used to an-
notate different clusters in CellMarker database. Pseudo-
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Table 1. Quantitative real-time PCR primers.
Gene name Forward primer Reverse primer

ABCC4 GGCATACAAAGCAGAAGAGAGG AAGGCAACGATGATGACAAACA
FASN ACTTGCAGGAGTTCTGGGACAA CTCGGAGTGAATCTGGGTTGAT
ATP2B4 CAATGAAATCAACTCCCGAAAG CAATGAAGAGACACCACAGCCA
ATP8B2 TTCCTGTTCCTCCTCATTCTGC TTCACCTGGTTATCGCTCTTGT
MTHFD1L AGAGAGGCTGCGAGTAAAAGAAG TGGTGAGATAGAGAAAGGTGGGT
GAPDH ACAACTTTGGTATCGTGGAAGG GCCATCACGCCACAGTTTC

time and heat map of linear differentiation process were
analyzed using the plot_genes_in_pseudotime function of
Monocle package (version 2.20.0) [27]. Then, Consensus-
ClusterPlus (Version1.56.0) [28] was used for synonymous
clustering analysis. Finally, we made statistics on the num-
ber of interaction ligand receptors and polymers among dif-
ferent cell subtypes. The comprehensive and systematic
analysis of communication molecules was conducted us-
ing the CellPhoneDB dataset. CellPhoneDB was used to
analyze cell-to-cell communication networks and identify
key cell-cell communication pathways in complex biolog-
ical systems, gain insights into the various types of com-
munication molecules involved in cell-to-cell interactions,
such as ligands and receptors, and the signaling pathways
they activate.

2.10 Validation of the Gene Expression Level by qRT-PCR
We applied quantitative real-time polymerase chain

reaction (qRT-PCR) to validate the expression level of
biomarkers in carcinoma tissue and normal control of 10
patients. Informed consent was obtained from all partici-
pants prior to enrollment into the study. And study proto-
cols were approved by the Clinical Research Ethics Com-
mittees of the First Hospital of Shanxi Medical Univer-
sity ([2022](K056)). Total RNA was extracted using the
Trizol reagent (Ambion company, Naugatuck, Connecti-
cut, USA) according to the manufacturer. The SureScript-
First-strand-cDNA-synthesis-kit First-Strand cDNA Syn-
thesis Kit (Servicebio company, Wuhan, China) was used
for reverse transcription reaction. The qRT-PCR reactions
were performed as follows: 95 °C pre denaturation for 1
minute, 40 cycles of 95 °C denaturation for 20 seconds, 55
°C annealing for 20 seconds, and 72 °C final extension for
30 senconds. The 2−∆∆Ctmethodwas used for normalizing
and quantifying gene expression levels. Primer sequences
were included in Table 1. GAPDH was used as an internal
reference gene. GraphPad Prism version 5.0.0 (San Diego,
California USA) was used for statistical analysis and graph-
ing. p value < 0.05 was considered as significant.

3. Results
3.1 Identification of DEMRGs and Functional Enrichment
Analyses

In total, 201 DEMRGs were obtained between nor-
mal and BLCA samples in the TCGA-BLCA dataset, with

93 up-regulated DEMRGs and 108 down-regulated DEM-
RGs (Fig. 1A). Heatmap of DEMRGs between normal and
BLCA samples were shown in Fig. 1B. Then the KEGG
pathway and GO function assessed the function of 201
DEMRGs (p < 0.05). The gene expression profiles of
normal and BLCA samples were highlighted by the color-
coding. We observed that the BLCA samples had a signifi-
cantly different gene expression profile compare to normal
samples, indicating that the gene expression patterns were
altered in BLCA. And 201 DEMRGs were enriched to 477
GO BP, 47 GO CC, and 178 GO MF, including alcohol
metabolic process, cellular modified amino acid metabolic
process, transmembrane transporter complex, transporter
complex, metal ion transmembrane transporter activity, ion
channel activity, etc (Fig. 1C, Supplementary Table 2).
201 DEMRGs were enriched to 226 KEGG pathways, and
the top 10 KEGG pathways were listed in Fig. 1D and Sup-
plementary Table 3, including cGMP-PKG signaling path-
way, purine metabolism, pancreatic secretion, arachidonic
acid metabolism, tryptophan metabolism, etc.

3.2 Construction of a Risk Model

According to TCGA-BLCA somatic mutation data,
24 DEMRGs with mutation frequency>3% were screened
(Supplementary Fig. 1). Univariate COX analysis
was carried out to construct model (p < 0.05), and 6
genes (ATP8B2, CACNA2D1, MTHFD1L, FASN, ABCC4,
ATP2B4) were obtained (Fig. 2A). Multivariate COX anal-
ysis was performed to further screen the genes and iden-
tified 5 prognostic biomarkers (FASN, ATP8B2, ABCC4,
ATP2B4, MTHFD1L) for BLCA (Fig. 2B). Additionally,
the ROC curve of five genes were plotted to check the di-
agnostic ability. The area under the curve (AUC) for each
gene was>0.7 (Fig. 2C), indicating that each gene has good
diagnostic ability for BLCA. Furthermore, the five genes
were used to construct a model, and the AUC of was 0.97,
which confirmed the effectiveness and agility of the model
(Fig. 2D).

3.3 Validation of the Prognostic Risk Model

The risk curve and the heatmap of model genes ex-
pression of two groups were drawn. The expression of
ABCC4 in the low-risk group was higher and it had a HR
<1, indicating that it might be a facourable factor in pre-
dicting patient outcomes. While FASN, ATP8B2, ATP2B4,
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Fig. 1. DEMRGs screening and functional enrichment analysis. (A) Volcano plot of 201 DEMRGs. The value on x-axis represents the
value of Log2FC. Red dots represent up-regulated genes, while blue dots represent down-regulated genes. (B) Heatmap of DEMRGs. The
up-regulated DEMRGs are shown in red, while the down-regulated DEMRGs are shown in blue. (C) GO biological process enrichment
analysis. (D) KEGG pathway enrichment analysis.

MTHFD1L were risk factors as they had HR >1, and they
were highly expressed in high-risk group in the training set
(Fig. 3A). The Kaplan-Meier curves showed that the cases
in the high-risk group had worse survival compared to low-
risk group (Fig. 3B). Furthermore, the ROC curves showed
the 1–5 year AUCswere both>0.6 (Fig. 3C). Subsequently,
the prognosis of risk models were assessed in the test set
and validation set. The gene expression patterns were con-
sistent in the test set (Fig. 3D–F), validation set (Fig. 3G–I)
and training set. In addition, the mutation frequency was
calculated in different groups, the mutation frequency of
biomarkers was greater than 8% in all mutant samples and
the type of mutation was increased in the high-risk group
(Supplementary Fig. 2).

3.4 Independence Prognostic of the Risk Model

The correlation result indicated there were signifi-
cant differences in prognostic risk scores and clinical traits

(Fig. 4A). The results of K-M survival curves in T stage
indicated that there were significant survival differences
between two groups at pathological T2, T3, T4 stage
(Fig. 4B). The Pvalue of all clinical factors was less than
0.05 except gender (Fig. 4C). And riskScore, T-pathologic,
age, and N-pathologic were regarded as independent prog-
nostic indicators using multivariate Cox analysis (Fig. 4D).
Meanwhile, the nomogram and calibration curves were
shown in Fig. 4E,F. And the nomogramC indexwas 0.7287,
indicating the model had good predictive ability.

3.5 GSEA Functional Enrichment Analysis

We performed the GSEA method and acquired 90
GO biological process and 6 KEGG pathways to further
validate the function. The top 10 GO enrichment BP
and KEGG pathway were shown and the mainly GO
terms enriched were GOLGI_APPARATUS, OXIDA-
TIVE_PHOSPHORYLATION, RESPIRASOME, etc.
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Fig. 2. Analysis of model genes in BLCA. (A) Univariate Cox regression analysis of prognostic genes. (B) Multivariate Cox regression
analysis of prognostic genes. (C) The ROC curve of the diagnostic efficacy of single prognostic genes. (D) The ROC curve of the
diagnostic efficacy of model gene.

(Supplementary Fig. 3A). The mainly KEGG pathways
enriched were STEROID_HORMONE_BIOSYNTHESIS,
OXIDATIVE_PHOSPHORYLATION, HUNTING-
TONS_DISEASE, etc. (Supplementary Fig. 3B).

3.6 Immune Microenvironment and Immune Checkpoint
Analysis

The correlation was analyzed to demonstrate the in-
teraction of cell infiltrates in the immune microenviron-
ment (Fig. 5A). The analysis of 22 immune cells popula-
tion found that 4 immune cells had significantly different
proportions. These 4 types of immune cells were B cells
memory, Macrophages M0, Dendritic cells resting, and T
cells (Fig. 5B). Moreover, the K-M survival curves anal-
ysis indicated that the immune checkpoint of LGALS9,
PDCD1, and TIGHT had significant differences in two
groups (Fig. 5C). And the expression level were analy-
sis, the result indicated significant differences in expres-
sion levels of three immune checkpoints between the two
groups (Fig. 5D). LGALS9 was significantly increased in
low-risk group, wihle PDCD1, and TIGHT were signifi-
cantly decreased. The correlation analysis results suggested
that there are significant positive correlations between risk
score and PDCD1 and TIGIF, and negative correlation be-
tween the risk score and LGALS9 (Fig. 5E).

3.7 Anticancer Drug Sensitivity Analysis

Among the 198 anticancer drug responses, 146
drugs were significantly different between two risk groups
(Supplementary Fig. 4A). Patients were more sensi-
tive to 42 drugs in the high-risk group, including 5-
Fluorouracil_1073, Camptothecin_1003, Docetaxel_1819,
etc. (Supplementary Fig. 4B). While patients were more
sensitive to 104 drugs in the low-risk group, including
Cisplatin_1005, Epirubicin_1511, Gemcitabine_1190, Vin-
blastine_1004, etc. (Supplementary Fig. 4C. All 198 drug
list was shown in Supplementary Fig. 4D).

3.8 Single-Cell Analysis of Biomarkers in BLCA

The quality control of scRNA-seq was performed, and
the results were showed in Supplementary Fig. 5. The
core cells were screened, and 2000 genes whose expression
levels had greatly difference were identified for subsequent
analysis (Supplementary Fig. 6). PCA results showed
that the overall distribution of sample cells was similar,
and there were no outlier samples, and 15 principal com-
ponents (p < 0.05) were screened for subsequent analysis
(Supplementary Fig. 7). In addition, the p values of all
core cells were less than 0.05, so all core cells were used
for analysis. The clustering results suggested that core cells
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Fig. 3. Validation of the prognosis genes risk score system. The distribution of the risk score among BLCA patients in high- and
low-risk groups, with green representing the number of survivors, and red representing the number of deaths; Heatmap of 5 prognosis
genes expression profiles in high- and low-risk groups in the training set (A), test set (D), and validation set (G), separately. (B) Survival
curves for high- and low-risk groups in the training set (B), test set (E), and validation set (H). ROC curves analysis of 1-, 2-, 3-, 4-, and
5-year predictions in the training set (C), test set (F), and validation set (I).

were segregated into 10 major distinct clusters (Fig. 6A).
And the differential marker genes were identified and the
expression heat map were drawn of the top 10 marker genes
in each cluster (Fig. 6B). The clusters included two types
of cells with Epithelial_cells and DC (Fig. 6C). Because
of the collected samples were epithelial cells and Dendritic
cells (DC cells) accounted for a relatively small proportion,
DC cells were removed for subsequent analysis. And the
core cells were projected onto one root and two branches
to construct a single cell track map (Fig. 6D). The expres-
sion changes of all biomarkers with trajectory changes were
showed in Fig. 6E. The core cells of GSM4006644 sample
in single-cell GSE135337 data set were spanided into two
clusters based on their gene expression profiles. These clus-
ters were named the low expression group (cluster 1) and
high expression group (cluster 2) (Fig. 6F). Then, statistics

were made on cell types between the two groups. Cluster
2 and cluster 3 showed the greatest difference in the two
groups (Fig. 6F,G). Furthermore, the cells of cluster 2 and
cluster 3 were affected by other cluster cells, respectively
(Fig. 6H).

3.9 Validation of the Gene Expression Level
We used qRT-PCR to further verify the expression

level of the biomarkers (ABCC4, FASN, ATP2B4, ATP8B2,
MTHFD1L) in normal control and carcinoma tissue of 10
patients. The qRT-PCR analysis showed that the expres-
sion level of these genes exhibited significant difference.
The mRNA levels of FASN and MTHFD1L were signifi-
cantly higher in carcinoma tissue, while ABCC4, ATP2B4,
and ATP8B2 were lower (Fig. 7).

7

https://www.imrpress.com


Fig. 4. Estimation of clinical Value of 5 prognostic genes in BLCA patients. (A) The correlation between the prognostic risk scores
and clinical traits. (B) K-M survival curves in T stage between high- and low-risk groups. (C) Univariate Cox regression analysis of
clinical traits. (D) Multivariate Cox regression analysis of clinical traits. (E) The nomogram of risk score and clinical traits to predict 1-,
3-, 5-year survival probability. (F) The calibration curves of the nomogram between predicted and observed 1-, 3-, and 5-year Overall
Survival (OS).
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Fig. 5. Analysis of immune microenvironment and immune checkpoint. (A) Correlation analysis of immune cells examined the
relationship between different types of immenu cells present in the tumor microenviornment. (B) Proportion of immune cells by com-
parison of the percentage of different immune cells in high - and low-risk groups. (C) KM curve analysis of immune checkpoint showing
the survival rates of patients in high- and low-risk groups, based on the expression of immune checkpoints. (D) Boxplot of immune
checkpoint in high- and low-risk groups examined the distribution of immune checkpoints in the two groups. (E) Correlation analysis
examined the relationship between the expression levels of immune checkpoints and risk values. The value bars without asterisk labeling
are not significant, asterisk denotes statistically significant differences * p ≤ 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001 in
comparison with control group.
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Fig. 6. Analysis of single-cell RNA sequencing. (A) Cells were clustered into 10 types and visualized in two dimensions using tSNE
dimensionality reduction algorithm, and each color represented the annotated phenotype of each cluster. (B) The heatmap showed the
top 10 marker genes of each cell cluster. Purple color indicates low expression of marker genes in each cell cluster, while yellow color
indicates high expression. (C) The clusters of cells were annotated using singleR and CellMarker based on the composition of the marker
genes. (D) Cell trajectory analysis diagram showed the differentiation trajectories of the cells. The cell tracks are epithelial cells. (E) The
expression changes of a single gene and the heatmap of the expression levels of all genes in different differentiation trajectories of the
pseudotime analysis. (F) Classification of high- and low-expression groups in core cells. (G) Percentage of cluster cells. (H) Interaction
of clusters of cells.
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Fig. 7. qRT-PCR analysis of mRNA levels of ABCC4, FASN, ATP2B4, ATP8B2, andMTHFD1L.

4. Discussion

Over the years, the treatments of BLCA have made
great progress, but the recurrence and progress of the dis-
ease after treatment still exists in a considerable number
of patients, and once the disease progress will be a serious
threat to the survival of patients. Thismay be closely related
to the lack of good prognostic biomarkers to guide clinical
decision-making. Studies have demonstrated that gene mu-
tations and metabolic abnormalities are common and play
an important role in various types of cancer, including lung
cancer [29], prostate cancer [30], gastric cancer [31] and
BLCA [32]. However, there are few studies on the relation-
ship between gene mutation, metabolic abnormality and the
prognosis of BLCA. We try to screen potential prognosis
biomarkers and establish a reliable gene model by study-
ing the MRGs of BLCA driven by somatic mutations, so as
to provide basis for identifying new therapeutic targets and
pathways of BLCA.

The functional enrichment results revealed that the
differential MRGs of BLCA was mainly involved in the
process of organic acid biosynthesis, small molecular
catabolism, cell-modified amino acid metabolism, alcohol
metabolism, signal transduction in multicellular organisms,
organic anion transport, etc. We pay particular attention
to the abnormal biosynthesis of organic acids has been
implicated in the regulation of the growth and prolifera-
tion of cancer cells [33]. In cancer cells, the increased
rate of glycolysis leads to the acculation of large amount
of lactic acid, which can prevent the hydroxylation of N-
myc downstream regulatory protein of NMyc (NDRG3)
by proline hydroxylase 2 (PHD2). The accumulation of
NDRG3 activates RAF/ERK signaling pathway, which pro-
motes angiogenesis and proliferation of cancer cells, allow-
ing them to survive and adapt to the hypoxic microenviron-
ment [34]. In addition, the changes of fatty acid synthe-

sis metabolism are related to the occurrence and develop-
ment of BLCA. Silencing the expression of fatty acid syn-
thase FASN can significantly inhibit the proliferation and
invasion of BLCA cells through AKT/mTOR signal path-
way [35]. Based on the TCGA-BLCA somatic mutation
and Cox analyses, we identified five prognostic biomarkers
(FASN, ABCC4, ATP2B4, ATP8B2, MTHFD1L) and de-
veloped a risk model for predicting the prognostic of BLCA
with somatic mutation. The validation using independent
test set, validation set and training set and found that these
five genes were significantly associated with patient sur-
vival and were used to develop the prognostic risk model.

Immune system plays a critical roles in cancer devel-
opment and progression, including BLCA. Studies have in-
dicated that immune cell infiltration in BLCA is associatied
with the occurrence and progression of BLCA. Accord-
ingly, we carried out the correlation analysis of immune
microenvironment, and discovered that the activation lev-
els of memory B cells, Treg cells, and dendritic cells were
significantly increased in the low-risk group, while the ac-
tivation level of macrophages was enrich in the high-risk
group. Among them, B cells activate T cells mainly through
antigen presentation and cytokine secretion, thus playing
an anti-tumor immune role [36–38]. Dendritic cells in the
tumor environment usually exhibit inhibitory and dysfunc-
tional phenotypes, which help cancer cells escape host im-
mune surveillance [39]. Although most studies have con-
firmed that the degree of Treg infiltration is negatively cor-
related with the survival rate of BLCA patients, different
studies have pointed out that Treg may reduce the invasive-
ness of tumor cells by inhibiting the expression of invasive
factor MMP-2 in BLCA cells and TAMs, resulting in Treg
playing a good prognostic role in BLCA [40]. It is well
known that macrophages undergo phenotypic transforma-
tion in tumor microenvironment, thus inhibiting anti-tumor
immune response. Studies have shown that the contin-
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uous infiltration of tumor-related inhibitory macrophages
can significantly reduce the efficacy of BCG, and inhibitory
macrophages expressing CD163 can be used as predictors
of BCG unresponsive NMIBC [41,42]. Nevertheless, the
correlation between the prognosis of BLCA and immune
cell infiltration is very complex and unclear, so we need to
do a lot of in-depth research.

In recent years, immune checkpoint inhibitors have
shown strong anti-tumor activity in patients with locally
advanced and metastatic BLCA [43]. Our study discov-
ered that, in contrast, the expression level of PDCD1 and
TIGIT in the routine immune checkpoint was higher in the
high-risk group, while the expression level of LGALS9 was
higher in low-risk group, suggesting that the gene expres-
sion and immune environment of the immune checkpoint
are different in different risk groups. Patients may benefit
from different types of immunotherapy with specific target.
Chemotherapy is indeed a crucial treatment for BLCA and
is often used in combination with other treatment such as
surgery and radiation therapy [44]. Our results revealed that
the low-risk group might be more sensitive to commonly
used chemotherapy drugs for BLCA such as cisplatin, gem-
citabine, vinblastine and epirubicin. On the other hand,
the high-risk group was found to be not sensitive to in-
tracavitary chemotherapy and arteriovenous chemotherapy.
It may be necessary to adjust the medication regimen and
choose more sensitive chemotherapeutic drugs, such as 5-
fluorouracil, docetaxel, hydroxycamptothecin and so on.

Tumor drug resistance and tumor metastasis are ma-
jor challenges in the treatment of adcanced BLCA patients.
By analyzing cell type-specific transcriptome variation by
scRNA-seq, a personalized method for recurrent or refrac-
tory cancer has been developed, which is expected to over-
come tumor drug resistance [45]. Tanaka et al. [46] found
a new gene COX7B and its alternative marker CD63 re-
lated to platinum resistance by scRNA-seq. Low COX7B
level was significantly correlated with poor chemotherapy
response to BLCA [46]. Our study also attempts to use
scRNA-seq data sets for further correlation analysis. We
identified 10 BLCA epithelial cell subsets expressing dif-
ferent marker genes, and showed changes in the expression
of five prognostic biomarkers (FASN, ABCC4, ATP2B4,
ATP8B2, MTHFD1L) in different differentiation trajecto-
ries in pseudo-sequential analysis. Based on this, we found
two cell clusters marked by SPOCD1 and CHP2, and their
cell proportions changed significantly in the high and low
expression groups of biomarkers. Moreover, it interacts
with other cell clusters through cell communication and
communication network, which not only further verifies the
reliability of our survival risk stratification model, but also
infers that these two cell clusters may affect the prognosis
of BLCA and the key epithelial cell subsets that need our
in-depth study.

In addition, combined with our research and previous
reports, we have a better understanding of the above five

potential prognostic biomarkers of BLCA. FASN is a vital
biological enzyme that can catalyze the reduction of acetyl-
CoA (CoA) and malonyl-CoA to long-chain fatty acids by
NADP [47]. FASN is an enzyme that plays a crucial role in
the biosynthesis of fattiy acids. Its up-regulation in many
cancer types has been shown to be involved in the main-
tenance of cellular metabolism, division and proliferation
[11]. Some studies have demonstrated that the increased
FASN is markedly associated with the recurrence, progres-
sion, shorter RFS and poor PFS of BLCA [48,49]. This is
consistent with our results. Moreover, inhibition of FASN
can restrain the migration of bladder transitional cell carci-
noma by activating AKT pathway [35].

ABCC4 is widely expressed in various tissues [50–
52], and can actively transport a series of organic anions to
extracellular, so most of the functional studies on ABCC4
are focused on its effect on cancer chemotherapy [53].
Perivous studies have found that ABCC4 is related to drug
resistance in various types of cancer, including breast can-
cer, colorectal cancer, prostate cancer, pancreatic cancer,
and lung cancer [54–56]. Nonetheless, other studies have
uncovered that low expression of ABCC4 can lead to the ac-
cumulation of cAMP in cells, which increases the invasive-
ness and migration of cancer cells [57]. Similarly, our re-
sults found that ABCC4 expression was significantly lower
in the high-risk group, which had a higher risk of BLCA
progression and metastasis. which needs to be confirmed
by follow-up experimental study.

ATP2B4, the plasma membrane calcium ATP enzyme
4 (PMCA4), participates in the transport of divalent cal-
cium ions out of the cell and maintains intracellular cal-
cium homeostasis. It plays an important role in many dis-
eases, including malaria, cardiomyopathy and cancer [58–
60]. Previous study shows the evidence that changes in the
expression levels of genes related to calcium pumps and cal-
cium channels, including ATP2B4, may be a biomarker of
cancer [61]. For example, the overexpression of ATP2B4
gene can promote the progression of colon cancer through
intracellular calcium outflow [62]. Our results also show
that the up-regulated expression of ATP2B4 may indicate a
higher risk of disease progression in BLCA.

The ATP8B2 gene encodes an ATP-dependent phos-
phatidylcholine transferase that uses ATP as a source of
energy to transport metals, ions and phospholipids across
the cell membrane. At present, it has been discovered that
ATP8B2 is related to various pathophysiological conditions
in mouse models, but there are few reports on its relation-
ship with human diseases. Through bioinformatics anal-
ysis, it has been found that ATP8B2, as a gene related to
phenotypic transformation of macrophages, is related to the
poor prognosis of pancreatic cancer [63]. Our results sug-
gest that the expression level of ATP8B2 may serve as a
prognostic biomarker for BLCA. Patient with higher ex-
pression of ATP8B2 and high risk of BLCA may have a
poorer prognosis.
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Methylenetetrahydrofolate dehydrogenase 1
(MTHFD1L) is an enzyme that is primarily located
in the mitochondria, and it participates in carbon molecule,
purine, thymidine and methionine metabolism [64].
MTHFD1L-related folate metabolism disorders and their
products have been implicated in the occurrence and
progression of various cancers [65–69]. Overexpression
of MTHDF1L has been shown to be significantly related
to poor prognosis in various types of cancer,including
BLCA, head and neck cancer (HNSC), renal papillary cell
carcinoma (KIRP), lung adenocarcinoma (LUAD) and
endometrial carcinoma (UCEC) [70], which is consistent
with our findings. However, some people have confirmed
that MTHFD1L contributes to the regulation the growth
and invasion of BLCA [71].

One limitation of this study is the lack of animal in vivo
and cell line in vitro experiments to validate their role and
specific mechanisms of marker genes in BLCA. Follow-up
studies are needed to address this limitation and further in-
vestigate the potential of these markers as therapeutic tar-
gets or prognostic biomarkers. By conducting more com-
prehensive studies, we can better understand the complex
mechanisms underlying cancer and develop more effective
strategies for cancer prevention and treatment.

5. Conclusions
In this study, a new prognostic prediction model

was established and verified by comprehensive bioinfor-
matics analysis, which revealed the expression, prognos-
tic value and function of MRGs driven by somatic muta-
tion in BLCA. The potential markers of immunotherapy
and chemotherapy were predicted in BLCA. In addition,
through scRNA-seq data analysis, we explored the changes
in the expression of biomarkers with the change of epithe-
lial cell status, and identified two key epithelial cell subsets
that affect the prognosis of BLCA, which need our in-depth
study. The main advantage of this study is to use traditional
RNA-seq data and scRNA-seq data to analyze and identify
the biological significance of MRGs driven by somatic mu-
tation in BLCA.
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