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Abstract

Background: Ovarian cancer (OC) is one of the most lethal gynecological malignant neoplasms. The aim of this study was to use
high-throughput sequencing data to investigate the molecular and clinical characteristics of OC subtypes related to lipid metabolism and
glycolysis, thus providing a theoretical basis for clinical decision-making. Methods: Molecular data and clinicopathological character-
istics of OC patients were extracted from the Cancer Genome Atlas (TCGA), Genotype-Tissue Expression Project (GTEx), and the Gene
Expression Omnibus (GEO). Following analysis of genes involved in lipid metabolism and glycolysis, OC was classified into subtypes
by unsupervised clustering. The molecular features and clinical outcomes of these subtypes were then evaluated. Results: OC patients
were divided into five subtypes based on the analysis of nine genes of interest. Amongst these, patients in subtype D had longer overall
survival and more benign clinical features. Subtypes B and E had shorter overall- and progression-free survival, respectively. Both
the B and E subtypes were closely related to lipid metabolism and to the glycolytic process. Subtype D was positively correlated with
the infiltration of CD8+ T cells, CD4+ T cells, and macrophages, all of which play essential anti-tumor roles. Several risk models for
selected subtypes were also constructed based on the expression of select genes. Conclusions: The present work revealed that irregular
metabolism in OC tissues was an indicator of poor clinical outcome and altered homeostasis in cancer-related pathways. Moreover,
aberrant gene expression signatures associated with lipid metabolism and glycolysis were also correlated with an immunosuppressive
tumor microenvironment. Based on lipid metabolism and glycolysis, we have therefore identified several OC molecular subtypes that
may prove useful for the development of potential therapeutic targets.
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1. Introduction
Ovarian cancer (OC) is one of the most common ma-

lignant neoplasms in women globally. Because of the in-
sidious onset of OC and its rapid progress, most patients are
diagnosed at an advanced stage [1]. The alteredmetabolism
of OC and other cells within the tumor microenvironment
is a critical factor that drives OC progression [2]. Recent
genomic analysis has revealed that remodeling of metabolic
pathways may play an important role in several tumor types
[3,4]. The classification of OC into different subtypes with
distinct metabolic characteristics may therefore help with
tumor diagnosis and with the prediction of patient out-
comes.

Other recent work has revealed that cancer cells have
unusual lipid metabolism and activation of related path-
ways [5]. Lipids generally regarded as being associated
with cancer development and resistance to chemotherapy
include fatty acids, glycerolipids, glycerophospholipids,
sphingolipids, and sterol lipids [6]. Differences in lipid
metabolism between benign and cancer tissues have long

been considered to represent possible targets for cancer
therapy [7,8]. An association has also been reported be-
tween a high-fat diet, which can alter lipid metabolism,
and the development of prostate cancer [9]. Moreover, ex-
osomes originating from colorectal cancer cells can pro-
mote pre-metastatic niche formation and liver metastasis
via aberrant lipid metabolism in cancer-associated fibrob-
lasts [10].

Molecular subtypes that are based on lipid-
metabolism-related signatures and have significant
clinical value have been reported in several cancer types,
including bladder, gastric, lung, and colon [11–14]. Al-
though associations between lipid metabolism and many
different tumor types have been reported, the overall
influence of lipid metabolism on OC development remains
poorly understood.

Similar to lipogenesis, glycolysis is often aberrantly
activated in cancer [15]. This supplies cancer cells with
abundant energy while also suppressing oxidative stress by
avoiding the electron transport chain responsible for the
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generation of reactive oxygen species [16,17]. Moreover,
it has been shown that lactate, which is the final product of
glycolysis, mediates the reprogramming of immune cells.
This helps to establish disease-specific conditions via post-
translational histone lactylation [18]. Elevated glycolysis is
a prominent feature of OC, and the modulation of glucose
metabolism has been reported to increase drug resistance
[19].

Glucose is the direct source of lipid synthesis in
most tumor cells. Glucose-derived acetyl-CoA is con-
verted to citrate via the tricarboxylic acid cycle, which is
then exported by mitochondria to the cytoplasm, where
it is involved in lipid synthesis [20]. In prostate cancer,
androgen can promote the utilization of glucose for de
novo lipid synthesis by upregulating hexokinase 2 (HK2)
and 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase
2 (PFKFB2), thus demonstrating the relationship between
glycolysis and lipid synthesis [21]. However, little is
known about the crosstalk between lipid metabolism and
glycolysis that can drive the aggressive features of OC, such
as motility, invasiveness, and tumor-initiating capacity. It
seems important, therefore, to identify potential biomarkers
andOC subtypes related to lipidmetabolism and glycolysis.

The aim of the present study was to comprehensively
investigate the metabolic signatures in OC that are asso-
ciated with altered metabolic transcriptional profiles. To
achieve this, we analyzed genomic data from The Univer-
sity Of Cingifornia Santa Cruz (UCSC) Xena and Gene Ex-
pression Omnibus (GEO). Three metabolic subtypes of OC
were identified based on nine signatures associated with
lipid metabolism or glycolysis. In addition, we found some
unique clinicopathological features associated with two
other subtypes, although patient survival was not signifi-
cantly different. The clinical features of patients with dis-
tinct metabolic features revealed the occurrence of tumor-
specificmolecular events within these subtypes. Our results
led to the construction of a clinically useful OC classifica-
tion scheme that could help to further clarify the relation-
ship between lipid metabolism and glycolysis, as well as
guide the design of targeted therapy for OC.

2. Materials and Methods
2.1 Data Extraction and Processing

RNA-Seq data and clinical information from OC
patients were derived from the Cancer Genome Atlas
(TCGA)-TARGET- Genotype-Tissue Expression Project
(GTEx) cohort in the UCSC Xena database. GEO
data was downloaded from GEO Series (GSE)18520,
GSE18521, GSE27651, GSE26193, GSE14764,
GSE26712, GSE32062, GSE63885, and GSE26942.
Lipid metabolism and glycolysis-related gene sets were ob-
tained from the Molecular Signatures Database (MSigDB
v7.0) and the Kyoto Encyclopedia of Genes and Genomes
(KEGG).

RNA-Seq data from the UCSCXena and GEO cohorts
were processed as follows: (1) samples without full clinical
information were excluded; (2) the Ensemble or probe IDs
were converted to Gene Symbol; (3) the mean value was
recorded if there were multiple Gene Symbol expressions;
and (4) Open source softwares including Linear Models
for Microarray Data (limma v3.56.2, Victoria, Australia in
Bioconductor v3.17, Heidelberg, Germany) and Surrogate
Variable Analysis (sva v3.48.0, Baltimore, MD, USA in
Bioconductor v3.17) operating in R 4.3.0 (Vienna, Austria)
were used to remove batch effects and to normalize the data.

2.2 Identification of Metabolism Subtypes in OC
The R package “ConsensusClusterPlus” v1.64.0

(Chapel Hill, NC, USA) was used to identify different
subtypes based on lipid metabolism and glycolysis-related
genes. Metabolism subtypes were obtained using the fol-
lowing parameters: reps = 50, pItem = 0.8, pFeature = 1,
and distance = pearson. After performing unsupervised
hierarchical clustering with the same parameters accord-
ing to the expression of critical genes obtained from lipid
metabolism and glycolysis pathways, 5 molecular-based
subtypes were obtained.

2.3 Functional Enrichment Analyses and Gene Set
Variation Analysis

The functions of critical genes associated with lipid
metabolism and glycolysis were investigated using the on-
line tool DAVID (Database for Annotation, Visualization
and Integrated Discovery). This was used to annotate sig-
natureswith a potential role in the development of OC based
on Gene Ontology (GO) terms. Terms with p values< 0.05
were deemed to be statistically significant.

In addition, gene sets associated with lipid metabolism
were downloaded from the MSigDB v7.0, while genes in-
volved in glycolysis were downloaded from KEGG. Each
gene set was comprehensively analyzed using the gene set
variation analysis (GSVA v1.48.1, Catalonia, Spain) algo-
rithm, with an evaluation of the specific variation in biolog-
ical processes between subtypes. In order to visualize the
differences in pathways between different subtypes, heat
maps were constructed using the “pheatmap” R package.

2.4 Immune Analyses
The ESTIMATE (Estimation of Stromal and Immune

cells in Malignant Tumor tissues using Expression data)
method was used to calculate the stromal score, immune
score, and tumor purity. The CIBERSORT (Cell-type Iden-
tification By Estimating Relative Subsets Of RNA Tran-
scripts) algorithm was then used to analyze the RNA-Seq
data of OC patients in order to determine the relative pro-
portions of 22 types of infiltrating immune cells.
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2.5 Construction of Risk Models for Different OC Subtypes
The critical genes identified from both the TCGA and

GEO databases were selected for least absolute shrinkage
and selection operator (LASSO) regression analysis via the
“glmnet” package. The selected genes were used to calcu-
late the risk score by adding the gene expression multiplied
by the corresponding coefficient.

3. Results
3.1 Identification of Critical Metabolic Genes in OC

Following the analysis of data from TCGA-TARGET-
GTEx and GEO, 71 lipid metabolism-related genes were
found to be significantly upregulated in OC (Fig. 1A, Sup-
plementary Tables 1–5). GO results revealed that in ad-
dition to lipid metabolism, these genes were also involved
in ion transport, cell response to peroxides, and adenosine
triphosphate (ATP) binding. This piqued our interest since
they are also involved in glycolysis (Fig. 1B, Supplemen-
tary Table 6). Therefore, we obtained 25 key compo-
nents of the glycolysis pathway derived from KEGG and
performed subsequent analysis (Supplementary Table 7).
After building a protein-protein interaction (PPI) network
via the STRING database, we found interactions between
four lipid metabolism-related genes (Mini-chromosome
Maintenance Complex Component 2 (MCM2), nucleolar
and spindle associated protein (NUSAP1), Isocitrate De-
hydrogenase (NADP+) 2 (IDH2), and (BUB1) and five
critical genes for glycolysis (Glucose-6-Phosphate Iso-
merase (GPI), glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), BPGM, Lactate dehydrogenase B (LDHB), and
PFKP) (Fig. 1C and Supplementary Table 8). To fur-
ther explore the relationships among these, we performed a
correlation analysis of the transcriptomic profiles from OC
samples in the TCGA. As shown in Fig. 1D, strong cor-
relations were found between these genes. GPI, GAPDH,
BPGM, and PFKP were also found to be upregulated in
OC,whereas LDHBwas downregulated (Fig. 1E). Genomic
mutation analysis revealed these genes had significant copy
number variation in OC, which could affect their messen-
ger RNA (mRNA) expression (Fig. 1F). The chromosomal
location of the nine genes is shown in Fig. 1G. By ana-
lyzing the survival of OC patients using KMplotter (https:
//kmplot.com), high expression levels forMCM2,NUSAP1,
IDH2, BUB1,GPI, and LDHBwere found to associate with
poor outcomes, whereas upregulation of GAPDH expres-
sion was associated with better survival (Fig. 1H). The ex-
pression of BPGM and PFKP was not significantly cor-
related with prognosis; however, patients with high ex-
pression of these genes showed trends for poor outcomes
(Supplementary Fig. 1).

3.2 Patient Outcomes and Clinical Features of the Five
Metabolic OC Subtypes

We next investigated the clinical features of patients
with OC subtypes classified by expression signatures for

lipidmetabolism and glycolysis genes, as well as the enrich-
ment scores for metabolism-related pathways. The RNA
sequencing data of 1164 OC patients was extracted from
TCGA (n = 378) and GEO datasets, including GSE14764 (n
= 80), GSE18521 (n = 53), GSE26193 (n = 107), GSE26712
(n = 185), GSE32062 (n = 260) and GSE63885 (n = 101).
Unsupervised cluster analysis classified the OC patients
into five subtypes (maxK= 5) (Fig. 2A). After deleting sam-
ples missing patient survival data, 1138 OC samples were
available for analysis. Subtype D patients had longer over-
all survival time compared to the other four subtypes (66.56
months, Mantel-Cox p value < 0.0001), whereas subtype
B patients had the shortest overall survival (40 months,
Mantel-Cox p value < 0.05) (Fig. 2B). Subtype E patients
had the shortest progression-free survival (17.08 months,
Mantel-Cox p value = 0.042) (Fig. 2B).

We next analyzed the clinicopathological features of
the five OC subtypes; the clinical information of patients
was shown in Supplementary Table 9. Subtype D pa-
tients showed significant differences in age, The Interna-
tional Federation of Gynecology and Obstetrics (FIGO)
stage, The World Health Organization (WHO) classifica-
tion, Breast Cancer Susceptibility Protein 1 (BRCA1) mu-
tation, platinum-based chemotherapy sensitivity, and clin-
ical response compared to the other subtypes (Fig. 2C–
E,G,I,J). The histological composition and Tumor Protein
P53 (TP53)mutation status of subtype B patients were also
significantly different (Fig. 2F,H). Overall, these results
suggest that lipid metabolism and glycolysis processes may
differ between OC patients and are significantly correlated
with clinical features and outcomes. It is, therefore, impor-
tant to be able to distinguish between the five subtypes.

3.3 GSVA Reveals that OC Subtypes have Distinct
Metabolic Characteristics

The five subtypes described above showed differ-
ent expression levels for lipid metabolism and glycolysis-
related genes. The expression levels for the nine aforemen-
tioned genes were also significantly different between the
five subgroups. We further analyzed the possible molecular
mechanisms relating to these subtypes based on their differ-
ent clinical features. The GSVA score of the metabolism-
related gene set in subtype B was significantly higher
than that of subtype D. Interestingly, in addition to a high
metabolism-related gene set score, subtype E was signifi-
cantly enriched for gene sets or pathways related to DNA
replication and the cell cycle (Fig. 3). This suggests that
subtype B and E patients may have a poor prognosis due
to disruptions in their metabolic processes and that lipid
metabolism and glycolytic metabolism may be necessary
for OC cell division.
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Fig. 1. Distinct gene expression signatures associated with lipid metabolism and glycolysis in ovarian cancer (OC). (A) The
expression of 11,436 genes involved in lipid metabolism and obtained with Molecular Signatures Database (MSigDB v7.0) using three
datasets (the Cancer Genome Atlas (TCGA)-TARGET- Genotype-Tissue Expression Project (GTEx), GSE18520, and GSE27651) are
displayed as a Venn diagram. Each dataset is represented by distinct colors. A total of 71 genes were upregulated in all three datasets
(|log2 Fold Change| >2, adjust p-value < 0.05). (B) GO analysis of these 71 lipid metabolic genes in OC. (C) Correlation analyses
for expression of the critical signature genes associated with lipid metabolism and glycolysis in TCGA. (D) Protein-protein interaction
(PPI) network of 9 genes involved in the regulation of lipid metabolism and glycolysis. (E) Expression of 5 glycolysis-related genes in
TCGA-TARGET-GTEx. (F) Mutation analysis of 9 genes in TCGA OC samples analyzed via cBioportal. (G) Chromosome locations
of the 9 genes. (H) KMplotter analysis of the relationship between overall survival of OC patients and the expression of 5 genes (*p <

0.05). Abbreviation: GTEx, Genotype-Tissue Expression Project; GEO, Gene Expression Omnibus.

3.4 The Tumor Immune Microenvironment and Aberrant
Metabolism in OC

Immunotherapy is safe and effective, especially for
OC patients who do not respond well to chemotherapy
and poly ADP-ribose polymerase inhibitor (PARPi) ther-
apy. We, therefore, compared the immune microenviron-
ment between different OC metabolic subtypes in order to
evaluate the correlation between lipid metabolism and gly-
colysis processes. Not surprisingly, subtype D showed a
higher infiltration with CD8+ T cells, CD4+ T cells, and
macrophages compared to the other subtypes. Subtype E
showed lower infiltration of most immune cell types com-
pared to the other subtypes. These differences in immune
cell signatures between OCmetabolic subtypes indicate po-
tential variation in therapeutic sensitivity to immunotherapy
and could therefore help to guide the choice of individual
therapies for OC patients (Fig. 4).

3.5 Construction of a Prognostic Model with the 9 Genes
Associated with Lipid Metabolism and Glycolysis

We next constructed risk models for three OC sub-
types (B, D, and E) based on the expression of nine critical
genes and the survival outcome of patients. OC samples
were divided in a ratio of 7:3 into training and test sets, re-
spectively. The prognostic value of the nine genes in the
different subtypes was analyzed in the training set using
LASSO-Cox analysis. Variables with Cox p < 0.05 were
incorporated into the LASSO procedure, and correspond-
ing variables were retrieved subject to a minimum Lambda
(λ) value (Fig. 5). The formulae for the final 9-gene signa-
tures in the three subtypes were:

Subtype B: Risk score = MCM2 × 0.390754 +
NUSAP1 × 0.074372 + IDH2 × –0.222335 + BUB1 ×
0.379793 + GPI × –0.216464 + GAPDH × 0.22577 +
BPGM × –0.091337 + LDHB × 0.001043 + PFKP ×
0.046298
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Fig. 2. Clinical features of different OC subtypes identified by lipid metabolism and glycolysis. (A) The ConsensusClusterPlus
package was used to perform unsupervised hierarchical clustering for 1164 OC samples. Five OC subtypes were identified using this
method. (B) Results from Kaplan–Meier analysis revealed marked differences in overall- and progression-free patient survival for the
5 metabolic subtypes of OC. The log-rank test was used to statistically evaluate the survival differences. (C–J) Fisher’s exact test was
performed to evaluate differences in the following clinical features between patients from subtypes B, D, and E: (C) age, (D) Gynecology
and Obstetrics (FIGO) Stage, (E) grade, (F) histology, (G) Breast Cancer Susceptibility Protein (BRCA) status, (H) Tumor Protein P53
(TP53) status, (I) platinum sensitivity, (J) clinical status. The proportions of each clinical feature in the different OC subtypes are shown
(*p < 0.05, **p < 0.01).

Subtype D: Risk score = MCM2 × –0.1327 +
NUSAP1× 0.3433 + IDH2× –0.39141 +BUB1× 0.17157
+GPI× 0.08761 +GAPDH× 0.53605 +BPGM× 0.08978
+ LDHB × 0.16939 + PFKP × 0.09034

Subtype E: Risk score = MCM2 × –0.275412 +
NUSAP1 × –0.048727 + IDH2 × –0.028002 + BUB1 ×
0.316162 + GPI × 0.407496 + GAPDH × –0.106956 +
BPGM × 0.007721 + LDHB × 0.144628 + PFKP × –
0.011904

4. Discussion
The TCGA and GEO databases were used in the

present study to identify five metabolic subtypes of OC ac-
cording to lipid metabolism and glycolysis. These were
then linked to underlying gene expression patterns that play
critical roles in tumor biology, clinical outcome, and the tu-
mor immune microenvironment.

Although the specific mechanisms remain unclear, the
abnormal energy metabolism of tumor cells is related to
their aberrant proliferation, invasion, and metastasis [22].

Furthermore, the reprogramming of lipid metabolism and
glycolysis affects the normal response to tumors, as well as
the body’s sensitivity to chemotherapeutic drugs [23–25].
A pan-cancer study found that gene expression profiles as-
sociated with metabolic pathways can indicate whether im-
portant metabolites in the body are altered [26]. The study
of closely related molecular subtypes and associated clin-
ical characteristics of OC patients can shed light on the
metabolic differences in OC and lead to a better understand-
ing of patient outcomes. Moreover, the development of a
risk prediction model based on metabolic features should
provide a novel approach to clinical diagnosis and treat-
ment.

We used bioinformatic methods in the current study to
identify five OC subtypes with distinct metabolic features.
Subtype D had an inactive profile for lipid metabolism and
glycolysis-relevant pathways and better patient prognosis
than subtypes B and E. Other analyses revealed that subtype
D also displayed a high level of immune cell infiltration,
which is known to be associated with immune activation
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Fig. 3. Significantly enriched gene sets in OC subtypes classified according to critical metabolic signatures. (A) and (B) Gene
Set Variation Analysis (GSVA) results for OC samples in the TCGA and GEO cohorts. The heat map shows the normalized enrichment
scores for subtypes B and D. (C,D) GSVA results for OC samples in the TCGA and GEO cohorts. The heat map shows the normalized
enrichment scores for subtypes E and D.
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Fig. 4. The immune microenvironment in different OC subtypes. (A) Cell-type Identification By Estimating Relative Subsets Of
RNA Transcripts (CIBERSORT) scores for immune cell infiltration in OC subtypes are displayed as heat maps. (B) Infiltration scores
for three immune cell types in three OC metabolic subtypes. **p < 0.01, *p < 0.05. (C) Integrated Estimation of Stromal and Immune
cells in Malignant Tumor tissues using Expression data (ESTIMATE) scores for different OC subtypes are presented as violin plots. (*p
< 0.05, ***p < 0.001, ****p < 0.0001).

[27–29]. Subtype D is also correlated with TP53 mutation,
which is indicative of stromal invasion and mesenchymal
activation [30]. Overall, subtype D OC, therefore, exhibits
an ideal metabolic phenotype, and targetingmetabolic path-
ways might potentially reverse the poor clinical status of
patients in subgroups B and E.

Although we focused on three subtypes in the present
study, further investigation of the remaining two subtypes
could prove worthwhile. Examination of the clinical char-
acteristics for the five OC subtypes revealed a higher pro-
portion of non-serous carcinoma in subtype A patients. The
evaluation of treatment response in this study was based
on platinum-based therapy. Therefore, our results suggest
that subtype A could be more sensitive to treatment with
other drugs, although more in-depth research is required.
Subtype C showed a lower percentage of TP53 mutations,
which could result in fewer mutations and, therefore, fewer
changes in cancer-associated antigens, thereby explaining
the small number of immune cell infiltrates. Subtypes A
and C can be further classified in more detail in future stud-
ies.

The present study also developed a risk model for
predicting patient outcomes. The nine metabolism-related
genes used to identify the B, D, and E subtypes showed
good predictive value. Thus, lipid metabolism and glycol-
ysis are key factors in the body’s resistance to cancer.

Previous studies have also implicated the nine
metabolic genes in tumorigenesis. Mini-chromosome
Maintenance Complex Component 2 (MCM2) was first im-
plicated in chromosome initiation in eukaryotic cells, and
the inhibition of MCM2 promotes the sensitivity of OC
to carboplatin [31]. Hiramatsu K et al. [32] reported
that knockdown of MCM2 via siRNA interference signifi-
cantly decreased the proliferation rate of ovarian cancer cell
line. Nucleolar and spindle associated protein (NUSAP1) is
an important chromosome-chromosome interaction protein
that also has an important role in the OC cell cycle [33].
Moreover, the tumor-promoting effects of NUSAP1 in gas-
tric cancer aremediatedmainly throughYes-associated pro-
tein 1 (YAP1), with the aberrant expression of NUSAP1
and YAP1 being highly correlated in gastric cancer cells
and tissues [34]. Isocitrate Dehydrogenase (NADP+) 2
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Fig. 5. Construction ofmultigene riskmodels usingLASSO-Cox regression analysis. (A) The trajectory of each independent variable,
where the horizontal axis represents the log-value of the independent variable lambda and the vertical axis represents the coefficient of
the independent variable. (B) The confidence interval under each lambda.

(IDH2) has an important function in the conversion of 2-
hydroxyglutaric acid (2-HA). It is expressed in many tu-
mor types, including acute myeloid leukemia, cholangio-
carcinoma, chondrosarcoma, and glioma [35–37]. BUB1
mitotic checkpoint serine/threonine kinase (BUB1) is a ser-
ine/threonine kinase that plays a key role in mitosis. It
can activate the Signal transducer and activator of tran-
scription 3 (STAT3) pathway, thereby affecting tumor de-
velopment and progression [38]. Zhu et al. [39] found
that BUB1 overexpression increased SMAD family mem-
ber 2 (SMAD2) phosphorylation, which may be linked
to the epithelial–mesenchymal transition in liver cancer.
Genetic variants of Glucose-6-Phosphate Isomerase (GPI)
have prognostic significance in liver cancer and can also be
used as molecular markers of overall survival [40]. A previ-
ous study reported that activation of Akt2 can reduce tumor
cell apoptosis induced by glyceraldehyde-3-phosphate de-
hydrogenase (GAPDH), thus enhancing their viability [41].
Das et al. [42] reported that GAPDH is associated with
GPI in Ehrlich ascites carcinoma (EAC) cells and in 3-
methylcholanthrene-induced mouse tumor tissue. GPI may
also regulate the enzymatic activity of GAPDH. Lactate de-
hydrogenase B (LDHB) catalyzes the interconversion of
pyruvate and lactate with concomitant interconversion of

NADH and NAD+ in a post-glycolysis process. Brisson
et al. [43] reported that LDHB regulates lysosomal acid-
ification, vesicle maturation, and intracellular proteolysis.
LDHB activity is essential for basal autophagy and cell pro-
liferation in oxidative cancer cells and in glycolytic cancer
cells. However, some of the metabolites identified in our
study were not significantly related to the prognosis of OC.
It is currently unclear how these metabolites regulate the
survival of OC cells.

There are several shortcomings to this study. First,
public gene chip and RNA-seq data were used to screen
1164 cases, with the results possibly influenced by the plat-
form used. Moreover, this analysis was carried out on ret-
rospective data, and more prospective trials and tests are
therefore needed. In addition, the results of this project
are based on publicly available data obtained from OC tis-
sue samples and are discussed in relation to the relevant
molecular mechanisms and possible impact on cancer tis-
sues. Furthermore, the roles of several metabolic factors
closely related to the molecular mechanisms of OC devel-
opment were studied.
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5. Conclusions
Overall, this study describes several different OC sub-

types from the perspective of lipid metabolism and glycol-
ysis, thereby providing novel information on the pathogen-
esis and clinical classification of OC. These results provide
a theoretical foundation for the prevention and treatment of
OC and for further drug research and development in this
area.
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