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Abstract

Background: Over the past few years, there have been many reports on the abnormal expression and functional relevance of long non-
coding RNAs (lncRNAs) in tumors. The role played by lncRNAs in epithelial ovarian carcinoma (EOC) remains poorly understood,
however the goal of the present work was to study molecular mechanisms that underlie involvement of prostate androgen-regulated
transcript 1 (PART1) lncRNA in EOC development. Methods: A total of 25 tumor and 17 normal specimens were obtained from women
undergoing surgery between 2015 and 2019 in the Second Affiliated Hospital, Nanjing Medical University. Expression levels for PART1
in EOC tissue and EOC cell lines were assessed using qRT-PCR. Assays for CCK-8, trans-well, colony forming and western blotting
were used to investigate PART1, miR-150-5p andMYB (MYB proto-oncogene) for their invovement in EOC cell proliferation, migration
and invasion. Luciferase reporter gene assay was also performed to investigate biological functions of PART1, miR-150-5p and MYB in
EOC, and an animal xenograft model was employed to test tumorigenicity. Results: PART1 expression was increased in EOC relative to
normal cells and correlated with EOC cell proliferation, migration and invasion. PART1 can sponge miR-150, thereby inhibiting growth
of EOC by targeting MYB. The xenograft mouse model revealed that PART1 can regulate tumorigenesis in vivo. Conclusions: The
PART1/miR-150/MYB axis is involved in EOC pathogenesis and could represent a new target to use in diagnosis and therapy.
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1. Introduction
Epithelial ovarian carcinoma (EOC) accounts for a

large proportion of gynecologic malignancies, with an an-
nual incidence of 3–12 new cases per 100,000 women [1,2].
The most common treatment for EOC is maximum surgi-
cal cytoreduction combined with platinum chemotherapy.
Despite the advances in surgery and chemoradiotherapy, 5-
year survival rates for EOC patients are still poor due to
the relatively late diagnosis of this disease and to acquired
drug resistance [3–6]. It is therefore crucial to identify the
molecular mechanism associated with the development of
EOC.

A large-scale human genomic sequencing study
showed that just 2% is transcribed into RNA that codes
for protein. Most of the remaining RNA transcripts are
non-coding (ncRNA) [7]. Long ncRNA (lncRNA) is de-
fined as non-coding transcript >200 nucleotides(nt) long
[8]. The use of lncRNA as possible biomarkers in differ-
ent tumor types has been proposed [9,10]. Several studies
have also reported an imbalance between lncRNAs and mi-
croRNAs (miRNAs) in lung, hepatic, pancreatic and gas-

tric cancers, and recently in EOC [11–16]. Other work-
ers have shown that dysregulation between lncRNA and
miRNA levels is closely correlated with several biological
behaviors in cancer cells. These include aberrant prolifer-
ation, invasion and migration of cells, as well as chemical
resistance. Such properties could be mediated through the
signaling pathway for lncRNA-miRNA-mRNA in what is
referred to as the competing endogenous RNA (ceRNA)
hypothesis [17–19]. Expression of the lncRNA HOXD-
AS1, is elevated in EOC, for example. This lncRNA was
found to facilitate EOC cell invasion and migration, in
addition to epithelial-mesenchymal transition, via HOXD-
AS1/miR-186-5p/PIK3R3 signaling pathways [20], such as
the ADAMTS9-AS2/miR-182-5p/FOXF2 pathway [21].

Here, we identified PART1/miR-150-5p/MYB axis in
EOCs was identified, as well as the presence of a ceRNA
mechanism. This axis was shown to have a major impact
on EOC progression.
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Table 1. LncRNA PART1 and the Clinicopathological Features of epithelial ovarian carcinoma (EOC) Patients.

Variables Cases (25)
LncRNA PART1 expressional level

pLow/Negative High
<3.994 ≥3.994

Age (years) >0.05
≤55 11 6 5
>55 14 6 8

FIGO stage <0.05
I–II 10 8 2
III–IV 15 4 11

Histological grade <0.05
1–2 13 9 4
3 12 3 9

FIGO stage, International Federation of Gynecology and Obstetrics stage.

2. Material and Methods
2.1 Subjects and EOC Clinical Specimens

Tumor (n = 25) and normal (n = 17) tissue were ob-
tained from women undergoing surgery for EOC between
2015 and 2019 at our institution. None had received pre-
operative chemoradiotherapy. Histopathology was used
to confirm specimens prior to storage in a liquid nitrogen
tank at –196 °C until the extraction of RNA. All patients
gave informed consent. The major clinicopathological fea-
tures of cohort are indicated below (Table 1). For the re-
lationship betweenMYB, miR-150-5p and clinicopatholog-
ical features, see Supplementary Tables 1,2. Ethical ap-
proval for the study was given by the host institute (No.
2017AE02133, approval date December 3, 2017) and the
Declaration of Helsinki guidelines were followed.

2.2 Cell Culture and Treatments
The human cell lines studied here were provided

by the Chinese Science Academy (Shanghai, China) and
Zhong Qiao Xin Zhou (Shanghai, China). These con-
sisted of normal ovarian surface epithelial cells (IOSE80,
ZQ0721, Zhong Qiao Xin Zhou, Shanghai, China) and
three EOC cell lines ((A2780, ZQ0486, Zhong Qiao
Xin Zhou, Shanghai, China), (SKOV3, TCHu185, Chi-
nese Science Academy, Shanghai, China) and (OVCAR3,
TCHu228, Chinese Science Academy, Shanghai, China)).
SKOV3 was grown in McCoy’s 5A medium (Gibco, New
York, USA) with 10% fetal bovine serum (FBS), while re-
maining cell lines were grown in Dulbecco’s modified Ea-
gle medium (DMEM) with high-glucose and 10% FBS.
Cells were kept at 37 °C in a humidified incubator with 5%
CO2 concentration. Mycoplasma testing has been done for
the cell lines used. The cell lines used have been authen-
ticated and Short Tandem Repeat (STR) was used for the
authentication.

2.3 RNA Isolation for Quantitative RT-PCR (qRT-PCR)
RNA was extracted with Trizol (Invitrogen, Carlsbad,

USA) and cDNA for qPCR was prepared using HiScript II

SuperMix (Vazyme, Nanjing, China). qRT-PCR (Q6, Life)
was carried out with SYBR® Green PCR Master Mix (Ap-
plied Biosystems, Waltham, USA) and primer sequences as
follow: PART1 forward 5′CTCCTGCGGTTTCCCATT3′,
reverse 5′ATCTCACCAGACACCTGCCTAC3′; miR-
150-5p forward 5′CGGGCTCTCCCAACCCTTGT3′,
reverse 5′CAGCCACAAAAGAGCACAAT3′; MYB
forward 5′GGCACACAAGAGACTGGGGA3′, reverse
5′CGACCTTCCGACGCATTGTA3′; glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) forward
5′ACCCACTCCTCCACCTTTGAC3′, reverse
5′TGTTGCTGTAGCCAAATTCGTT3′; U6 for-
ward 5′CTCGCTTCGGCAGCACA3′, reverse
5′AACGCTTCACGAATTTGCGT3′. The cycling
conditions were: stage 1 (pre-denaturation): 95 °C, 10
min; stage 2 (cyclic reaction, 40 times): 95 °C for 10 sec;
60 °C for 30 sec; stage 3 (dissolution curve): 95 °C for
15 sec; 60 °C for 60 sec; 95 °C for 15 sec. Expression
levels for lncRNA, miRNA and mRNA were detected
quantitatively by the 2−∆∆Ct method [22], with GAPDH
the internal references.

2.4 Predicting Target Gene

StarBase v3.0 (https://starbase.sysu.edu.cn/index.p
hp) and miRcode (http://www.mircode.org/index.php)
were employed to predict potential miRNAs that bind to
PART1 [23,24]. StarBase v3.0 was also used to identify
candidate mRNAs that bind to miR-150-5p. This software
integrates 5 different miRNA prediction softwares (Tar-
getScan, PicTar, microT, miRmap, miRanda/mirSVR).
The GEPIA database was used to analyze the expression
levels of the target genes for miR-150-5p [25].

2.5 Lentivirus, siRNA, miR-150-5p Inhibitor and
Transfection

PART1-shRNA-lentiviruses (sequence: sh1:GAAC
TCAATTACGACTACATA; sh2:CCAGAUGAGACUAC
GAUAATT; sh3:GAACAGAGUUGACUUUGUGTT;
sh4:GCAAAGUAUCCAAGACCAATT) used for the
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Fig. 1. Elevated expression of lncRNA PART1 in EOC detected with qRT-PCR. (A) PART1 expression in EOC and normal ovarian
tissue. (B) PART1 expression in EOCs at different FIGO stages. (C) PART1 expression in EOC (OVCAR3, SKOV3, A2780) and ovarian
surface epithelial (OSE) (IOSE80) cells. *p < 0.05, **p < 0.01.

Fig. 2. LncRNA PART1 knockdown reduces the proliferation, migration and invasion of A2780 and SKOV3 cells. (A,B) PART1
expression in cells transfected with sh-PART1 (including sh-PART1-1, sh-PART1-2, h-PART1-3 and sh-PART1-4) as measured by qRT-
PCR. (C) Proliferation of cells following transfection with sh-PART1 or sh-NC (control), as determined using colony-forming assay.
(D,E) Proliferation of cells following transfection with sh-PART1 or sh-NC, as determined by CCK8 assay. (F,G) Migration of cells
following transfection with sh-PART1 or sh-NC, as determined by transwell assay. (H,I) Invasion of cells following transfection with
sh-PART1 or sh-NC, shown using transwell assay. *p < 0.05, **p < 0.01.

in vivo experiments were provided by GenePharma
(Shanghai, China), as were the siRNAs that target PART1.
Transfection of cells was performed with Lipofectamine
3000 (Invitrogen, Carlsbad, USA). MiR-150-5p inhibitors

(sequence: CACUGGUACAAGGGUUGGGAGA) were
also from GenePharma. Triplicate experiments were
performed throughout.
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Fig. 3. LncRNA PART1 can sponge miR-150-5p. (A) Putative binding sites between miR-150-5p and PART1 identified with online
databases. (B) miR-150-5p reduces luciferase activity of PART1-WT, but not PART1-MUT, as shown by luciferase reporter gene assay.
(C) miR-150-5p expression in EOC and normal ovarian tissue, as quantified by qRT-PCR. (D) Correlation analysis of relative expression
levels for PART1 and miR-150-5p in clinical specimens. (E) miR-150-5p expression levels in EOC cells (OVCAR3, SKOV3, A2780)
and OSE cells (IOSE80), as measured with qRT-PCR. (F) miR-150-5p expression in A2780 and SKOV3 cells after transfection with
sh-PART1 or with sh-NC (negative control), as measured with qRT-PCR. *p < 0.05, **p < 0.01.

2.6 CCK-8 Assay

CCK-8 assay was used to quantify the proliferation
rate of cells. Following inoculation into 96-well culture
plates (1.5 × 103 cells/well), cells were grown in 100 µL
DMEM containing 10% FBS. CCK-8 solution (10 µL) was
added 0, 24, 48, 72 and 96 h after cellular attachment. The
450 nm absorbance was subsequently read following 2 h
of incubation by Enzyme label (Multiskan FC, Thermo,
Waltham, USA).

2.7 Transwell Assays

Transwell chambers (Millipore, Darmstadt, Germany)
used for cell invasion assays were first pretreated with
50 µL of a 1:9 Matrigel/DMEM solution (BD, New Jer-
sey, USA). Subsequently, 1 × 105 cells were dispersed in
DMEMwithout FBS (1mL) and 200 µL of cellular solution
was placed in the upper chamber. Following this, DMEM
containing 10% FBS (600 µL) was placed into the lower

chamber to act as a chemotactic agent. 48 h later, residual
cells in the upper chamber were scraped off, while invad-
ing cells were immobilized in 4% paraformaldehyde then
dyed in 2% crystal violet. The invading cells were counted
by light microscopy (D-35578, Leica, Weztlar, Germany).
The experimental procedure used to quantify the migration
of cells was identical to the above, but with no Matrigel
pretreatment.

2.8 Colony Formation Assay
Cells were dispersed into a single-cell suspension at 48

h after transfected. The colony forming assay was carried
out by incubating 1 × 103 cells at 37 °C for two weeks
in a culture dish containing 10% FBS medium. The cells
were then stabilized, dyed using 0.1% crystal violet, and
the colonies counted manually. Experiments were repeated
three times for all groups.

4

https://www.imrpress.com


Fig. 4. LncRNA PART1 enhances the progression of EOC by binding miR-150-5p. (A,B) miR-150-5p expression in A2780 and
SKOV3 cells after transfection with miR-150-5p inhibitor, sh-PART1 or the corresponding controls, as determined with qRT-PCR. (C,D)
A2780 and SKOV3 cell proliferation after transfection with miR-150-5p inhibitor, sh-PART1 or the corresponding controls, as measured
with the CCK8 assay. (E,F) Migration of A2780 and SKOV3 cells following transfection with miR-150-5p inhibitor, sh-PART1 or the
corresponding controls, as measured with the transwell assay. (G,H) Invasion of A2780 and SKOV3 cells following transfection with
miR-150-5p inhibitor, sh-PART1 or the corresponding controls, as measured with the transwell assay. *p < 0.05, **p < 0.01.

2.9 Western Blotting Assay

Five × 105 cells per well were inoculated in 6-well
plates, grown for 48 h, then rinsed in PBS and subse-
quently immersed in ice-cold lysis buffer. The concentra-
tion of protein in the lysate was quantified with the bicin-
choninic acid (BCA) method (P0012S, Beyotime, Shang-
hai, China). Protein from each sample was separated with
10% SDS-PAGE then transferred to polyvinylidene fluo-
ride film (162017, Bio-Rad, Hercules, USA). The film was
subsequently incubated for 2 h with a solution of 5% non-
fat dried milk in TBS with 0.1% Tween-20 to block non-
specific proteins. MYB- (1:2000, ab109127, abcam, Cam-
bridgeshire, UK) or GAPDH-specific antibody (1:5000,
60004-1-Ig, Proteintech, Wuhan, China) was then incu-
bated with the polyvinylidene fluoride film for 24 h at 4
°C. The film was subsequently rinsed before incubation
for 2 h with horseradish peroxidase (HRP)-conjugated sec-

ondary antibody (1:5000, Proteintech, 60004-1-Ig, Wuhan,
China) at 37 °C. Immunoblot analysis was performed us-
ing an enhanced chemiluminescence reagent (34579, In-
vitrogen, Carlsbad, USA) and the film was subsequently
irradiated with X-rays by WB Imaging Instrument (5260,
Tanon, Shanghai, China). Image J software (1.8.0, NIH,
USA) was used to analyse protein expression levels, with
GAPDH used as the reference.

2.10 Dual-Luciferase Reporter Gene Assay

A2780 and SKOV3 cell lines were grown in 6-well
plates. Wild-type (WT) and mutant fragments (MUT)
from the 3′-untranslated region of PART1 (PART1- WT:
GUAAUCCCAGCACUUUGGGAGG; PART1-MUT:
GUAAUCCCAGCACUCGCA CGAG) and MYB (MYB-
WT: GAAACUUUUCAUGAAUGGGAGA; MYB-MUT:
GAAACUUUUCAUGAACACACCA) that were related
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Fig. 5. MYB is a target for miR-150-5p. (A) Putative binding sites for miR-150-5p on MYB, identified with online databases. (B)
miR-150-5p reduces luciferase activity ofMYB-WT in EOC cell lines, but not forMYB-MUT, as shown by luciferase reporter assay. (C)
MYB expression levels in EOC and normal ovarian tissue, as measured with qRT-PCR. (D) Correlation between MYB and miR-150-5p
expression in clinical specimens, as determined using Pearson’s analysis. (E)MYB expression in EOC (OVCAR3, SKOV3, A2780) and
OSE (IOSE80) cells, as measured with qRT-PCR. **p < 0.01.

to the binding site for miR-150-5p were synthesized and
added to pMIR-REPORT vectors. Reporter gene assay was
conducted as per our previous study [26]. Normalization of
luciferase activity was carried out in relation with Renilla
luciferase activity.

2.11 Xenograft Model

Female BALB/c nude mice aged 4–5 weeks were ob-
tained from Animal Core Facility, Nanjing Medical Uni-
versity. Each mouse (5 mice per group) received a subcu-
taneous injection in the right armpit with a 200 µL suspen-
sion containing 5 × 105 A2780 ovarian cancer cells. Tu-
mor growth rate was evaluated at regular intervals start-
ing from the 6th day. Tumor size was quantified with
vernier calipers, where L was the longest diameter and W
the longest transverse diameter perpendicular to the longest
diameter when the tumor is viewed as an ellipse. Tumor
volume was subsequently estimated with the formula: V
= π/6×L×W×W.Animal experimentation conformed with
the guidelines for “Animal Research: Reporting of In Vivo
Experiments (ARRIVE)”. The animal ethics approval num-
ber was 1811051, and the approval date was April 2018.

2.12 Statistical Analyses

Experiments were conducted in triplicate. SPSS 15.0
(IBM,Chicago, USA)was used for statistical analyses, with
values expressed as the mean ± standard deviation (SD).
One-way-ANOVA analysis of variance was used to evalu-
ate the differences among at least three groups. Least Sig-
nificance Difference (LSD) was used with ANOVA. Stu-
dent’s t test was used to determine the differences between
groups. Pearson correlation analysis was used to analyse
correlations between data. The normal distribution was
tested using the Shapiro-Wilk (S-W test) by SPSS. p-values
< 0.05 were considered to show statistical significance.

3. Results
3.1 Increased LncRNA PART1 Expression in Ovarian
Carcinoma

LncRNA PART1 expression in clinical specimens was
quantified by qRT-PCR. Fig. 1A shows the expression was
significantly higher in EOC relative to normal ovarian sur-
face epithelial (OSE) tissue. LncRNA PART1 expression
was also higher in advanced stage EOC relative to lower
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Fig. 6. MYB enhances the proliferation, migration and invasion of A2780 and SKOV3 cells in vitro. (A,B)MYB expression in A2780
and SKOV3 cells following transfection with si-MYB, or si-MYB plus miR-150-5p inhibitor, as measured with qRT-PCR and Western
blotting. (C,D) Proliferation of A2780 and SKOV3 cells following transfection with si-MYB, or si-MYB plus miR-150-5p inhibitor,
as measured with the CCK8 assay. (E,F) Migration of A2780 and SKOV3 cells following transfection with si-MYB, or si-MYB plus
miR-150-5p inhibitor, as determined using the transwell assay. (G,H) Invasion by A2780 and SKOV3 cells following transfection with
si-MYB, or si-MYB plus miR-150-5p inhibitor, as measured using transwell assays. **p < 0.01.

stage tumors (Fig. 1B). Finally, the expression level in
three EOC cell lines (OVCAR3, SKOV3, A2780) was
greater relative to the OSE cell line (IOSE80), particularly
in SKOV3 and A2780 cells (Fig. 1C).

3.2 LncRNA PART1 Knockdown Reduces EOC Cell
Proliferation, Migration and Invasion

PART1 expression in SKOV3 and A2780 cells was
reduced following transfection with a knockdown vector
(sh-PART1). A control vector (sh-NC) was also used, and
transfection efficiency confirmed using qRT-PCR. Among
them, sh-1, sh-2, sh-3 and sh-4 were compared with sh-NC,
respectively, and sh-2 had the best transfection efficiency
(Fig. 2A,B). Results from colony forming assays and CCK-

8 assays demonstrated that lncRNA PART1 knockdown in-
hibited EOC cell proliferation (Fig. 2C–E). Furthermore,
transwell assay revealed that lncRNA PART1 knockdown
also inhibited the migration and invasion ability of cells
(Fig. 2F–I). Hence, the above results imply that PART1 en-
hances the proliferation, migration and invasion of EOC
cells in vitro.

3.3 LncRNA PART1 Sponges miR-150-5p
The findings from starBase revealed the presence

of binding sites between lncRNA PART1 and miR-150-
5p (Fig. 3A). Luciferase reporter gene assay also demon-
strated that miR-150-5p decreased luciferase activity in
lncRNA PART1-WT cells, but not lncRNA PART1-MUT
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Fig. 7. MYB promotes in vivo growth of EOC. (A,B) EOC growth in mice injected with A2780 cells that had been transfected with
sh-PART1 or with sh-NC. (C–E) PART1 downregulation resulted in a lower tumor growth rate (volume and weight) than observed in
controls. **p < 0.01.

cells (Fig. 3B). miR-150-5p expression was significantly
reduced in EOC tissue relative to normal tissue (Fig. 3C).
Pearson’s analysis demonstrated an inverse correlation
between PART1 and miR-150-5p levels in EOC tissue
(Fig. 3D). Similar results to EOC tissues were obtained for
miR-150-5p expression in OSE and EOC cells. The expres-
sion levels in the three EOC cell lines (OVCAR3, SKOV3,
A2780) were lower than those in the OSE80 cell line, es-
pecially in SKOV3 and A2780 cells (Fig. 3E). miR-150-
5p expression was increased in SKOV3 and A2780 cells
in which lncRNA PART1 was down-regulated (Fig. 3F).
Together, these results indicate lncRNA PART1 is able to
sponge miR-150-5p in EOC cells.

3.4 LncRNA PART1 Enhances EOC Progression by
Binding to miR-150-5p

Functional assays were performed to determine
whether lncRNA PART1 acts in A2780 and SKOV3 cells
by binding to and therefore effectively removing miR-150-
5p. Transfection efficiencies for miR-150-5p inhibitor,
sh-PART1 and corresponding controls were confirmed us-
ing qRT-PCR (Fig. 4A,B). CCK-8 assays revealed that
lncRNA PART1 down-regulation decreased EOC cell pro-
liferation. This was partially reduced by miR-150-5p in-
hibitor (Fig. 4C,D). Similarly, results from transwell as-
says revealed miR-150-5p inhibitor can attenuate inhibi-
tion of migration and invasion caused by lncRNA PART1

downregulation (Fig. 4E–H). These findings suggest that
lncRNA PART1 can enhance EOC cell proliferation, migra-
tion and invasion through binding and thus inactivation of
miR-150-5p.

3.5 MiR-150-5p Inhibits OEC Cell Proliferation,
Migration and Invasion by Targeting MYB

We investigated miR-150-5p target genes to test the
ceRNA hypothesis. 22 genes were screened out by Star-
Base v3.0. Then three of these genes, MTCH2, MYB and
NDC1, were found to be elevated in ovarian cancer tis-
sues relative to normal ovarian tissues through the GEPIA
database (Supplementary Fig. 1). MYB is one of the more
classical, malignant progression-promoting oncogenes in a
variety of tumors, such as: breast, liver, colon and lung can-
cers [27–30]. Next,MYBwas selected as the object of study
(Fig. 5A). The luciferase reporter gene assay revealed that
miR-150-5p decreased luciferase activity forMYB-WT, but
therewas no significant effect forMYB-MUT (Fig. 5B). The
expression ofMYB was elevated in EOC compared to OSE
tissue (Fig. 5C). Moreover, MYB expression was inversely
associated miR-150-5p expression in EOC specimens, as
shown by Pearson’s correlation analysis (Fig. 5D). Three
EOC cell lines (OVCAR3, SKOV3, A2780) were com-
pared with OSE cell line (OSE80), respectively. qRT-PCR
also demonstrated that MYB expression in EOC cells was
higher than in OSE cells (Fig. 5E). Together, the data indi-
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Fig. 8. Schematic model showing the putative role for lncRNA PART1 in the proliferation, migration and invasion of EOC.

cate thatMYB is a target for miR-150-5p. Functional assays
showed the impacts of si-MYB on the proliferation, migra-
tion and invasion of EOC cells were partly attenuated by
miR-150-5p inhibitor (Fig. 6A–H). Overall, these findings
demonstrate that miR-150-5p can reduce proliferation, mi-
gration and invasion of EOC cells through targetingMYB.

3.6 Knockdown of lncRNA PART1 Suppresses the Growth
of Ovarian Carcinoma In Vivo

To investigate whether lncRNA PART1 is involved
in EOC growth in vivo, female nude mice received sub-
cutaneous injections of A2780 cells following transfection
with sh-PART1 or sh-NC (negative control). Tumor size
was estimated every four days and the tumor growth rate
determined after 30 days. sh-PART1 was found to sup-
press cancer growth in the nude mice compared to con-
trols (Fig. 7A–C). In addition, mean tumor volume and
weight were smaller with sh-PART1 (Fig. 7D,E). Overall,
these finding indicate that lncRNA PART1 can enhance the
growth of EOC in vivo.

4. Discussion
EOC shows a high degree of malignancy in female pa-

tients [31]. The lack of obvious symptoms during the ini-
tial stages of EOC mean that is easily be ignored by pa-
tients. As a consequence, most women are diagnosed with
middle and late stages of this cancer, thus greatly increas-
ing the difficulty of treatment [32,33]. A large body of re-
search has revealed a major role for lncRNAs in the patho-

genesis of human malignancies [34,35]. Novel transcrip-
tome sequencing technology has resulted in the discovery
of an ever-increasing number of lncRNAs. There is now
strong research evidence showing the involvement of lncR-
NAs in several biological behaviors including the regula-
tion of gene transcription, epigenetic regulation, ontoge-
netic regulation, and chromatin modification [36–38]. Sev-
eral research groups have demonstrated that progression of
several tumor types, including EOC, correlates with aber-
rant expression of lncRNAs [39]. Some lncRNAs have also
been suggested as markers for early cancer detection and
diagnosis [40–42]. PART1 is increasingly recognized to be
associated in the pathogenesis of many cancer types. Re-
cently, Zhao et al. [43] published that lncRNA PART1 can
suppress the growth of esophageal cancer, while Chen et
al. [44] reported it could also increase proliferation of lung
cancer cells. Presently, we confirmed that lncRNA PART1
expression was elevated in EOC compared to normal tissue.
Knockdown of PART1 expression in EOC cells markedly
inhibited EOC cell proliferation, migration and invasion in
vitro. An EOC xenograft animalmodel was also established
and was used to show that lncRNA PART1 knockdown low-
ered the growth rate of xenografts.

Salmena et al. [19] demonstrated that lncRNAs could
act as a sponge to absorb miRNAs, thereby indirectly reg-
ulating mRNA expression. An increasing number of inter-
relationships in the lncRNA-miRNA-mRNA ceRNA axis
have recently been found. Several investigators have sug-
gested a role for ceRNA during progression of multiple tu-
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mor types including bladder, colorectal and cervical cancer
[45–47]. With major advances in sequencing technology,
bioinformatics now plays an important role in both founda-
tional and clinical medicine [48,49]. In the current study,
the online databases starbase V3.0 and miRcode were used
to identify miR-150-5p as being a downstream target of
lncRNA PART1. LncRNA PART1 expression was higher in
EOC tissue and cells, but this was decreased by miR-150-
5p. Functional studies also revealed that lncRNA PART1
had oncogene-like properties in EOCs. Both PART1 sh-
RNA and miR-150-5p mimic reduced MYB-WT luciferase
activity in a reporter gene assay, while the inhibitory ac-
tion of PART1 sh-RNA was restored with miR-150 in-
hibitor. Furthermore, qRT-PCR and Western blot revealed
that lncRNA PART1 knockdown reduced MYB expression.
This effect was partly attenuated with miR-150 inhibitor. In
addition, functional assays showed the effect of sh-PART1
on the proliferation, migration and invasion ability of EOC
cells was abolished with miR-150 inhibitors. These results
indicate PART1 can act like a ceRNA, thus regulating the
miR-150/MYB axis and hence EOC progression.

This study has several limitations. The study cohort
of EOC tissues was relatively small and hence the five dif-
ferent EOC subtypes (low grade plasmacytosis, high grade
plasmacytosis, endometrioid, clear cell, mucinous) could
not be evaluated individually. The fallopian tube is themain
source of high-grade serous ovarian carcinoma (HGSOC),
which is the most frequent type of ovarian cancer. There-
fore clinical tissue selection cannot be limited to normal
ovarian tissue alone. Moreover, the development of ovar-
ian cancer involves complexmolecular regulation pathways
that need further investigation.

5. Conclusions
Our work suggests a tumorigenic role for lncRNA

PART1 in EOC. It has revealed a potential mechanism by
which lncRNA PART1 binds competitively to miR-150-
5p, thereby upregulating the downstream oncogene MYB
(Fig. 8). This research confirms a role for lncRNA PART1
in the development and pathogenesis of EOC, as well as
identifying the likely molecular pathway.
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