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Abstract

Background: Breast cancer poses severe threats to human health as radioresistance becomes increasingly prevalent. The mechanisms
of radioresistance are hard to expound completely. This study aims to explore proteomic changes of radioresistance, which will help
elucidate the potential mechanisms responsible for breast cancer radioresistance and explore potential therapeutic targets. Methods: A
radioresistant breast cancer cell line was established by repeated irradiation. Liquid Chromatograph Mass Spectrometer (LC–MS) was
used to quantify protein expression. Proteomic changes associated with radioresistance were evaluated by proteomic analysis. Further,
cell radioresistance and several identified proteins were verified in in vitro experiments. Results: In the study, more than 3000 proteins
were detected, 243 of which were identified as up-regulated proteins and another 633 as down-regulated proteins. Gene Ontology (GO)
enrichment analysis indicated that these proteins were mainly expressed in the lysosome and ribosome, associated with coenzyme binding
and the structural constituent of the ribosome, involved in mitotic cytokinesis and ribonucleoprotein complex biogenesis. Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) pathway analysis indicated that many biological processes were extensively altered, particularly
spliceosome and thermogenesis. It is worth noting that the functions and pathways related to ribosomes were significantly enriched,
therefore ribosomal proteins (RPL6 and RPS13) were identified through western blot and highly expressed in relatively radiosensitive
cells. Additionally, several identified proteins, including S100A4, RanBP9, and ISG15, were also verified to be differentially expressed
in different radiosensitive cells. Conclusions: Our results provide a framework for further studies into the mechanisms of radioresistance
and serve as a basis to construct a predictive model of radioresistance in breast cancer. Ribosome may participate in the radioresistance
of breast cancer, which provides new insights into the proteomic characteristics of the mechanisms of radioresistance.
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1. Introduction
Breast cancer (BC), the most prevalent female cancer

accounting for nearly 1/3 of cancers diagnosed in this pop-
ulation [1], is now widely considered as the leading cause
of cancer death among females [2]. The BC mortality rate
for females of all ages ranges from 0.4 to 3.4/100 per year
due to the differences in the degree of economic develop-
ment and associated social and lifestyle factors [2,3], and
continues to decrease year-on-year. This decrease has been
attributed to the increased use of screening mammography
combined with improved BC treatment [4,5]. Among them,
radiotherapy is one of the mainstays in the management of
BC, which is either added to mastectomy to eradicate resid-
ual subclinical sections or used as a palliative treatment for
advanced BC patients without surgical indication [6,7].

Radiotherapy, a type of ionizing radiation, induces
DNA damage directly via ionization or indirectly by the
generation of reactive oxygen species (ROS), thereby de-

stroying tumor cells [8,9]. Radiation dose and frequency
of radiotherapy depend principally on the balance between
cure and toxicity of treatment [10]. The recommended
dose of radiation for each individual treated by radiotherapy
alone is 50–70 Gy in 25 to 35 fractions or equivalent [11–
13]. However, a large amount of evidence demonstrated the
presence of radioresistance in BC [14–18]. In addition to
the inherent radioresistance of cells, an adaptive response
of cancer cells to repeated radiation leads to the devel-
opment of radioresistance, including alterations in the tu-
mor microenvironment [19], signaling [20], and metabolic
[21] pathways. Currently, radioresistance has become a
major obstacle to successful cancer therapy, accompanied
by high mortality (14.5–22.5%) and recurrence rate (2.4–
11.5%) [22–24]. The majority of previous studies involv-
ing radioresistance in BC focused on ROS-DNA damage.
DNA damage promotes DNA damage repair by activating
various signal pathways, thus resulting in radioresistance.
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Recently, we established a radioresistant BC cell line by re-
peated ionizing radiation and found that radioresistant BC
cells present elevated expression of ataxia-telangiectasia
mutated kinase (ATM) and increased DNA damage repair
efficiency, indicating a potential link between ATM, DNA
repair pathway, and radioresistance [25]. Additionally, sev-
eral molecules such as SERPINE1 (serpin family E member
1) [26], YB-1 (Y-box binding protein 1) [27,28], TTK (TTK
protein kinase) [29] and ARID1A (AT-rich interaction do-
main 1A) [30] have also been reported to contribute to ra-
dioresistance.

The majority of previous research has focused at
the genomics level, which has inevitable limitations and
caveats, including RNA degradation, improper transcrip-
tion, and inability to analyze the post-translation modifi-
cation and cellular functions [31,32]. As the structural and
functional elements of cells, protein is regarded as the ul-
timate executor and effector of genomic biological infor-
mation [33]. Qualitative and quantitative analysis of pro-
teins will help to explore the basis and conditions for the
realization of cell biological functions. Furthermore, a sin-
gle protein only provides a limited understanding of the
biological pathways [34], and systematic large-scale data
analysis is essential for expanding our understanding of
pathological mechanisms. Therefore, the concept of pro-
teomics was urgently introduced in 1994 by Marc Wilkins
[35]. Proteomics is a complete and independent collection
involving biological characteristics and activities, covering
all the proteins expressed in the genome [36–38]. Quanti-
tative proteomics provides the difference in protein abun-
dance between healthy samples and tumor samples, as well
as relevant information, including protein-protein interac-
tions, signaling pathways, disease prediction, and pheno-
typic classification [39]. However, due to the limitations
of techniques and data analysis methods, the course of pro-
teomics progression in BC seems to be slow and remains
in the initial stage [34,40–42], and protein detection cover-
age ranges from hundreds to thousands [43–45]. Most im-
portantly, it is worth mentioning that previous proteomics
studies always adopted the same but imprecise screening
criteria for radioresistance-associated proteins, namely the
differential proteins between parental cells and radioresis-
tant cells. Thus, it is necessary to conduct a large-scale and
systematic study via strict screening criteria to explore the
complex radioresistant mechanism.

Herein, using our established radioresistant cells
through repeated irradiation [25], and Liquid Chromato-
graph Mass Spectrometer (LC–MS) to cover more than
3000 proteins, we identified the differential proteins among
the radioresistance-related cells lines using a strict triple
screening criteria and conducted function and pathway en-
richment analysis, thereby facilitating the exploration of ra-
dioresistance mechanisms. The identification of novel pro-
teins [46] associated with radioresistance in BC would not
only increase our understanding of the molecular mecha-

nisms underlying the therapeutic resistance but also provide
tumor molecular characteristics, promote the refinement of
BC subtypes, and contribute to the diagnosis, prognosis,
and individualized treatment.

2. Methods
2.1 Cell Cultures and the Establishment of Radioresistant
Cell Lines

All cell lines were authenticated using the short tan-
dem repeat (STR) technique. Additionally, mycoplasma
testing was conducted on the cell lines, and the result was
negative. Human BC cell lines (MDA-MB-231) were pur-
chased from ATCC, and human pancreatic cancer cell lines
(PANC1 and MIA-PACA2) were obtained from Cell Bank
of Type Culture Collection of Chinese Academy of Sci-
ences (Shanghai, China), grown in Dulbecco’s Modified
Eagle’s Medium (DMEM) containing 10% FBS (Gibco,
Loughborough, England) and cultured in a 37 °C incuba-
tor containing 95% O2 and 5% CO2. Cells (1 × 106) were
seeded in 10 cm culture disks. Cells were collected and
passed into new dishes when the cell density reached ap-
proximately 90%.

For the establishment of the radioresistant cell line, as
described [25], MDA-MB-231 cells, set to parental BC cell
lines, were divided into two groups, PB and PR cells. PR
cells were irradiated with 3 Gray (Gy) of X-rays 20 times
at a dose rate of 1.43 Gy per minute, with a total dose of 60
Gy over 4 months as radioresistant cell lines [47]. PB cells
were treated using the same conditions without irradiation,
and used as control cell lines. Compared with PB cells, PR
cells had a more stretched and flatter appearance with en-
hanced anti-apoptotic, migration, and invasion capabilities
and presented elevated surviving fraction, reduced percent-
age of apoptotic cells, and increased DNA damage repair
efficiency.

2.2 Study Group and Sample Preparation
PB cells (hereafter named group A) and PR cells

(group B) were collected when the cells reached approxi-
mately 90% in 10 cm culture disks. Additionally, PB and
PR were irradiated with 10 Gy at a dose rate of 1.43 Gy per
minute [48,49] and collected after 24 hours (group C and
group D, respectively). A total of 3 biological replicates
were collected. Supplementary Fig. 1 shows the grouping
details. The cells were washed 3 times with ice-cold phos-
phate buffer saline (PBS). A total of 1 mL 10M urea was
added and incubated for 5 min. Then, the lysates were son-
icated for 5 min. After centrifugation (4 °C, 13,000 g × 10
min), the supernatant was determined using a Bradford Pro-
tein Quantification Kit. Each sample (60 ug) was added to
5 uL 1 M dithiothreitol (DTT) for 1 h in a 37 °C water bath
and then alkylated with 20 uL 1 M iodoacetamide (IAA)
for 1h in the dark at room temperature. Then, samples were
digested with trypsin (ratio = 50:1) for 14 h at 37 °C. The
trypsin activity was stopped by adding 10% of trifluoracetic

2

https://www.imrpress.com


acid. The peptides were desalinated through C18 HPLC
columns (Agilent Technologies Inc. Santa Clara, Califor-
nia, USA) before LC–MS/MS analysis.

2.3 LC–MS/MS Analysis
Proteins were quantified using the modified LC–

MS/MS (Agilent 1290, Agilent Technologies Inc. Santa
Clara, CA, USA; QTRAP 4500, AB Sciex Inc. Foster City,
CA, USA) analytical method as described previously [50].
The analysts were blinded to all the information during test-
ing. The C18 column is balancedwith 95% solvent A (0.1%
formic acid (FA), H2O). Solvent B was 0.1% FAwith 100%
acetonitrile (ACN). Samples were eluted from 7% to 100%
of solvent B over 75minwith a flow rate of 600 nL/min. Af-
ter phase liquid chromatography, mass spectrometric data
were acquired automatically by Thermo Xcalibur 4.0 soft-
ware (Thermo Fisher Scientific Inc, Waltham, MA, USA).
Samples were run in one technical replicate.

The scanning parameters were set as follows: DDA
acquisition mode, TOP20. The resolution of primary MS
was 70,000, the maximum injection time was 50 ms, the
fragmentation mode was HCD, and the collision energy
of 27% was used for fragmentation; the resolution of sec-
ondary MS was 18,000, the maximum injection time was
100 ms, the signal threshold was 1e4 ions/s, and the dy-
namic exclusion time was 30 s.

2.4 Differential Protein Screening Criteria
Up-regulated proteins were defined based on the fol-

lowing conditions: (1) higher expression in group B than
that in group A, (2) increased in group D compared with
group B, (3) increased in group C compared with group A.
Down-regulated proteins were defined based on the follow-
ing conditions: (1) lower expression in group B than that in
group A, (2) decreased in group D compared with group B,
(3) declined in group C than that in group A. A schematic
is shown in Supplementary Fig. 2.

2.5 Clonogenic Survival
Single-cell suspensions were added to 6-well plates

in triplicate. After 24 hours, cells were irradiated with 0–
6 Gy at a dose rate of 1.43 Gy per minute and then cul-
tured for 14 days. Cell clusters containing over 50 cells
were regarded as colonies. The colonies were fixed with
4% paraformaldehyde, stained with crystal violet, and dried
naturally. Plating efficiency (PE) = [the mean number of
colonies/the number of inoculated cells]. Surviving frac-
tion (SF) was calculated as follows. SF (d) = [the mean PE
(d)]/[the mean PE (0)], while d indicates dGy and 0 means
0Gy. The curve was plotted using the linear-quadratic
model in Graph Prism 6.01 (GraphPad Software Inc., San
Diego, CA, USA) as described previously [51,52].

2.6 Western Blot
Cells were washed by pre-cooling PBS three times,

and proteins were extracted in 100 uL lysis buffer con-
taining protease and phosphatase inhibitor cocktail (MCE,
Monmouth Junction, NJ, USA). Then equal amounts of
proteins (5 uL) were size-separated in 10% SDS-PAGE
gels and transferred to PVDF membranes. Immunoreactive
proteins were visualized using ECL following the manu-
facturer’s instructions (Millipore, Boston, MA, USA). The
detailed information for primary antibodies used in this
study was provided as follows: Rabbit polyclonal antibod-
ies against S100A4 (ABClonal, Wuhan, China, #A19109,
1:1000 dilution), RANBP9 (ABClonal, #A19238, 1:1000
dilution), ISG15 (ABClonal, #A1182, 1:1000 dilution),
RPL6 (ABClonal, #A15094, 1:1000 dilution), RPS13 (AB-
Clonal, #A15720, 1:1000 dilution), β-actin (Transgene,
#HC201, 1:5000 dilution). Secondary antibodies used
were goat anti-rabbit IgG-HRP (Cell Signaling Technology,
#7074, 1:5000 dilution) and anti-mouse IgG-HRP (Cell
Signaling Technology, #7076, 1:5000 dilution). Data were
quantified by ImageJ 1.53e (National Institutes of health,
Bethesda, MD, USA) and expressed as arbitrary densito-
metric units relative to β-actin expression. All Western
blots (WBs) were performed in triplicate.

2.7 Kaplan–Meier Survival Curves
Kaplan–Meier Plotter (https://www.kmplot.com) was

applied to evaluate the prognosis of BC by selecting the
mRNA as a dataset. The relationships between S100A4,
RanBP9, ISG15, RPL6, and RPS13 expression with overall
survival (OS) of different time points were analyzed with
the hazard ratio (HR) with 95% confidence intervals (CIs)
and log-rank p-value. “Auto select best cutoff” was set as a
method to split patients.

2.8 Data analysis
The LC–MS/MS raw files were searched and quanti-

fied by MaxQuant (version 1.6.2.0; Max Planck Institute of
Biochemistry, Munich, Bavaria Germany) against UniProt
Protein Database (downloaded on 22 April 2021). The en-
zyme was set by trypsin with up to two missed cleavages;
the main research is 4.5 ppm; The fragment mass tolerance
is 0.02 Da; The peptide and protein FDR is 0.01; Unique
peptides (at least 2 unique peptides) were used for pro-
tein quantification. All data were log2 transformed before
analysis. The t-test was employed to identify significantly
differentially expressed proteins between two independent
groups (three biological repeats in each group). According
to the 1.5-|log2 fold change (FC)| and p < 0.05, the dif-
ferential proteins were screened. Then the output protein
tables were performed for bioinformatics analysis. Venn
diagrams were performed using jvenn. Heatmaps were
presented using MeV with Pearson correlation. We func-
tionally annotated the differentially expressed proteins by
The Gene Ontology (GO) (https://david.ncifcrf.gov) and
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Fig. 1. Protein identification and quantification in three comparison groups. The Venn diagram shows the number of proteins
identified in group A vs. C only, group A vs. B only, group B vs. D only, and those shared among three comparison groups. (A)
Up-regulated proteins. (B) Down-regulated proteins.

GO-directed acyclic graph to identify associated molecu-
lar functions (MF), biological processes (BP), and cellu-
lar components (CC). Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis was gener-
ated using KEGG (http://www.genome.jp/kegg/) databases
to investigate the potential biological interpretation of dif-
ferentially expressed proteins.

3. Results
3.1 Identification of 876 Significant Proteins by Label
Free Quantification (LFQ) Analysis

In this study, quantitative proteomics of radioresistant
cells and radiosensitive cells enabled the comparison of pro-
tein expression profiles in radiotherapy. Of the 3000+ pro-
teins detected in this study, 876 significant proteins were
identified among four groups. From the distribution of the
proteins as shown by the Venn diagram, 243 up-regulated
proteins were screened (Fig. 1A, Supplementary Table 1),
and 633 down-regulated differential proteins were found
(Fig. 1B, Supplementary Table 2) according to the 1.5-
|log2 FC| and p < 0.05.

3.2 Changes in Identified Proteins Levels in Four
Analyzed Groups Using a Heat Map

Although the general relationships of proteins from
four groups were visualized using the Venn diagram, it was
necessary to consider differences at the concentration level
graphically. Heat map analyses, constructed from LFQ in-
tensities, gave a significant overall picture of the up-and
down-regulated proteins in each of the samples. The rows
(identified proteins) were rearranged according to similar
profiles. The columns (samples) are sorted by sample type,

and each sample type in the data matrix is displayed as a
color (purple, green, pink, and blue). As shown in Fig. 2,
according to the color distribution of the heat map, it can be
inferred that the greatest difference in protein expression
was between group D and group A. The difference may be
attributed to radiotherapy dose and frequency, namely the
presence of radioresistance and radiosensitivity.

3.3 GO-Based Annotation and Functional Enrichment
Analysis

To evaluate the biological and functional associations
of up-and down-regulated proteins, we annotated these pro-
teins based on the GO databases. As shown in Fig. 3A,
243 up-regulated proteins were classified by the second
level (biological process, cellular component, and molec-
ular function). Biological process analysis showed these
significant proteins participate in RNA splicing and mitotic
cytokinesis. Cellular component GO terms significantly
enriched in the up-regulated proteins were azurophil gran-
ule and primary lysosome. The molecule function is cad-
herin binding and coenzyme binding. Additionally, down-
regulated proteins were enriched in the ribosome and mi-
tochondrial matrix, involved in the ribonucleoprotein com-
plex biogenesis and ribosome biogenesis, also associated
with a structural constituent of ribosome and translation ini-
tiation factor activity (Fig. 3B). Interestingly, GO analysis
of down-regulated proteins has revealed a highly significant
correlation with the ribosome, including ribosomal subunit,
organellar ribosome, ribosome biogenesis, and other ribo-
somal processes. It has been conceivably supposed that ri-
bosome may be significant in the pathogenesis of radiore-
sistance.
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Fig. 2. Heatmap visualization of the significantly different proteins among four groups. Columns: samples; Rows: differential
proteins. Color key indicates protein expression value: blue, lowest; red, highest. (A) Up-regulated proteins. (B) Down-regulated
proteins.

Fig. 3. Gene ontology (GO) classifications of up-regulated proteins (A) and down-regulated proteins (B). The figure shows the
top 10 GO terms. Horizontal coordinate: GO enrichment value; vertical coordinate: GO term. BP, biological process; CC, cellular
component; MF, molecular function.

Despite the advances in GO annotations, it is neces-
sary to further annotate proteins more comprehensively and
precisely. Thus, the directed acyclic graph (DAG) showed

the hierarchical relationship of significantly enriched GO
terms, including up- and down-regulated proteins, where
hierarchy was defined with respect to the available terms
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associated with the proteins. As DAG is shown in Fig. 4,
from top to bottom, there were two main paths of GO terms
in up-regulated proteins (the number of GO items ≥3),
including “Path 1: cell-substrate junction (GO:0030055)-
cell-substrate adherens junction (GO:0005924)-focal ad-
hesion (GO:0005925)” and “Path 2: primary lysosome
(GO:0005766)-azurophil granule (GO:0042582)-azurophil
granule membrane (GO:0035577)”. Path 1 and 2 pri-
marily showed the cell adhesion function and lysoso-
mal function, respectively, which have been reported to
be related to therapeutic resistance [53,54]. Two main
paths of GO terms in down-regulated proteins are shown
in Fig. 5, namely “Path 1: ribosome (GO:0005840)-
ribosomal subunit (GO:0044391)-large ribosomal subunit
(GO:0015934)” and “Path 2: ribosome (GO:0005840)-
organellar ribosome (GO:0000313)-mitochondrial ribo-
some (GO:0005761)”, both focused on ribosomes, suggest-
ing the possibly vital function of ribosomes in radiosensi-
tivity. The related GO terms are listed in Supplementary
Table 3.

As illustrated, the azurophil granule membrane
(GO:0035577) and inner mitochondrial membrane pro-
tein complex (GO: 0098800) were the targets of action
of up-regulated proteins and down-regulated proteins, re-
spectively. Similar to GO annotations, ribosome (GO:
0005840) andmitochondrial ribosome (GO: 0005761) were
up-regulated in the radiosensitivity of BC.

3.4 KEGG Pathway Analysis

To further evaluate the biological significance and in-
vestigate the disturbed signaling pathways of these pro-
teins, the association network of differentially expressed
proteins was constructed. As depicted in Fig. 6A, the most
significantly enriched KEGG pathway in up-regulated pro-
teins was the spliceosome. In addition, thermogenesis was
the most important metabolic pathway related to down-
regulated proteins (Fig. 6B). In the pathway analysis, sev-
eral significant pathways were highly enriched, including
spliceosome, thermogenesis, Parkinson’s disease, and ox-
idative phosphorylation. Among these pathways, spliceo-
some [55] and oxidative phosphorylation [56,57] have been
reported to be linked to radioresistance. It is noteworthy
that ribosome was strongly enriched among differentially
expressed proteins, consistent with GO annotations, fur-
ther confirming the importance of ribosome for irradiation-
induced radiosensitivity/radioresistance.

3.5 Cell Radioresistance and Candidate Proteins
Validation

The radioresistance of PB cells and PR cells was com-
pared by surviving fraction (SF). As shown in Fig. 7A, the
PR cell line had a higher survival rate than that of PB cells.
Next, we randomly selected candidate proteins for valida-
tion. S100A4 (S100 calcium-binding protein A4), RanBP9
(RAN binding protein 9), ISG15 (Interferon-induced gene

15), RPL6 (ribosomal protein L6), and RPS13 (ribosomal
protein S13), which were found differentially expressed in
our study, were verified with immunoblotting. Results of
western blotting (Fig. 7B) showed that RanBP9, RPL6, and
RPS13 in PR cells were lower than that of PB cells, while
S100A4 and ISG15 in PR cells were higher than that in PB
cells. What is noteworthy is that RPL6 [58,59] and RPS13
[60,61] have been reported to influence multidrug sensitiv-
ity in gastric cancer cells, similar to our finding that riboso-
mal proteins affect radiosensitivity in BC cells.

Next, the impact of S100A4, RanBP9, ISG15, RPL6,
and RPS13 expression on prognosis in BC patients was
evaluated (Supplementary Fig. 3). BC patients with
higher ISG15 or lower RPS13 expression had significantly
shorter overall survival than those with lower ISG15 or
higher RPS13 expression (p < 0.05), respectively, which
was consistent with the higher expression of ISG15 or lower
RPS13 in more malignant and radioresistant cells (Fig. 7B).
By contrast, there was no significant difference between the
groups with high or low expression of S100A4, RanBP9, or
RPL6, which may be due to differences in survival time di-
vision, different cut-off time, or other undefined factors.

Further, in order to verify the universality of our find-
ings, we tested the correlation between the expression of
ISG15 and the radioresistance in human pancreatic cancer
cell lines (PANC1 and PACA2) (Supplementary Fig. 4).
Similar to the results of PR and PB cells, the expression
of ISG15 in PACA2 cells is higher than that in PANC1,
whereas the SF of PACA2 is higher than that of PANC1
(Supplementary Fig. 2).

4. Discussion
Here, we performed a label-free quantitative pro-

teomics analysis of radiosensitive and radioresistant cells
to investigate radioresistance-related proteins.

Among 876 differentially expressed proteins, some
proteins have been reported to be related to drug resis-
tance in previous studies, such as S100A4 [62–64], RanBP9
[65,66] and ISG15 [67,68], which are consistent with WB
verification in our study. Other differentially expressed
proteins, such as LARP4B, CAPRIN1, and PLOD3, need
further expression and functional confirmation. In the fu-
ture, clinically relevant models can be constructed based on
these identified proteins to forecast the radioresistance of
patients as a precision medicine tool.

In our study, both enrichment analysis and WB results
indicated a possible role of ribosomes in the development
of radioresisitance. Indeed, evidence has emerged in re-
cent decades regarding the close link between ribosome and
therapeutic resistance in cancers.

Ribosome is a complex of ribosomal RNA (rRNA)
and ribosomal proteins [69], which synthesize proteins in
living cells. Ribosome biogenesis and processing are un-
der surveillance of multiple checkpoints and pathways [70].
As an essential component of the 50S subunit of ribosomes,
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Fig. 4. Pathway analysis of up-regulated proteins using directed acyclic graph (DAG). Boxes were used to indicate the top 10 terms
with high salience, and the figure shows the corresponding relationship of each layer. Different colors represent different enrichment
salience: the redder color, the higher salience.

RPL6 is a highly conserved ribosome protein [71]. Previ-
ous studies have shown that RPL6 can up-regulate Bcl-2
and down-regulate Bax [59,72]; Inhibition of RPL6 inhibits
the transition from G1 to S phase [58,73,74]; Decreased
RPL6 can reduce ubiquitin-dependent peptide presentation
and trigger tumor immune escape [75]. Moreover, it has
been suggested that RPL6 can be recruited to DNA damage
sites and regulate DNA damage response in a poly (ADP-
ribose) polymerase-dependent manner [76,77]. Evidently,
RPL6 can inhibit tumor cell apoptosis and increase therapy
resistance through the above mechanisms.

RPS13 is a common and stable protein [78], which is
primarily distributed in the cytoplasm and associated with

rRNA in the large and small subunits of the ribosome. The
knock down of RPS13 led to G1 arrest [60]; RPS13 in-
creased the expression level of Bcl-2 and Bcl-2/Bax ratio
and induced drug resistance of gastric cancer cells to a cer-
tain extent [61].

Under radiation stimulation, DNA is damaged and
then activates the DNA damage reaction (DDR) [79]. Ac-
cording to the extent of damage, DDRwill develop in the di-
rection of repairing DNA damage to maintain cell survival
or activating programmed cell death pathways to acceler-
ate cell death [80]. Among them, the high efficiency of
DNA damage repair repairs radiation-induced DNA dam-
age, leading to resistance to apoptosis [81], which is the
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Fig. 5. Pathway analysis of down-regulated proteins using DAG. Boxes were used to indicate the top 10 terms with high salience,
and the figure shows the corresponding relationship of each layer. Different colors represent different enrichment salience: the redder
color, the higher salience.

main cause of radioresistance [82]; in the process, riboso-
mal proteins (such as RPL6 and RPS13) play an important
role in the regulation of cell cycle and apoptosis (mentioned
above), thus affecting the repair efficiency. Apart from ri-
bosomal proteins, associated ribosome biogenesis factors,
such as Bop1 [83], could increase cell recovery by DNA re-
pair regulation, whereas nucleolin [84] played the opposite
role.

Most studies involving ribosomes focus on the corre-
lation between gastrointestinal cancer and drug resistance,
and there are very few studies involving radioresistance and
BC [14,85]. In our study, radioresistance-related proteins

were screened completely and systematically by proteomic
analysis, and the findings emphasized the crucial role of ri-
bosomes in radioresistance. Therefore, follow-up research
could focus on the association between ribosome and ra-
dioresistance, aiming at providing new therapeutic targets
for BC.

In addition to ribosomes, KEGG pathway enrichment
showed that spliceosome, thermogenesis, and oxidative
phosphorylation have a potential correlation with radiore-
sistance. Previous studies have reported that genes involved
in spliceosome assembly were significantly up-regulated in
BC [86]. Scholars speculated that the spliceosome may
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Fig. 6. Significantly enriched pathways from Kyoto Encyclopedia of Genes and Genomes (KEGG). The figure shows the top 20
KEGG pathways (p < 0.05). The color of the bar indicates the number of proteins detected for that pathway and the adjusted p-value,
respectively. (A) Up-regulated proteins. (B) Down-regulated proteins.

Fig. 7. Surviving fraction in PB and PR cells and validation of differential proteins. (A) Surviving fraction of PB and PR cells.
Representative images (left panel) and the quantitative analysis of three independent experiments (right panel) are shown, respectively.
(B) Western blot of S100A4, RanBP9, ISG15, RPL6, and RPS13 in PB and PR cells. β-actin was a loading control. A typical experiment
of three independent experiments is shown (top panel). Relative protein levels of S100A4, RanBP9, ISG15, RPL6, and RPS13 in PB and
PR cells with four independent treatments (bottom panel). All values were normalized to the level (=1) in PB cells. Each bar represents
the mean ± SD. **p < 0.01, *p < 0.05. PB: MDA-MB-231-PB; PR: MDA-MB-231-PR.

play an important mediation role in the tumor microenvi-
ronment via cell signal transduction and gene expression
regulation [87]. Thermogenesis and oxidative phosphory-

lation are highly regarded metabolic pathways. As an im-
portant part of the tumor microenvironment, thermogenesis
can provide an energy source [88], in turn promoting tumor
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progress [89,90]. Oxidative phosphorylation is over-active
in many cancers [91] and aggravates the carcinogenic be-
haviors by the hypoxia pathway [92–94], thereby maintain-
ing drug resistance and resulting in poor prognosis [95,96].

The findings of our study not only provide a reliable
theoretical basis for exploring the mechanism of radioresis-
tance but also provide a data set of radiosensitivity-related
proteins for building an evaluation model of individual ra-
diosensitivity. Each individual’s radiosensitivity is varied
and unpredictable [97]. Therefore, it is necessary to es-
tablish a model to evaluate the individual’s radiosensitivity
so as to formulate a more appropriate radiotherapy strat-
egy and obtain the maximum therapeutic benefit with min-
imal toxicity. In addition, there are already a variety of BC
proteins and transcripts as biomarkers. If the differentially
expressed protein screened in the study is used as a new
biomarker, it must be tested in validation studies with clin-
ical samples in advance.

It is worth mentioning that strict screening criteria
were used in the study. Most mass spectrometry analyses
only detected the differentially expressed proteins between
susceptible and tolerant cell lines and then defined these
proteins as sensitivity or resistance-related proteins. How-
ever, during the culture process, the cells inevitably produce
radiotherapy-independent proteins. Therefore, we included
radiation factors (i.e., irradiated groups C and D) to further
screen sensitivity or resistance-related proteins.

However, as the biological functions of ribosomes on
radiosensitivity remain largely unexplained, future studies
are warranted to confirm our findings. Our study was also
restricted to BC cell lines. Therefore, caution is needed if
generalizing the findings to other cancers and replication
research in diverse cancer cells is warranted.

In conclusion, our study screened potential
radioresistance-related proteins, which provide a ra-
tionale for further investigation of radioresistance and
subserve to develop an appropriate predictive model
for the evaluation of radioresistance in BC. Moreover,
the interaction of ribosomes with radioresistance may
serve as a promising therapeutic strategy. However, a
detailed delineation of the mechanism of modulating BC
radioresistance awaits future experimentation.

5. Conclusions
In conclusion, our study screened potential

radioresistance-related proteins, which provide a ra-
tionale for further investigation of radioresistance and
subserve to develop an appropriate predictive model
for the evaluation of radioresistance in BC. Moreover,
the interaction of ribosomes with radioresistance may
serve as a promising therapeutic strategy. However, a
detailed delineation of the mechanism of modulating BC
radioresistance awaits future experimentation.
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