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Abstract

Background: Cardiovascular disease (CVD) is challenging to diagnose and treat since symptoms appear late during the progression of
atherosclerosis. Conventional risk factors alone are not always sufficient to properly categorize at-risk patients, and clinical risk scores are
inadequate in predicting cardiac events. Integrating genomic-based biomarkers (GBBM) found in plasma/serum samples with novel non-
invasive radiomics-based biomarkers (RBBM) such as plaque area, plaque burden, and maximum plaque height can improve composite
CVD risk prediction in the pharmaceutical paradigm. These biomarkers consider several pathways involved in the pathophysiology of
atherosclerosis disease leading to CVD. Objective: This review proposes two hypotheses: (i) The composite biomarkers are strongly
correlated and can be used to detect the severity of CVD/Stroke precisely, and (ii) an explainable artificial intelligence (XAI)-based
composite risk CVD/Stroke model with survival analysis using deep learning (DL) can predict in preventive, precision, and personalized
(aiP3) framework benefiting the pharmaceutical paradigm. Method: The PRISMA search technique resulted in 214 studies assessing
composite biomarkers using radiogenomics for CVD/Stroke. The study presents a XAI model using AtheroEdgeTM 4.0 to determine
the risk of CVD/Stroke in the pharmaceutical framework using the radiogenomics biomarkers. Conclusions: Our observations suggest
that the composite CVD risk biomarkers using radiogenomics provide a new dimension to CVD/Stroke risk assessment. The proposed
review suggests a unique, unbiased, and XAI model based on AtheroEdgeTM 4.0 that can predict the composite risk of CVD/Stroke using
radiogenomics in the pharmaceutical paradigm.

Keywords: cardiovascular disease; stroke; biomarkers; radiomics; genomics; deep learning; bias; pruning; cloud; multicenter; pharma-
ceutical; explainable artificial intelligence
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1. Introduction
Cardiovascular diseases (CVD) kill 17.3 million peo-

ple each year. This figure is predicted to increase to 23.6
million by 2030 [1,2]. By 2030, this will cost $920 bil-
lion in direct healthcare costs, a challenge for the public
health system [3]. Among the various types of CVD, coro-
nary heart disease (CHD) is the leading cause. This disease
is due to atherosclerosis, the chronic inflammatory condi-
tion of the artery wall and one of the most common causes
of death [4,5]. CVD is caused by many things, includ-
ing genetic, metabolomic, environmental, behavioural, and
lifestyle factors [6,7]. Although traditional risk factors such
as age, gender, high cholesterol, high blood pressure [8],
smoking, and comorbidities like diabetes mellitus [9], obe-
sity [10], and hypertension [11,12] are commonly used risk
factors for predicting CVD risk, laboratory-based biomark-
ers are not always feasible, particularly in developing coun-
tries with resource constraints [13,14]. Also, most scoring
systems for CVD risk were made for Caucasians, and their
validity and usefulness in other ethnic groups are still un-
known [15]. As a result, CVD risk is frequently misdiag-
nosed. Although patients gain in some ways, it lacks the
ethnic effect of medication design as well as the benefits of
tailored therapy due to genomes and proteomics [16,17].

Furthermore, the current design of the risk assessment
tool lacks CVD risk stratification due to the non-linear be-
havior caused by the amalgamation of all the risk predictors
[18]. However, the benefit to the drug industry in medica-
tion design has not been realized due to the absence of arti-
ficial intelligence (AI) methodologies, which leads to CVD
risk stratification with different grades [19]. So, to achieve
the above objectives, one certainly needs AI strategies for
CVD risk assessment, particularly in big data or large co-
horts [20,21]. This requires composite CVD risk designs
that can operate in batch (large cohort side) mode, some-
times called Pharma (Pharmaceutical) Mode, for automati-
cally processing a large set of patients [22]. Previous stud-
ies conducted clinical trials but lacked AI-based solutions
[22].

Further, it did not consider the composite risk of CVD
stratification [23,24]. Studies that did CVD also lack AI-
based solutions [25]. Thus, there is a need for AI-based
CVD composite risk in large cohorts for pharmaceutical
companies to benefit from their drug design [26].

The Precision Medicine Initiative (PMI), introduced
by former US President Obama in 2015, can potentially re-
duce the worldwide burden of CVD by mobilizing collec-
tive resources and expertise to develop and spread knowl-
edge [27]. The precision medicine approach makes it pos-
sible to start treatments earlier, use more advanced diagnos-
tics, and make treatments more personalized and affordable
[28]. The precision medicine approach, with the help of
AI, can improve symptom-driven care by proactively com-
bining multi-omics assessments with clinical [28], imaging
[29,30], epidemiological [31], and demographic variables
[32].

Precision medicine allows for earlier treatments for
advanced diagnostics and tailoring better and more afford-
able personal treatment [29,33,34]. Advanced data analy-
sis techniques are being employed more and more to aid in
the development of successful CVD treatments [35]. Batch
mode processing allows large data sets to be analyzed at
once, facilitating a more thorough examination of patient
risk factors and comorbidities to determine the best course
of treatment [36]. Additionally, composite CVD risk strati-
fication considers the combined effect of multiple risk fac-
tors to create a more comprehensive assessment of a pa-
tient’s risk [37]. Finally, the ability to categorize patients
into different risk classes ranging from low to high allows
for more personalized and effective treatment approaches to
be developed based on a patient’s risk profile [38]. These
tools provide valuable support to healthcare providers in
managing CVD and improving patient outcomes. In this
paragraph, we have to first give the spirit of using DL due
to the success of DL in healthcare [39]. As a result, we
propose that DL can be adapted for routine mode and phar-
macological models for assessing CVD/Stroke risk.

This study proposes deep learning (DL) to stratify
the risk of CVD/Stroke using radiomics-based biomarker
(RBBM) and genomics-based biomarker (GBBM) as co-
variates in pharmaceutical mode. The study also inves-
tigates pruned or compacted AI systems for CVD risk
using multi-omics data and uses an explainability model
to illuminate AI’s “Black Box Nature” [40]. Fig. 1 de-
picts the explainable AI (XAI) model integration of vari-
ous CVD biomarkers, including (i) office-based biomark-
ers (OBBM), such as age, gender, ethnicity, BMI, hy-
pertension, and smoking, (ii) laboratory-based biomark-
ers (LBBM), such as LDL, HDL, triglycerides, eGFR, and
ESR, (iii) RBBM, such as plaque burden, cIMT, PA, and
maximum each patient tries to help clinicians figure out
how personalized medical information differences might
affect health, so they can diagnose and plan the best way
to treat the patient [41].

Finally, a cloud-based framework is implemented to
make the results clinically explainable [42] and accessible
through telemedicine [43,44]. The presented study aims to
reduce bias, increase compression, and achieve aiP3 goals
using the composite risk radio genomics model. The pre-
sented model discusses reliability, stability, and survival
analysis by AtheroPoint 4.0™, Roseville, CA, USA, for
CVD risk stratification.

2. Search Strategy
The search methodology employed the PRISMA

framework, illustrated in Fig. 2; we employed various key-
words to search for articles such as “cardiovascular dis-
ease”, “stroke”, “CVD”, “genomics and CVD”, “radiomics
and CVD and pharmamode”, “radiomics and stroke”, “ge-
nomics and stroke batch mode”, “prevention medicine and
clinical trial”, “preventive medicine and CVD”, “person-
alized medicine and artificial intelligence”, “atheroscle-
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Fig. 1. An overview of composite biomarkers using the XAI model for CVD risk stratification in the pharmaceutical domain
(Original image, AtheroPoint™ LLC, Roseville, CA, USA).

rotic in genomics”, “radiomics and AI”, “genomics and ra-
diomics”. Out of these 698 articles, 326 publications were
considered, while 289 studies were excluded based on three
criteria: unrelated research, irrelevant papers, and inade-
quate data. These criteria led to eliminating 289, 174, and
21 studies, as indicated by E1, E2, and E3 (Fig. 2), respec-
tively, resulting in a final assessment of 214 studies. Our
focus was solely on articles that linked CVD/Stroke with
radiomics and GBBM. Studies investigating diseases, such
as Parkinson’s, cancer, and diabetes, were not considered.

The omitted E1 category included 289 studies unre-
lated to CVD/Stroke or RBBM/GBBM. The E2 category
contained 174 papers that either neededmore information to
be included in our analysis or needed to show a link between
RBBM/GBBM and CVD/Stroke. Additionally, these stud-
ies lacked selectable AI and CVD/Stroke characteristics for
analysis that could be utilized for CVD/stroke risk stratifi-
cation. Finally, we found 27 research studies with inade-
quate data sets designated as E3 in the PRISMA model.

Fig. 2. PRISMA model for study selection.

3. Radiomics-Based CVD Risk Stratification
in Pharmaceutical Mode

Various radiological methods have been invented and
widely used in recent years to rule out and/or identify pre-
clinical atherosclerotic-based CVD to advise optimal pro-
phylactic therapy. Since the carotid artery can be used for
the prediction of coronary artery disease [45–48], thus the
most commonly used imaging modalities for its screening
are Magnetic Resonance Imaging (MRI) [49–51], Com-
puted Tomography Angiography (CTA) [52–56], Optical
Coherence Tomography (OCT) [57], and Ultrasound (US)
[58,59]. The US is the most common, user-friendly, cost-
effective, high-resolution, non-invasive image acquisition
modality capable of imaging and recognizing atheroscle-
rotic plaque [58,60,61].

3.1 Non-AI-Based Radiomics and CVD Risk Stratification
Plaque segmentation attempts to identify plaques pre-

cisely and consistently to measure plaque burden and track
progression over time. This can be used to diagnose and
plan treatment for CVD patients. The segmentation re-
sults can be utilized to quantitatively analyze plaque fea-
tures such as volume, shape, and composition. Regression
and progression of the plaque in over 10,000 patients in a
few hours retrospectively. Fig. 3 shows the carotid ultra-
sound image phenotype (CUSIP) parameters derived from
carotid artery scans representing the surrogate makers for
coronary atherosclerotic disease.

The segmentation process can be challenging due to
the variability in plaque appearance and the presence of
other structures in the images. A combination of multiple
methods can be used to improve the accuracy and reliabil-
ity of plaque segmentation as part of the radiomics features.
Carotid ultrasound image phenotypes (CUSIP) have been
tried before [62–64]. Therefore, it offers a wide range of
applications for regular proactive monitoring of atheroscle-
rotic plaque for CVD risk assessment [65–70]. The sta-
tistical reports in the Pharma Mode shown in Fig. 4 will
give the regression or progression of the plaque based on
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Fig. 3. Carotid artery scans show plaque in the far wall of the carotid artery. Carotid ultrasound image phenotype (CUSIP) consists
of carotid intima-media thickness (IMT, ave., max., min.) and total plaque area (TPA). The shaded yellow region corresponds to the region
of plaque burden. (A) Moderate plaque burden in carotid bulb; (B) Moderate plaque burden in common carotid artery; (C) Moderate-
High plaque burden in carotid blub artery; (D) High plaque burden in carotid blub artery; and (E) High plaque burden in carotid blub
artery. LCB, left carotid bulb; RCB, right carotid bulb (Original image, AtheroPointTM LLC, Roseville, CA, USA).

the statins during the 5–10-year follow-up of thousands of
patients. The surrogate carotid artery disease and genetic-
based biomarkers gathered from blood plasma will be used
to track the atherosclerotic disease of the coronary artery
disease. In addition, statistical regression plots will be con-
structed to link CVD risk to other clinical biomarkers.

3.2 AI-Based Radiomics and CVD Risk Stratification
AI-based radiomics techniques have been recently

used to extract and analyze segmented features from the
carotid artery based on carotid ultrasound imaging modal-
ities [30,71]. The studies have used different DL algo-
rithms, including convolutional neural networks (CNN),
UNet, UNet+, and DenseNet, along with other machine
learning (ML) algorithms such as support vector machine
(SVM), random forest (RF) and logistic regression (LR) for
classification. An example of AtheroEdge™ 3.0 in Pharma
mode is seen in Fig. 5A. On clicking the “Pharma Mode”
feature of the system, the epidemiologist or physician con-
ducting the Pharma trial will select the spreadsheet with
100,000 patients.

The patient data file will be loaded into the system
and ready to select the trained AI model for CVD risk
prediction. On clicking the “Trained Model” button, the
user can fetch the trained AI model and the number of risk
classes. Finally, on clicking the “Predict” button, the user
AtheroEdge™ 3.0 system will compute the risk of all the
100,000 patients in, say, five seconds per patient. Fig. 5B
depicts an example report. Table 1 (Ref. [30,72–80]) also
includes a list of the segment characteristics used in each in-

vestigation, such as carotid intima-media thickness (cMIT),
carotid wall thickness (cWT), lumen diameter (LD), plaque
load (PB), and plaque area (PA). Table 1 also displays the
accuracy (ACC), area under the curve (AUC), and study
conclusion for each algorithm. Saba et al. [72] used ML-
based radiomics to assess intra/inter-observer variability in
detecting the common carotid artery (CCA) using SVM and
RF classifiers, achieving an ACC of 98.32%. Biswas et al.
[30] used DL-based radiomics to detect joint cWT, and PB
features with an accuracy of 93% and AUC of 0.89. Vila
et al. [73] also used a DenseNet CNN model to detect and
estimate the cIMT with an ACC of 96.45% and an AUC
of 0.89. Jain et al. [74] used a UNet-based model to de-
tect and segment the CCA plaque area (PA) with an ACC
of 88% and an AUC of 0.91. In another study, Jain et al.
[75] used UNet+ to detect and segment the PA in the inter-
nal carotid artery (ICA) with an ACC of 97% and AUC of
0.99%. Yuan et al. [76] used UNet-based radiomics to seg-
ment and analyze cMIT and plaque with an ACC of 97%
and a Dice score of 83.3–85.7.

Molinari et al. [77] used a CNN-based radiomics
model to analyze cMIT and cWT features, achieving an
ACC of 95.6% and an AUC of 0.83. UNet-based tissue
characterization of CCA plaque by Gago et al. [78] yielded
an ACC of 79.00%. Shin et al. [79] used a CNN-based
model to analyze the viscous plaque index with an ACC of
83% and an AUC of 0.87, while Lainé et al. [80] segmented
the cWT with an ACC of 86% using a dilated U-Net archi-
tecture.
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Fig. 4. GUI view of AtheroEdge™ 2.0, showing carotid artery plaque measurement. (A) Pharma Mode selection for selection of
the image resolution. (B) CUSIP parameters showing cIMT and TPA measurements for low plaque patient. (C) CUSIP parameters
(cIMT/TPA) measurements for the high-plaque patient. (D) Pharma Mode report showing the CUSIP parameters and composite CVD
risk (marked in color code). This includes (i) renal effect on CVD risk via estimated glomerular filtration rate (eGFR) biomarkers, (ii)
arthritis effect on CVD using erythrocyte sedimentation rate (ESR) biomarkers, (iii) diabetic effect on CVD using HbA1c, (iv) changes
in CVD due to low-density lipoprotein (LDL) (Original image, AtheroPoint™ LLC, Roseville, CA, USA).

Fig. 5. GUI view of AtheroEdge™ 3.0, AI-based Cardiovascular Disease Risk Stratification system in Pharma mode. (A) AI-
based system in Pharma Mode with 70% (green) patient cohort processed. (B) AtheroEdge™ 3.0: An example of the results of the
Pharma Mode trial. The color code shows the CVD risk class. The percentage risk is shown in the second column from the right. The
rest of the columns are the CVD risk predictors (zoomed version of Fig. 5B is shown in the Supplementary Material) (Original image,
AtheroPoint™ LLC, Roseville, CA, USA).

5

https://www.imrpress.com


Table 1. Studies using DL-based radiomics (covariates) for segmented features using CCA.
SN Studies Year DS AS IM AI (ML/DL) AA Segment Features Performance Conclusion

Segmentation

1 Jain et al. [74] 2021 970 CCA US DL UNet, UNet+ PA ACC: 88%, AUC: 0.91 (p < 0.0001) Detection of PA and segmentation
2 Jain et al. [75] 2022 379 ICA US DL UNet, UNet+ PA AUC: 97%, AUC: 0.99 (p < 0.0001) Detection of PA and segmentation
3 Yuan et al. [76] 2022 115 CCA US DL UNet cMIT ACC: 97%, Dice 83.3–85.7 cMIT and Plaque segmentation
4 Gago et al. [78] 2022 8000 CCA US DL UNet PA, cMIT, and cWT

estimation
ACC: 79.00% Tissue characterization of plaque

5 Lainé et al. [80] 2022 2676 CCA US DL UNet cWT ACC: 86.00% Dilated U-net architecture is used for cWT

Classification

6 Saba et al. [72] 2018 100 CCA US ML SVM, RF LD ACC: 98.32% intra/inter-observer variability
7 Biswas et al. [30] 2020 250 CCA US DL CNN, LR cWT, PB cMIT error < 0.093 ± 0.0677 mm, AUC:

0.89 (p < 0.0001)
Joint detection cWT and PB

8 Vila et al. [73] 2020 8000 CCA US DL CNN (Dense Net) cIMT ACC: 96.45%, AUC: 0.89 (p < 0.0001) Plaque detection and cIMT estimation
9 Molinari et al. [77] 2022 500 CCA US DL CNN cMIT and cWT ACC: 95.6%, AUC:0.83 (p < 0.0001) cMIT and cWT measurement
10 Shin et al. [79] 2022 1440 CCA US DL CNN Plaque viscous index ACC: 83.00%, AUC: 0.87 (p < 0.0001) Viscoelasticity index
SN, Serial number; DS, Data size; AS, Artery Segment; IM, Imaging modality; CCA, Carotid artery; COA, Coronary artery; CLA, Classifier; FE, Feature extraction; IVUS, Intra-vascular ultrasound; US,
Ultrasound; cWT, Carotid wall thickness; cMIT, Carotid intima-media thickness; LD, Lumen diameter; PB, Plaque burden; PA, Plaque area; CCA, Common carotid artery; ICA, Internal carotid artery;
ACC, Accuracy; AUC, Area under the curve; AI, Artificial Intelligence; AA, AI Algorithms; ML, Machine Learning; DL, Deep Learning; HDL, Hybrid Deep Learning; SVM, Support vector machine; RF,
Random Forest; DT, Decision Tree; CNN, Convolution neural network; LR, Logistic regression; NR, Not Reported.
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4. Genomics-Based CVD Risk Stratification
in Pharmaceutical Model

Genetic factors play a significant role in the develop-
ment and progression of plaque buildup in the arteries, and
understanding an individual’s genetic makeup can provide
valuable insights into their risk for CVD. Genetic data is
used to identify potential treatment and prevention strate-
gies targets and can help personalize care for individual pa-
tients. To accurately assess and understand the plaque bur-
den in an individual, it is essential to have access to genetic
data. This section highlights conventional risk scores and
AI-based composite risk score methods for the personalized
predication of CVD.

4.1 Conventional Polygenic Risk Score and CVD Risk
Stratification

A polygenic risk score, often known as a “polygenic
risk score” or “PRS”, is a prediction tool that assesses an
individual’s genetic predisposition to various diseases, such
as CVD [81]. The PRS is estimated by taking into account
the presence and frequency of genetic variants associated
with the disease [82,83].

SNPs associated with CVD can be used as markers
to establish an individual’s genetic profile [84]. Individ-
ual genotyping data is collected after SNP identification.
Large-scale genotyping initiatives or DNA tests can pro-
vide genotype data [85]. After that, each person’s PRS is
calculated based on their genome’s risk allele count [86].
The CVD association of risk alleles influences their weight
[81]. The “effect size” measures how much an SNP affects
CVD risk [87]. This statistic typicallymeasures the strength
of the relationship between two variables. The odds ratio
compares the risk of CVD for those with a particular SNP
to those without [88]. The odds ratio usually quantifies the
effect [82]. An individual’s PRS is calculated by summing
the weights of all risk alleles found in their genotyping data
[89]. Higher PRS scores indicate a higher CVD predisposi-
tion. Fig. 6 shows using the molecular data to calculate the
PRS.

The PRS is not a diagnostic tool and should not be
used alone to make clinical decisions [90]. The PRS should
be used with family history, lifestyle, and other risk factors
to make a more informed decision about CVD risk [91,92].
Table 2 (Ref. [93–114]) lists In-vitro biomarkers that can
be identified in the serum and plasma of asymptomatic and
CVD patients. To improve diagnosis and CVD risk strati-
fication, multivariate genomic-based biomarkers and mul-
tivariable prediction models have been used [93,115,116].
The prediction models assess multivariate atherosclerosis
and coronary artery development indicators in circulating
molecules. Cellular, biochemical, epigenetic, and/or tran-
scriptional GBBM contributing to CVD are addressed be-
low. ACS biomarkers include C-reactive protein (CRP)
[94], a liver protein released in response to inflammation,
which increases cardiovascular risk. Another study by Bar-
wari et al. [95] and Barwari et al. [95] found plasma

LDL-cholesterol levels to be a biomarker for ACS. LDL-
cholesterol is considered “bad” because it causes arterial
plaque. Joshi et al. [96] and Cristell et al. [97] noted
that PCSK9 regulates cholesterol metabolism and that the
identified variant is associated with higher LDL-cholesterol
levels and an increased risk of cardiovascular events. Pedi-
cino et al. [98] and Partida et al. [99] identified pro-
inflammatory CD4+ cells with poor CD28 expression as a
biomarker for ACS. Sato et al. [100] and Montone et al.
[101] found that biomarkers of ACS include a drop in the
number of regulatory T lymphocytes and their ability to stop
cancer cells from growing. The following rows list plaque
rupture biomarkers without systemic inflammation. Kelley
et al. [102] found inflammasome activation, while Kreiner
et al. [103], Toldo et al. [104], and Omerovic et al. [105]
found interleukins 1 and 18 and emotional disturbance-
induced catecholamine release as CVD biomarkers. Re-
pova et al. [106] found neutrophil activity, while Dang
et al. [107] found macrophages or T lymphocytes as ACS
biomarkers, eroding plaque. In summary, Table 2 provides
a comprehensive overview of different biomarkers associ-
ated with plaque progression in patients with CVD. The ta-
ble highlights the complexity of CVD and the need for per-
sonalized treatment approaches based on individual patient
characteristics.

Radiogenomics Risk Predictors are valuable biomark-
ers used for CVD risk stratification, combining radiological
imaging data and genetic information to assess an individ-
ual’s CVD risk [75,117]. These predictors analyze quanti-
tative features extracted from imaging modalities like MRI,
CTA, OCT, and US, alongside genetic data, serving as spe-
cific indicators of pathological changes in the arteries [118].
Referred to as “RBBMs”, they are not mere symptoms but
powerful tools for risk evaluation [119]. Numerous stud-
ies, detailed in Table 1, have explored and emphasized the
significance of these risk predictors.

CAD affects major blood vessels supplying the heart
muscle, primarily due to cholesterol deposits causing
atherosclerosis, leading to reduced blood flow and poten-
tial heart attacks, angina, or strokes [120]. Symptoms of
CVD may differ between genders, with men experiencing
more chest pain and women often presenting shortness of
breath, nausea, and extreme fatigue, indicating underlying
heart or blood vessel issues [121]. Abnormal anatomical
conditions in CVD, such as cardiomegaly, myocardial in-
farction, vasculitis [122], atherosclerosis, and thrombosis
[123], are observable through medical imaging, physical
examinations [124], or laboratory tests, providing critical
insights into disease development. Studying these patho-
logical changes is vital for understanding CVD and utiliz-
ing radiological biomarkers, to detect stenosis and other risk
factors, contributing to a comprehensive comprehension of
CVD and its related conditions.

7

https://www.imrpress.com


Fig. 6. Molecular data used for prediction of PRS for CVD (Original image, AtheroPoint™ LLC, Roseville, CA, USA).

Table 2. Studies show the genomics biomarkers responsible for plaque progression.
SN Author Disease Phenotype Biomarker

1 Thibaut et al. [93],
Padua et al. [94]

CVD common phenotype C-reactive protein (CRP)

2 Barwari et al. [95],
Cristell et al. [97]

CVD common phenotype Plasma levels of low low-density protein
cholesterol (LDL-cholesterol)

3 Joshi et al. [96], Cristell
et al. [97]

CVD common phenotype PCSK9 variant

4 Pedicino et al. [98],
Partida et al. [99]

CVD systemic inflammation and plaque
rupture

CD4+ cells that are pro-inflammatory and have a
poor expression of the co-stimulatory molecule

CD28 on their cell surfaces
5 Sato et al. [100],

Montone et al. [101]
ACS systemic inflammation and plaque

rupture
a decrease in the number of circulating regulatory
T lymphocytes as well as their inhibitory function 

6 Montone et al. [101] CVD systemic inflammation and plaque
rupture

CD31 and protein tyrosine phosphatase N22,
upstream regulatory mediators, modulate T-cell

number and function.
7 Kelley et al. [102] CVD plaque rupture without systemic

inflammation
Activation of Inflammasome

8 Kreiner et al. [103] ACS plaque rupture without systemic
inflammation

Interleukin (IL)-1

9 Toldo et al. [104] CVD plaque rupture without systemic
inflammation

Interleukin (IL)-18

10 Omerovic et al. [105] CVD plaque rupture without systemic
inflammation

Catecholamine release due to emotional
disturbance

11 Repova et al. [106] CVD erosion of plaque activation of Neutrophil
12 Dang et al. [107] CVD erosion of plaque Macrophages or T lymphocytes
13 Thota et al. [108] CVD erosion of plaque Proteoglycans
14 Wang et al. [109] ACS erosion of plaque Glycosaminoglycans
15 Worssam et al. [110] CVD erosion of plaque Arterial Smooth Muscle Cells (SMCs)
16 Romo et al. [111] CVD erosion of plaque Monocyte HYAL2 expression increased.
17 Pinheiro-de-Sousa et al.

[112]
CVD erosion of plaque up regulation of Endothelial cell CD44

18 Chong et al. [113] CVD plaque in the absence of thrombus Vasospasm
19 Shimokawa et al. [114] CVD plaque in the absence of thrombus Rho-kinase activity
ACS, Acute Coronary syndrome.
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4.2 AI Genomics-Based Composite Risk Score for CVD
Risk Stratification

The medical imaging field has noted the progress
made in ML and DL [125–128]. Deep neural networks
(DNNs), a subset of DL, work like the human brain [39,117,
129]. AI has been used in recent studies to figure out the
risk of CVD using RBBM [11,12,38,130–134] and GBBM
[33,135,136] frameworks. DL is becoming more popular
because (i) it automatically extracts features [137], (ii) it
can fuse with different ML configurations for classifica-
tion [117,138], (iii) it uses UNet and Hybrid UNet-based
DL strategies for segmentation [43,119], and (iv) Lastly,
it gives more accurate segmentation and solo or ensemble-
based classification because it can go through forward and
backward propagation by reducing the loss using different
kinds of loss functions [74].

4.2.1 Training and Prediction
The architecture consists of two halves. The left is the

training subsystem, while the right is the prediction subsys-
tem.

The DL training classifiers consist of one of the
DL classifiers, namely, long short-term memory net-
work (LSTM), recurrent neural network (RNN), gated
recurrent units (GRU), bidirectional-LSMT (BiLSTM),
bidirectional-RNN (BiRNN), and bidirectional-GRU (Bi-
GRU) (presented in the following subsection).

Along with the DL classifier bank, there are super-
vised clinical risk labels representing ground truth (GT),
such as heart failure (or high CVD risk) and stroke [130,
139]. This GT representing the CAD includes computed
tomography (CT) coronary score [140] or quantification of
CAD lesions using intravascular ultrasound (IVUS) [141,
142]. Several non-linear training-based approaches have
been shown in heart disease risk stratification [12,132,134,
143]. Fig. 7 shows AI-based architecture for CVD risk as-
sessment.

4.2.2 Deep Learning Classifier Banks
The RNN [144], BiRNN [145], LSTM [146], BiL-

STM [147], GRU [148], and BiGRU [149] models eval-
uate sequential data, such as Electrocardiograph (ECG)
[148,150], text [146], speech [151], localization of myocar-
dial infraction [147], and handwriting [152,153]. Table 3
(Ref. [154–168]) below summarises AI-based genomics
studies that make a personalized and accurate prediction of
CVD. A total of 15 studies are listed in the table and de-
scribed with sample size, ground truth, technology, bench-
mark, source description, AI type, classifier type, cross-
validation technique, and performance characteristics. In
the first investigation, Davies et al. [154] (2010) tried to
predict CVD using SNP data in conjunction with ML tech-
niques using SVM and LR. The total number of participants
in the study was 2333, and the ACC and SPE parameters
each attained an AUC of 0.80 and 0.78, respectively. The
study was prospective.

Fig. 7. AI genomics-based architecture for CVD risk assess-
ment (Original image, AtheroPoint™ LLC, Roseville, CA,
USA).

Valavanis et al. [155] (2010) demonstrated the abil-
ity to predict CVD using DNA data and the DL algorithm
PDM-ANN. With a sample size of 63 in a retrospective
study, the accuracy of the prediction was found to be 95.5%.
However, Beigi et al. [156] (2011) used SNP data with an
SVM-based ML paradigm to predict CVD. In a prospec-
tive study, the sample size was only 23, but it still reached
a very high accuracy of 91%. By combining SNP data with
ML algorithms like SVM, RF, and XGB, Montañez et al.
[157] (2017) conducted a retrospective study that predicted
CVD. In the study, there were 12 participants, and the SPE
parameter managed to reach an AUC of 0.9.

Zhao et al. [158] (2019) carried out a prospective
study that uses SNP data in conjunction with the DL tech-
nique known as CNN to predict CVD. The total number of
participants in the trial was 490, and the AUC was 0.82.
To predict dilated cardiomyopathy (DCM), Schiano et al.
[159] (2021) used mRNA data in conjunction with the DT-
based ML technique. The study has an accuracy of 0.79
with a sample size of 443. Yang et al. [160] (2021) carried
out the study, which used SNP data and ML algorithms like
SVM and RF to predict CVD. The retrospective study in-
cluded 117 participants and obtained an AUC value of 0.91
for the SEN of 0.93. The study by Akbarzadeh et al. [161]
(2022) uses DNA data and ML algorithms SVM, DT, RF,
and LR to predict CVD. The prospective research study uti-
lized a sizable sample size of 4756 participants and success-
fully achieved a range of performance criteria, one of which
was an AUC of 0.78 for the ACC. The study, which was
conducted by Kesar et al. [162] (2022), forecasted CVD
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Table 3. AI-based genomics studies that predict CVD in a personalized and precision framework.

SN Studies Year SS GT BM SD Tech AI (ML/DL) CT CVP
Performance parameters

CTR
ACC SEN SPE AUC F1

1 Davies et al.
[154]

2010 2333 CVD LBBM,
OBBM

SNP GWAS ML SVM, LR 10K 0.61, 0.55 NR NR 0.80, 0.78 NR Prospective

2 Valavanis et
al. [155]

2010 63 CVD LBBM,
OBBM

DNA DEG DL PDM-ANN 3K 0.95 0.98 0.94 0.96 NR Retrospective

3 Beigi et al.
[156]

2011 23 CVD LBBM,
OBBM

SNP Proteinase k ML SVM 10K 0.91 NR NR NR NR Prospective

4 Montañez et
al. [157]

2017 12 CVD LBBM,
OBBM

SNP DEG ML SVM, RF, XGB 10K NR 0.88, 0.52,
0.70

0.86, 0.95,
0.82

0.90, 0.87,
0.85

NR Retrospective

5 Zhao et al.
[158]

2019 490 CVD LBBM,
OBBM

SNP DEG DL CNN 10K 0.81 0.83 0.79 0.82 NR Prospective

6 Schiano et al.
[159]

2021 443 DCM LBBM mRNA DEG ML DT 10K 0.79 NR NR NR NR Prospective

7 Yang et al.
[160]

2021 117 CVD LBBM,
OBBM

SNP DEG ML SVM, RF 10K 0.86, 0.89 NR NR 0.91, 0.93 NR Retrospective

8 Akbarzadeh et
al. [161]

2022 4756 CVD LBBM DNA Proteinase k ML SVM, DT, RF,
LR

5K 0.72,0.73,
0.74, 0.70

0.66,0.66,
0.69, 0.67

0.78,0.80,
0.78,0.73

0.78, 0.77,
0.80, 0.77

NR Prospective

9 Kesar et al.
[162]

2022 203 CVD LBBM,
OBBM

NR NR ML LR, XGB 10K NR NR NR 0.75, 0.76 NR Prospective

10 Pirruccello et
al. [163]

2022 116 CVD LBBM,
OBBM

SNP DEG DL UNet 10K 0.96 NR NR NR NR Retrospective

11 Steinfeldt et
al. [164]

2022 395713 CVD LBBM NR NR DL CNN 10K 0.78 NR 0.81 NR NR Prospective

12 Lee et al.
[165]

2022 283 CVD LBBM SNP DEG ML LR 10K 0.81 0.79 0.83 NR NR Retrospective

13 Libiseller‑Egger
et al. [166]

2022 34432 CVD LBBM,
OBBM

SNP GWAS DL SVM, LR 5K 0.76 0.81 0.84 0.81 NR Prospective

14 Kang et al.
[167]

2023 17044 AMI LBBM mRNA and
miRNA

DEG ML SVM, RF, DT 10K 0.81, 0.85,
0.81

079, 0.89,
0.77

0.84, 0.82,
0.86

0.92, 0.96,
0.88

NR Retrospective

15 Venkat et al.
[168]

2023 82 CVD LBBM,
OBBM

SNP DEG ML RF 5K 0.80 NR NR NR NR Prospective

SN, serial number; SS, Sample size; GT, Ground Truth; Tech, Technique; BM, Benchmark; LBBM, Lab-base biomarkers; OBBM, Office base biomarkers; SD, Source description; AI, Artificial Intelligence;
CT, classifier type; CVP, Cross-validation protocol; CTR, Clinical trials; ACC, Accuracy; SEN, Sensitivity; SPE, Specificity; AUC, Area under the curve; ML, Machine Learning; DL, Deep Learning; CNN,
Convolution neural network; PDM, parameter decreasing method; ANN, Artificial neural network; PDM, parameter decreasing method; DEG, Differential expression gene; SVM, Support vector machine; RF,
Random forest; DT, Decision tree; NR, Not Reported; DCM, Dilated cardiomyopathy; AMI, Acute myocardial infarction.
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using both LBBM and OBBM; however, the data types
were not stated. The research had a total of 203 partici-
pants as its sample size, and it managed to get an AUC of
0.75 and an F1 score of 0.76. The research was prospective
in scope.

Overall, these studies demonstrate the potential of AI-
based genomics approaches to predict CVD accurately and
provide personalized and precise care for patients. How-
ever, more studies are needed to validate these approaches’
effectiveness and assess their impact on clinical practice.

5. Explainable AI, Reliability Stability, and
Survival Analysis of Model for CVD Risk
Stratification in Joint Cloud and
Pharmaceutical Framework

This section discusses using explainable AI, reliability
stability, and survival analysis techniques to design and de-
velop the CVD risk stratification in a joint cloud and phar-
maceutical framework. It examines the benefits and limita-
tions of these techniques and provides examples of success-
ful implementations. Section 5.1 focuses on the importance
of explainability in AI-based decision-making in the phar-
maceutical paradigm. It discusses different techniques to
ensure explainability, provides examples of use cases, and
examines potential benefits and limitations.

Section 5.2 discusses the use of cloud-based solutions
for AI in the pharmaceutical industry, including the ben-
efits of scalability, flexibility, and cost-effectiveness. It
also examines potential challenges and limitations, such
as data security and privacy concerns, and provides case
studies of successful implementations. Subsection 5.3 ex-
plains the use of statistical methods to analyze the reliability
and accuracy of AI prediction models in the pharmaceuti-
cal industry. It provides an overview of common statisti-
cal techniques, different types of AI prediction models, and
case studies of successful applications. Lastly, Subsection
5.4 focuses on applying AI-based survival analysis in the
pharmaceutical industry. It examines different types of AI-
based survival analysis models, their benefits, and the im-
portance of interpretability and explainability. It also pro-
vides case studies of successful applications.

5.1 Explainable AI-Based Decision-Making in
Pharmaceutical Model

In the past, AI models were considered “black boxes”,
meaning that it was unknown what specific patterns in the
input data would result in the desired output. To put it an-
other way, even if a classification algorithm is nearly per-
fect, humans must still determine what circumstances led to
the categorisation [169]. The lack of transparency in model
decisions becomes problematic when a model is trained
to make accurate predictions based on features that are ir-
relevant to the situation at hand, and, as a result, it lacks
generalization for that dataset [170]. Fig. 8 (Ref. [171])
shows the eight customizable DL processes: (i) DL train-
ing, (ii) quality assurance (QA), (iii) installation, (iv) de-

ployment, (v) prediction, (vi) cross-validation-based testing
(A/B test), (vii) monitoring, and (viii) debugging. These
processes are made possible by incorporating the feedback
loop in XAI. Incorporating XAI enhances its usability, in-
creasing demand for such systems and generating higher
revenue [172]. Moreover, it offers greater stability to the
AI system, thus extending the lifespan of the product de-
sign. XAI strategies expose sophisticated model decision
patterns [173]. XAI can provide new information about a
dataset and the disease by revealing input variables’ predic-
tive importance, including risk factors, traits, and protein
expression levels. However, models like principal com-
ponent analysis (PCA), LR, and Cox linear regression use
model parameters to determine feature relevance [174].

The average importance of features across samples is
determined using feature analysis [175]. Training mod-
els to distinguish across classes can be expanded to nu-
merous classes, providing insights such as specific patient
groups [176]. XAI clinical power stems from strategies
that explain patient decisions. Fig. 9 illustrates the clin-
ical decision system concept employing XAI. If the AI
model predicts a patient’s risk, the doctor can inquire about
the model’s output for clinical, imaging, or molecular fea-
tures route databases and gene set enrichment estimates
can uncover risk variables and molecular disease pathways.
This information can help clinicians choose better treatment
plans. Furthermore, by understanding the decision process,
the physician will be able to judge the accuracy of the pre-
dictions. Explainability has thus been recommended as an
ethical requirement for prospective clinical decision sys-
tems [177]. This section describes various XAI techniques
and summarises medical and clinical applications for pa-
tient evaluation [8,42,43,153].

Explainable Modeling
XAI can help interpret the results of a clinical Pharma

Mode, such as the diseases like CVD. An ML model was
trained in Pharma Mode to predict the risk of CVD based
on clinical and demographic variables. Local interpretable
model-agnostic explanations (LIME) work by training a lo-
cal linear model to approximate the behavior of the ML
model in the neighbourhood of a specific instance. The lo-
cal model can be used to identify which features strongly in-
fluence the predicted outcome for that instance. The equa-
tion for the local linear model is:

f (x′) = w0 + w1 ∗ x′
1 + w2 ∗ x′

2 + · · ·+ wn ∗ x′
n (1)

where, x′ is a modified version of the original input
x, and w0, w1, ..., wn are the weights of the linear model.
LIME uses a technique called feature perturbation to gen-
erate modified instances x′ that are similar to the original
instance but have one or more features changed. The local
model is trained on a set of perturbed instances and their
corresponding predictions, and the weights are learned us-
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Fig. 8. Eight aspects of XAI [171].

Fig. 9. Clinical features decisions system using XAI. AI mod-
els are trained using clinical, imaging, or multi-omics data into
different classes (low, mild, moderate, and high). The trained al-
gorithm predicts (prediction blocks) patient disease or symptom
risk. Lastly, the XAI presents decision patterns to help the doctor
evaluate the forecast and plan treatment (Original image, Athero-
Point™ LLC, Roseville, CA, USA).

ing linear regression. On the other hand, Shapley addi-
tive explanations (SHAP) use a game-theoretic approach
to assign a contribution score to each feature in the model.
The contribution score represents the degree to which each
feature contributes to the difference between the model’s
and average predictions across all possible feature combi-
nations. The equation for the SHAP value of a feature i is:

ϕi(x) =

(
1

M

)
∗
∑

mj1
M

[
f (xj)− E [f (zj)] ∗ hi(zj)

]
(2)

where x is the instance to be explained,M is the num-
ber of feature combinations, f is the ML model, E [f (zj)]

is the expected value of foverall feature combinations that
include feature i, and hi is a function that measures the dif-
ference between the prediction of the model with and with-
out feature i for a given instance zj . The SHAP value of a
feature i represents the average contribution of that feature
to the difference between the model’s prediction for x and
the average prediction for all possible feature combinations.
In the context of the CVD Pharma Mode, LIME and SHAP
techniques can be used to identify which clinical and demo-
graphic features aremost important for predicting the risk of
CVD and to explain how the model arrives at its predictions
for individual patients. This information can help physi-
cians make more informed decisions about patient care and
identify areas where further research is needed.

5.2 Cloud-based Explainable AI in Pharmaceutical Model

Cloud-based XAI is an approach that allows re-
searchers and healthcare professionals to access powerful
ML/DL models and tools for data analysis and prediction
without needing specialized hardware or software. In the
context of predicting CVD, cloud-based XAI can provide
an efficient and cost-effective way to analyze large amounts
of data and generate accurate predictions. Cloud-basedXAI
relies on cloud computing technology, which involves us-
ing remote servers to store and process data rather than re-
lying on local resources [43,72,178,179]. Fig. 10 shows a
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Fig. 10. AtheroCloud™ system depicts a typical daily routine. A yellow color fills the plaque region, representing the total plaque
area after the image has been loaded in the Routine mode and the “Auto Trace” button has been clicked (Original image, AtheroPoint™
LLC, Roseville, CA, USA).

cloud-based XAI system. By leveraging cloud-based in-
frastructure, researchers can access powerful computing re-
sources andAImodels that can process vast amounts of data
quickly and efficiently.

To build a cloud-based XAI system for predicting
CVD reserchers can follow a few steps: (i) Feature selec-
tion: Feature selection is the process of identifying the most
important features contributing to predicting CVD. This can
be accomplished through the use of statistical approaches
such as regression analysis or machine learning/deep learn-
ing algorithms that automatically choose the most relevant
features. (ii) Model interpretability: The model can be
made more interpretable using algorithms that explain in-
dividual predictions, such as LIME and SHAP. These algo-
rithms provide feature importance scores and highlight the
most important features for a specific prediction. (iii) Data
visualization: Data visualization can be utilized to explore
data and uncover patterns and relationships among features.
Visualization tools such as scatter plots, heatmaps, and box
plots can help researchers identify outliers and correlations
that may be useful for predicting CVD. (iv) Cloud-based
infrastructure: Cloud-based infrastructure can be used to
store and process large amounts of data, making it possi-
ble to build more complex and accurate models.

Cloud-based AI platforms such as Amazon Web Ser-
vices (AWS) and Google Cloud Platform (GCP) provide
powerful tools for building and deploying ML/DL mod-
els [180]. (v) Collaboration: Collaboration is essential
for developing accurate and reliable models for CVD pre-

diction. Cloud-based XAI platforms enable researchers to
share data and models, collaborate on model development,
and work together to identify new insights and approaches
[181]. Cloud-based XAI has several advantages over tradi-
tional on-premises solutions. First, researchers can access
powerful computing resources without needing specialized
hardware or software. Second, it provides a scalable and
flexible platform that can be easily adapted to meet chang-
ing healthcare needs. Finally, it enables researchers and
healthcare professionals to collaborate and share data and
models, leading to better and more accurate predictions for
CVD and other health conditions.

5.3 Explainable AI Using Heatmaps

Heatmaps in Explainable AI work by highlighting the
regions of input data that significantly influence themodel’s
output. For image-based tasks, such as object detection or
medical image analysis, heatmaps visually depict the im-
portance of different pixels or regions within the input im-
age. The intensity of colors in the heatmap indicates the
magnitude of the model’s focus on particular areas [182].
The generation of heatmaps often involves techniques like
Gradient-weighted Class ActivationMapping (Grad-CAM)
and Guided Backpropagation. Grad-CAM computes the
gradients of the target class with respect to the final con-
volutional layer’s feature maps. These gradients are then
global-average-pooled to obtain the heatmap, which high-
lights the relevant regions in the image. Guided Backprop-
agation, on the other hand, is used to ensure that only mean-
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ingful features are highlighted in the heatmap by prevent-
ing the model from backpropagating through unimportant
regions [183]. By interpreting heatmaps, researchers, do-
main experts, and end-users gain valuable insights into why
a specific decision wasmade by the AImodel. For instance,
in medical diagnosis, heatmaps can help doctors understand
which regions of an X-ray or MRI scan contributed most to
the AI model’s identification of a certain condition [184].

Skandha et al. [138] proposed the first of its kind
method to characterize and classify the carotid plaque us-
ing an optimized transfer learning approach and SuriNet
(a class of Atheromatic™ 2.0 TL). Eleven Atheromatic™
models were implemented, and the best AUC was 0.961
(p< 0.0001) fromMobileNet and 0.927 (p< 0.0001) from
SuriNet. We validated the performance using grayscale
median, fractal dimension, higher-order spectra, and spa-
tial heatmaps. TL showed equal and comparable perfor-
mance to deep learning. The Atheromatic™ 2.0 TL model
showed a performance improvement of 12.9% over Athero-
matic™ 1.0 ML (AtheroPoint™, Roseville, CA, USA)
compared with the previous. Moreover, the Athero-
matic™ 2.0 TL model displayed an outstanding 12.9% per-
formance improvement over the previous Atheromatic™
1.0ML (AtheroPoint™, Roseville, CA, USA), which was
based on traditional machine learning techniques. Notably,
the system’s validity was established using a widely ac-
cepted dataset, reinforcing the robustness and reliability of
the findings. This study sets a significant milestone in un-
derstanding carotid plaque characteristics, opening new av-
enues for enhanced diagnosis and treatment in the field of
carotid artery disease.

In conclusion, heatmaps are a crucial tool in the toolkit
of Explainable AI, offering visual interpretations of AI
model decisions and making complex AI systems more
transparent and interpretable. As AI continues to impact
various aspects of our lives, XAI using heatmaps will play
an instrumental role in building responsible and trustworthy
AI applications.

5.4 Statistical Analysis of Artificial Intelligence Prediction
Models

The statistical analysis involved the presentation of
continuous variables as mean ± standard deviation. The
normal distribution of continuous variables was verified us-
ing the Kolmogorov-Smirnov test [185]. The independent
samples t-test orMann-Whitney U test was used to compare
continuous data, while the chi-square test or Fisher’s exact
test was used for categorical variables, as appropriate [186].
For comparisons involving multiple groups, one-way anal-
ysis of variance (ANOVA) or Kruskal-Wallis H test with
Bonferroni test was used, as appropriate [187]. Pearson r
and Spearman rho coefficient were used for correlation as-
sessment, depending on the nature of the data [188].

Multivariable linear regression analysis assessed the
association between left atrium (LA) function parameters
and myocardial scar size/location [118]. The regression

models included demographic characteristics, traditional
cardiovascular risk factors, and Late gadolinium enhance-
ment (LGE) location/size as covariates. To avoid co-
linearity, Spearman correlation coefficients were used to
test for correlations between continuous variables, and vari-
ables with r>0.50 were excluded from the same multivari-
able model [189]. A p-value < 0.05 was considered statis-
tically significant. The analysis was performed using IBM
SPSS Statistics version 22 (SPSS Inc., Chicago, IL, USA)
[190].

5.5 Artificial Intelligence-Based Survival Analysis
AI-based survival analysis is a cutting-edge technique

used to predict the risk of CVD [134]. Using huge amounts
of medical data, AI algorithms may estimate the chance of
an individual having CVD based on parameters such as age,
gender, blood pressure, cholesterol levels, and lifestyle pat-
terns [129]. This approach can give physicians valuable in-
sights into patient health and help them create personalized
treatment plans for each individual [191].

By utilizing AI-based survival analysis, doctors can
also identify high-risk individuals who may require closer
monitoring or more aggressive treatment to prevent the de-
velopment of CVD [192]. AI technology can revolutionize
the healthcare industry by improving the accuracy of CVD
diagnosis and treatment, leading to better patient outcomes
and improved overall public health [69,193].

6. Critical Discussions
The ML/DL system needs to overcome critical con-

cerns like bias, explainability, ergonomic design, and af-
fordability to ensure the safety and effectiveness of themed-
ical product, such as CVD risk stratification.

6.1 Principal Findings
This is the first study of its kind (a) that combines

radiomics and genomic biomarkers to detect the severity
of CVD and stroke risk precisely, and (b) an explainable
XAI-based composite risk CVD/Stroke model using DL
can predict with precision in a preventive and personalized
(aiP3) framework benefiting pharmaceutical paradigm. Us-
ing these two hypotheses, we demonstrated that CVD and
stroke risk severity could be determined using RBBM and
GBBM biomarkers in the DL framework. Such models can
be considered “personalized medicine frameworks”. One
significant advancement is the inclusion of carotid imag-
ing and CVD genetic indicators in the DL framework for
CVD risk classification. A set of six recommendations
for accurate, robust, real-time CVD risk assessment uti-
lizing combined RBBM and GBBM were offered. The
study proposed model having significant potential such as
(a) radiomics and genomic biomarkers have a strong cor-
relation and can be used to detect the severity of CVD
and stroke precisely, and (b) The proposed review suggests
a unique, unbiased, and XAI model (AtheroEdgeTM 4.0)
that can predict the composite risk of CVD/Stroke using
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Table 4. Benchmarking table for CVD risk using multivariate biomarkers.
K0 K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 K11 K12 K13 K14 K15 K16 K17

1 Krittanawong et al. [194] 2017 31 ✓ ✓ 7 ✓ ✓ 7 ✓ ✓ ✓ NR 7 7 7 7

2 Arena et al. [195] 2018 202 ✓ ✓ 7 ✓ 7 7 ✓ 7 ✓ NR 7 7 7 7

3 Krittanawong et al. [27] 2018 88 ✓ ✓ 7 ✓ 7 7 ✓ 7 ✓ DL 7 7 7 7

4 Jamthikar et al. [143] 2019 110 ✓ ✓ ✓ 7 7 7 ✓ ✓ 7 HDL 7 7 7 7

5 Saba et al. [199] 2019 125 ✓ ✓ ✓ 7 7 7 ✓ ✓ 7 DL 7 7 7 7

6 Dainis et al. [41] 2019 83 ✓ ✓ 7 ✓ 7 7 ✓ 7 ✓ DL 7 7 7 7

7 Gruson et al. [201] 2020 42 ✓ ✓ 7 ✓ ✓ 7 ✓ 7 ✓ HDL 7 7 7 7

8 Alimadadi et al. [197] 2020 56 ✓ ✓ 7 ✓ 7 7 ✓ 7 ✓ ML 7 7 7 7

9 Saba et al. [198] 2020 69 ✓ ✓ ✓ 7 7 7 ✓ ✓ 7 ML 7 7 ✓ 7

10 Westerlund et al. [196] 2021 167 ✓ ✓ 7 ✓ 7 7 ✓ 7 ✓ DL 7 7 7 7

11 Schiano et al. [159] 2021 29 ✓ ✓ 7 ✓ ✓ 7 ✓ 7 ✓ ML 7 7 7 7

12 Jain et al. [119] 2022 67 ✓ ✓ ✓ 7 7 7 7 ✓ 7 ML 7 7 7 7

13 Staub et al. [200] 2022 25 ✓ ✓ ✓ 7 7 7 7 ✓ 7 NR 7 7 7 7

14 Jain et al. [75] 2022 85 ✓ ✓ ✓ 7 7 7 ✓ ✓ 7 DL 7 7 ✓ ✓
15 Saba et al. (Proposed) 2023 214 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ DL 7 7 ✓ ✓
K0: Serial Number, K1: Studies, K2: Year, K3: References, K4: OBBM, K5: LBBM, K6: RBBM, K7: GBBM, K8:
PBBM, K9: EBBM, K10: Preventive, K11: Prediction, K12: Personalized, K13: AI Type, K14: FDA discussion, K15:
Clinical Setting, K16: Risk of Bias, K17: AI explainability. CVD, Cardiovascular Disease; DL, Deep Learning; ML,
Machine Learning; HDL, Hybrid deep learning; NR, Not reported.

radiogenomics in the pharmaceutical paradigm. The pro-
posed model required less time than the traditional model
to stratify CVD/stroke risk, saving thousands of hours us-
ing phrmamode.

AtheroCloudTM can be utilized in either the (a) “Rou-
tine” mode or the (b) “Pharma” trial mode. Both the batch
of carotid ultrasound scans and individual scans are auto-
matically processed in real-time in the Routine mode and
Pharma trial mode, respectively, during the patient visit.
The system supports large databases, from gigabytes to ter-
abytes, and can operate in batch mode, processing as many
as 10,000 images simultaneously.

6.2 Benchmarking

Table 4 (Ref. [27,41,75,119,143,159,194–201]) dis-
plays the benchmarking studies. It has 17 attributes,
namely, K0: Serial Number, K1: Studies, K2: Year, K3:
References, K4: OBBM, K5: LBBM, K6: RBBM, K7:
GBBM, K8: PBBM, K9: EBBM, K10: Preventive, K11:
Prediction, K12: Personalized, K13: AI Type, K14: FDA
discussion, K15: Clinical Setting, K16: Risk of bias; K17:
AI explainability. Our observations showed that there
were only eight studies [27,41,159,194–197] that discussed
the role of GBBM in CVD using DL, while the remain-
ing studies predicted CVD using RBBM [75,119,143,198–
200,202,203]. However, all the studies mentioned the role
of OBBM and LBBM in CVD risk. Five studies adopted
DL technologies [27,41,75,196,198,199], while eight stud-
ies used ML [11,131,197,202], and two studies used HDL
[143,201]. Only four studies discussed the risk of bias
(RoB) [75,143,202]. Except for the proposed study, no
other study addressed clinical settings, AI explainability,
and fusion of GBBM and RBBM.

6.3 The Role of AI Bias during Designs
Evaluating bias in AI models has gained much greater

significance in recent years [204,205]. Earlier computer-
aided diagnosis techniques showed a lack of bias in evalua-
tions [206]. To reduce bias, a large sample size, appropriate
clinical testing, the incorporation of comorbidities, the use
of big data configurations, the usage of unseen data anal-
ysis, and the scientific validation of training model design
are all strategies that can be utilized [140,207]. Essential
phases in patient risk stratification include determining the
AI RoB [191,207,208] and suitably modifying diagnostics
and treatment.

6.4 The Role of Pruning-Based AI Systems
Edge devices are becoming increasingly important as

cloud-based systems and the internet improve. Edge de-
vices are extremely important when using trained AI mod-
els for future predictions or disease risk stratifications in
mobile frameworks. There is a requirement to deploy com-
pressed models since huge data models cannot be deployed
on edge devices. Image-basedDLmodels such as fully con-
volutional networks (FCN) or segmentation networks (Seg-
Net) [40] can be pruned using evolutionary algorithms such
as Particle SwarmOptimization (PSO), Genetic Algorithms
(GA), Wolf Optimization (WO), and Differential Evolution
(DE) [209]. The future of radiomics-based CVD risk strat-
ification fused genetic-based paradigms can be compressed
and deployed on edge devices for rural areas, especially in
third-world nations.

6.5 Recommendations
The following are recommendations for a sug-

gested Radiogenomics model that can be used to stratify
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CVD/stroke risk. The study proposes two hypotheses: (a)
radiomics and genomic biomarkers have a strong correla-
tion and can be used to detect the severity of CVD and
stroke precisely, and (b) The proposed review suggests a
unique, unbiased, and XAI model (AtheroEdgeTM 4.0) that
can predict the composite risk of CVD/Stroke using radio-
genomics in the pharmaceutical paradigm. The following
recommendations are: (i) requires a clinical evaluation and
scientific validation for reliable detection and CVD risk
stratification, and (ii) requires hyper-parameter optimiza-
tion in CVD/Stroke risk stratification. (iii) balancing the
risk classes (control, low-risk, and high-risk) is the most
effective way to minimize DL bias; (iv) with proper prun-
ing and compression, DL systems can be adapted to edge
devices; (v) A DL system that relies on surrogate carotid
imaging can be cost-effective without compromising preci-
sion in CVD risk stratification.

6.6 Strengths, Weakness, and Extensions
This pilot review’s ability to risk stratify CVD and

stroke patients by integrating RBBM and GBBMwas a ma-
jor strength. The biomarkers generated from radiological,
biochemical, and morphological complexity that demon-
strated a link to CVD supported the first hypothesis. An
XAI-based composite risk CVD/Stroke model using DL
can predict, with precision, in a preventive and personalized
(aiP3) framework benefiting the pharmaceutical paradigm.
A DL approach was presented to evaluate CVD and stroke
risk by integrating RBBM and GBBM. While the system
is pretty straightforward, it requires optimization to elimi-
nate the possibility of bias and generalization to account for
comorbidities. Better comprehensive feature space can be
tried for superior DL-based classification [210]. Ensemble-
based solutions embedding PCA for best feature selection
followed by recurrent neural networks are possible exten-
sions for superior CVD/stroke risk solutions [211].

6.7 The Role Odds Ratio in Clinical Trials
In clinical trials, researchers often analyze the effec-

tiveness of a new treatment or intervention compared to a
control group. One of the essential statistical measures used
in this context is the “Odds Ratio” (OR). The odds ratio
helps to assess the association between an exposure (such
as receiving a treatment) and an outcome (such as a positive
response to the treatment) [212].

The odds ratio is calculated by taking the ratio of two
odds: the odds of an event occurring in the treatment group
and the odds of the same event occurring in the control
group. Mathematically, it can be expressed as:

The odds ratio is calculated as follows:

OR = (a/b)/(c/d) (3)

Where:
• a is the number of people in the exposed group who

have the outcome
• b is the number of people in the exposed group who

do not have the outcome
• c is the number of people in the unexposed group

who have the outcome
• d is the number of people in the unexposed group

who do not have the outcome
The odds ratio can be used to determine if there is a

significant difference in the odds of the outcome between
the treatment and control groups. If the odds ratio is equal to
1, it suggests that there is no association between the treat-
ment and the outcome, meaning the treatment has no effect.
If the odds ratio is greater than 1, it indicates that the treat-
ment is associated with a higher likelihood of the outcome.
Conversely, if the odds ratio is less than 1, it implies that
the treatment is associated with a lower likelihood of the
outcome [213].

Researchers typically calculate the odds ratio along
with a confidence interval to assess the statistical signifi-
cance of the results. If the confidence interval includes the
value 1, the results are considered not statistically signifi-
cant, while values above or below 1 indicate a statistically
significant association [214]. The odds ratio is a useful tool
in clinical trials as it provides valuable information about
the relative impact of a treatment compared to a control
group. However, it’s essential to interpret the odds ratio
in the context of the study design and the specific clinical
question being addressed [214]. In conclusion, the odds ra-
tio is a critical statistical measure used in clinical trials to
analyze the association between treatment and outcomes,
providing valuable insights into the effectiveness of inter-
ventions.

7. Conclusions
The proposed research investigation presented two hy-

potheses: (i) an extensive investigation into several ge-
nomic biomarkers, namely, IL, CD31+, EPCs, and hs-
CRP, which have been found to correlate most significantly
with prognosis. The surrogate radiomic features such as
plaque burden, plaque area, carotid intima thickness, max-
imum plaque height, and lumen stenosis/lumen diameter
further improve the CVD risk prediction. (ii) The pro-
posed review suggests a unique, unbiased, and XAI model
(AtheroEdgeTM 4.0) that can predict the composite risk of
CVD/Stroke using radio genomics in the pharmaceutical
paradigm. There is a strong link between the genetic and
radiomic biomarkers of atherosclerosis in the carotid, coro-
nary, and aortic arteries. A DL-based system is critical
in reducing nonlinearity among multi-covariate biomarkers
and outcomes. During this pilot review, various issues were
considered, such as AI bias, AI pruning, and a suggestion
for a cloud-based cascaded system design.
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