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Abstract

Background: In addition to intrahepatic angiogenesis, patients with cholestasis cirrhosis develop extrahepatic vasculature disorders and
functional disturbances of multiple organ systems. Without effective intervention, these vascular disorders will eventually turn into mul-
tiple organs vascular syndromes, including the brain, lung and other organ systems. However, studies on the pathogenesis of vascular
alterations among extrahepatic organ disturbances are still carried out separately, which hampered the successful translation of preclinical
studies to the human setting and required further mechanistic insight into these complications. This study aims to investigate the rela-
tionship between extrahepatic angiogenesis and multiple organ impairment, and whether the vascular endothelial growth factor (VEGF)
family members and their receptors are involved in this process. Methods: Pathological changes of the multiple organs were determined
by histopathological and immunohistochemical staining in the established common bile duct ligation (CBDL) rats, and angiogenesis
was estimated by microvessel density (MVD). Levels of the VEGF family members and their receptors in the serum and organ tissues
were also measured by using enzyme-linked immunosorbent assays. Results: The MVD and VEGF family members and their receptors
were significantly increased in CBDL rats with multiple organ injury, especially in the liver, lung and cerebral cortex. Meanwhile, we
noticed moderate elevation of soluble receptor of the vascular endothelial growth factor-1 (sFlt-1) in the liver, lung, and cerebral cortex,
whereas the levels of placental growth factor (PLGF) increased significantly. Conclusions: Extrahepatic angiogenesis may represent a
common pathophysiological basis for multiple organ dysfunction and the sFlt-1/PLGF ratio could offer an avenue for further studies to
target extrahepatic angiogenesis in cholestatic cirrhosis.

Keywords: angiogenesis; cholestatic cirrhosis; vascular endothelial growth factor; dysfunction

1. Introduction namic disorders associated with PH in liver cirrhosis may
contribute to the disturbances in different systems, which
could finally lead to multiorgan disorders [12,13]. In pa-
tients with advanced liver cirrhosis, increased portosys-
temic shunting promotes the portal venous vasoactive fac-
tors bypass the hepatic “filter” and, thus, may cause se-
vere complications, including hepatopulmonary syndrome
(HPS), hepatic encephalopathy, hepatorenal syndrome, etc.
[11,13—16]. Although the pathogenesis of these complica-
tions remains poorly understood, pathological pulmonary
angiogenesis has been notably recognized as one of the key
pathogenic features of HPS [17,18]. In addition, Rautou
and his team [19] found that HPS was associated not only
with significant intrahepatic vascular changes but also with
features suggestive of angiogenesis in the right colon wall.
Observational studies suggest that antiangiogenic therapies,
including inhibiting extrahepatic angiogenesis, are consid-
ered as a breakthrough method of treating associated com-
plications in animal experiments [17,20,21]. These findings

Cirrhosis is the final progression of liver fibrosis
caused by many forms of liver diseases and conditions.
While people with early compensated cirrhosis have no
signs or complications of cirrhosis, serious complications
including portal hypertension (PH), hepatic encephalopa-
thy, hepatopulmonary syndrome, hepatorenal syndrome
and coagulation disorders in the late-stage of cirrhosis con-
tribute to the high mortality [1]. PH is a major complication
of cirrhosis and is associated with poorer outcomes [2].

There is increasingly recognized that angiogenesis
plays a substantial role in the development of PH [3]. In-
deed, the newly formed blood vessels bypassed sinusoids
unable to provide oxygen to tissues, which deteriorates the
course of the disease and aggravates hepatic vascular re-
sistance to portal blood flow [4-7]. Further development
of PH involves angiogenesis in the complex processes of
restructuring the portal-systemic vascular bed [8—11]. Eti-
ologically, PH is not isolated phenomenon and hemody-
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raise an interesting new question that extrahepatic organ in-
juries may share a common pathophysiological mechanism,
which may be particularly relevant to pathological angio-
genesis.

Actually, there are many mediators involved in angio-
genesis in context of liver cirrhosis. Research data refers
to the complications of cirrhosis have indicated that ele-
vated levels of circulating angiogenic factors are mainly de-
rived from the injured liver and linked to persisting patho-
logical angiogenesis, among which VEGF, VEGFR-2, pla-
cental growth factor (PLGF) and soluble vascular endothe-
lial growth factor 1 (sFlt-1) all play the role of activa-
tion or inhibition [22,23]. In animal models, many studies
have shown that pulmonary angiogenesis is accompanied
by the accumulation of VEGF-A in the lung, and the ac-
tivation of VEGF-associated angiogenic pathways in HPS
[18]. PLGF, a pleiotropic cytokine belonging to the VEGF
family, has also been found to contribute to pathological an-
giogenesis in PH and HPS [10,17]. Meanwhile, the VEGF
family members and their receptors were also increased in
serum and other tissues in rats with secondary biliary cir-
rhosis induced by common bile duct ligation (CBDL) [17].
As with the clinical findings, CBDL rats were also hyper-
dynamic, and in addition, with systemically pathological
angiogenesis demonstrated by increased microvessel den-
sity (MVD) in the mesenteric window [19,21]. A potential
role for therapies that targeting VEGF pathway has been
shown to be effective in suppressing extrahepatic angiogen-
esis, reducing portal pressure and its complications, reduc-
ing portal-systemic collateral shunting [24]. These findings
of directly targeting proangiogenic pathway for intra- and
extrahepatic angiogenesis implied the fundamental patho-
physiological mechanisms in liver cirrhosis.

Dissatisfaction with the current methods of pharma-
cotherapy, as well as progress in understanding the patho-
genesis of liver cirrhosis, make finding pathophysiological
mechanisms for the prevention and treatment of its com-
plications a vital task. Therefore, we aimed to investi-
gate whether pathological angiogenesis and VEGF fam-
ily/receptor changes are one of the common pathophysio-
logical mechanisms of extrahepatic multiple organ dysfunc-
tion in cholestatic cirrhosis.

2. Materials and Methods
2.1 Animal Model

Male Sprague—Dawley rats (200~220 g, Animal lab-
oratory center of Third Military Medical University) were
housed in a complex housing system consisting of standard
cages in a temperature-controlled room at 22 £ 2 °C with
a 12-hour light/12-hour dark cycle, and food and water ad
libitum. A rat model of cholestasis cirrhosis was success-
fully established by CBDL, as described in our previous re-
search [25,26]. All rats were fasted for 12 h preoperatively.
Rats were randomly divided into the CBDL group (sacri-
ficed five weeks after CBDL) and the sham group (which

underwent common bile duct exposure without ligation).
The ethical committee of Third Military Medical University
for animal care (AMUWEC20201507) approved all proto-
cols.

2.2 Sample Collection

At the end of the experiment, rats were sacrificed af-
ter anesthetized with 3% pentobarbital sodium (30 mg/kg,
intraperitoneal injection) and arterial blood from abdomi-
nal aortic was collected. Part of the arterial blood was sent
for arterial blood gas analysis by a standard blood gas ana-
lyzer (Radiometer ABL800 FLEX, Copenhagen, Denmark)
within 15 minutes, liver function test using the instruments
of Automatic Biochemistry Analyzer (AU5400, Olympus,
Tokyo, Japan), and kidney function test separately. The
alveolar-arterial oxygen gradient (P(_,)O2) was calculated
as 150 - (PCO2/0.8) - PaOy. Where PCOs is the partial
pressure of carbon dioxide and PaO, is the partial pressure
of oxygen. The rest of the blood was centrifuged at 3000
r/min for 10 minutes at 4 °C, then the supernatant (serum)
was collected and stored at —80 °C. After the perfusion of
heparinized saline to remove the blood from the circulation,
the livers, lungs, kidneys, spleens, intestines, and brains of
rats in each group were dissected for samples. Part of the
tissues were for immunohistochemistry and immunofluo-
rescence, the rest were stored at —80 °C.

2.3 Pathological Examination of Rat Organ

Immediately after surgical removal, the livers, lungs,
kidneys, spleens, intestines, and brains were fixed in 10%
formalin for 24 h. Rats tissues were then dehydrated, em-
bedded in paraffin, and cut into 4-um-thick slices. Tis-
sue sections were stained with hematoxylin and eosin (the
lung, kidney, spleen, intestines, and brain) and sirius red
(liver) to detect morphological changes as previously de-
scribed [17,21,25]. The microphotographs of the specimens
were obtained with a light microscope (OlympusBX51-
PMS, Tokyo, Japan). The degree of extrahepatic organ in-
jury and liver fibrosis were evaluated on the HE-stained
tissues sections and METAVIR score on sirius red-stained
liver sections. Five randomly selected fields of each sec-
tion from three different rats (the selected samples are very
typical and representative) in each group were analyzed in
a blinded manner.

Injury of organs (the liver, lung, kidney, spleen, intes-
tine, and brain) are classified according to pathologic crite-
ria as follows: (A) METAVIR score of liver fibrosis (FO: no
fibrosis; F1: Portal fibrosis without septa; F2: Portal fibro-
sis with rare septa; F3: Numerous septa without cirrhosis;
F4: Cirrhosis) [27]. (B) Lung injury score (grade 0: normal
appearance, negligible damage; grade 1: mild-moderate in-
terstitial congestion and neutrophils in the interstitial space;
grade 2: perivascular edema formation, partial destruction
of lung architecture and moderate cell infiltration; grade
3: moderate lung alveolar damage and intensive cell in-
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Fig. 1. Successful establishment of CBDL rat model. (a) The morphological and pathological changes of the liver after CBDL. (b)
The morphological and pathological changes of the lung after CBDL. (c¢) The pathological changes of the liver after CBDL (scale bar
=100 um) and (i) liver injury score (assessed by METAVIR score). (d) The pathological changes of the lung (scale bar = 20 um) and
(j) injury score (assessed by lung injury score) after CBDL. The microvessel density in CBDL rats’ liver (e,k) and lung (f,1), the slice
field of view is 200 times, with a ruler length of 50 um. (g) Impairment of oxygenation in HPS rats. (h) Liver injury evidenced by liver
function test in HPS rats. Data were represented as mean =+ standard deviation (SD), the sample size was expressed at the vertical of
the box. ***Compared with the sham group, p < 0.001. CBDL, Common Bile duct Ligation; HPS, hepatopulmonary syndrome; ALT,

alanine transaminase.

filtration; grade 4: severe cell infiltration and destruction
of the lung architecture.) [28]. (C) Kidney index (kidney
indexes = [kidney weight (g)/body weight (g)] x 100%).
(D) Spleen index (spleen indexes = [spleen weight (g)/body
weight (g)] x 100%). (E) Intestine histological red blood
cell (RBC) counts. (F) The cerebral cortex histological nor-
mal neuron counts.

2.4 Immunofluorescence

The assessment of angiogenesis in various tissues (the
liver, lung, kidney, spleen, intestine, and cerebral cor-
tex) was conducted on three rats in each group. Paraffin-
embedded above organs (4 um) were dewaxed and hy-
drated; antigen was repaired by EDTA. After 10% bovine
serum albumin was blocked for 1 h at room tempera-
ture, the sections were incubated by anti-CD31 (ab119339,
1:100, Abcam, Boston, MA, USA) antibody overnight.
The next day, after washing with PBS, sections were in-
cubated with Cy3-conjugated Goat Anti-Mouse IgG (H+L)
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(115165003, 1:500, Jackson, West Grove, PA, USA), an
anti-mouse secondary antibody for 1 h at room tempera-
ture. After washing with PBS three times, sections were
fixed with 4’,6-diamino-2-phenylindole (DAPI, ab104139,
Abcam, Boston, MA, USA) for 10 minutes. For each sec-
tion, five randomly selected fields were observed by a flu-
orescence microscope (Pannoramic DESK, P-MIDI, P250,
3DHISTECH Inc, Budapest, Hungary), and the MVD was
calculated as CD31 positive cells by Image-Pro Plus soft-
ware (version 6.0, Media Cybernetics Inc, Bethesda, MD,
USA).

2.5 Liver and Kidney Function Test

The liver and renal function were determined by the
level of alanine transaminase (ALT), aspartate transaminase
(AST), urea nitrogen (Urea), creatinine (Crea), cystatin C
(Cys-c) in the rat serum by Automatic Biochemistry Ana-
lyzer (AU5400, Olympus, Tokyo, Japan).
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Fig. 2. Pathological changes of extrahepatic organs in CBDL rats. (a) The pathological changes of the cerebral cortex (scale bar =

50 um) and (e) normal neuron count (based on HE) after CBDL. (b) The pathological changes of the spleen (scale bar = 100 um) and

(f) spleen index after CBDL. (c) The pathological changes of the intestine (scale bar = 100 pm), (g) intestinal injury score and (i) single
RBC count (based on HE) after CBDL. (d) The pathological changes of the kidney (scale bar = 50 pm) and (h) kidney index (based
on HE) after CBDL. (j) The plasma urea nitrogen (Urea) changes after CBDL. (k) The plasma creatinine changes after CBDL. (1) The
plasma cystatin C changes after CBDL. Data were represented as mean & SD, the sample size was expressed at the vertical of the box.

*Compared with the sham group, p < 0.05; ***Compared with the sham group, p < 0.001. CBDL, Common Bile duct Ligation; HE,

Hematoxylin-Eosin; RBC, red blood cell.

2.6 Enzyme-Linked Immunosorbent (Elisa) Assay

To explore the possible pathophysiological mecha-
nism of angiogenesis in different organs, the Elisa assay
was used to determine the angiogenesis-associated factors
in rats, including VEGF, VEGFR1, VEGFR?2, soluble vas-
cular endothelial growth factor 1 (sFlt-1) and PLGF. Elisa
kits for rats were VEGF (JL21369), VEGFR1(JL21373),
VEGFR2 (JL21374), PLGF (JL11559), and sFlt-1
(JL48077), respectively. All the Elisa kits were purchased
from Shanghai Jianglai Biological Technology, Shanghai,
China. All the procedures were strictly following the
instructions of manufacturer. The intensity of the color
was measured at the absorbance of 450 nm with a Thermo
Reader (Varioskan Flash Multimode Reader, Thermo
scientific, Waltham, MA, USA). Serum values were ex-
pressed as pg/mL. Various tissues values were expressed as
pg/mg.pro (the amount of target protein per unit protein).

2.7 Statistical Analysis

Descriptive statistics are summarized as the mean +
standard deviation (mean + SD) or median (interquartile
range, IQR). Independent sample 7-test or Mann-Whitney
test was used for comparison between two groups, when ap-
propriate. All statistical tests were two-sided, and p values
less than 0.05 indicated statistical significance. The statisti-
cal analyses were performed using SPSS software for Win-
dows, V.23.0 (IBM Corp., Armonk, NY, USA). In the cur-
rent study, bar graphs and scatter diagrams were drawn by
GraphPad PRISM (version 8.00, GraphPad Software, San
Diego, CA, USA). Meanwhile, R packages were used to
draw a heatmap (R studio, version 1.4.1717, Boston, MA,
USA).

3. Results
3.1 Assessment of Liver and Lung Injury in CBDL Rats

CBDL is a typical model of cholestatic cirrhosis and is
often used to study cholestatic cirrhosis and secondary ex-
trahepatic organ damage [25,29]. Compared with the sham
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Fig. 3. The microvessel density changes of extrahepatic organs in CBDL rats. The microvessel density changes in cerebral cortex
(a), spleen (b), intestine (c), kidney cortex (d) after CBDL. The graphical summary of microvessel density changes in cerebral cortex
(e), spleen (f), intestine (g), kidney cortex (h) after CBDL. The slice field of view is 200 times of the kidney, spleen, and cerebral cortex,
with a ruler length of 50 pm; small intestine 100 times, with a ruler length of 100 um. Data were represented as mean 4 SD, the sample

size was expressed at the vertical of the box. ***Compared with the sham group, p < 0.001.

group, liver exhibited cirrhosis features with significantly
elevated AST and ALT levels (Fig. la,c,e.k,h). Meanwhile,
lung injury was evidenced by the histopathological features
of pulmonary vascular proliferation and decreased P,O-
along with increased P(s.4)O2 (Fig. 1b,d,f,l,g). These re-
sults confirmed the successful establishment of CBDL rat
model.

3.2 Multiple Organ Injury Found in CBDL Rats

In addition to the aforementioned injuries of the liver
and lung injury (Fig. 1i,j), damage to the kidney, spleen,
small intestine and cerebral cortex was also examined. Re-
nal injury was confirmed by increased renal index and ele-
vated biochemical markers (e.g., blood urea, serum creati-
nine, and Cys-C) in the CBDL group, as well as histopatho-
logical features of biliary pigment deposition and tubular
dilation (Fig. 2d,h,j,k,1). Spleen injury was also manifested
by the increased volume, fibrous thickening of the splenic
capsule and spleen index (Fig. 2b,f); small intestines injury
was evidenced by edema, the increased villi width and num-
ber of internal red blood cells (Fig. 2c,g,i1); and brain injury
reduced normal neurons (Fig. 2a,e) in CBDL rats.

3.3 Increased MVD Accompanied by Changes of the
VEGF Family Members and Their Receptors in
Multi-Organ of CBDL Rats

We furtherly found that the MVD of the liver
(Fig. le,k), lung (Fig. 1f,i), cerebral cortex (Fig. 3a,e), in-
testine (Fig. 3c,g), kidney (Fig. 3d,h), but not the spleen
(Fig. 3b,f), was significantly increased (2—4 times) in
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CBDL rats, with the highest increase of MVD in the liver,
lung, and cerebral cortex accompanied by more severe in-
jury (Fig. 1 and Fig. 3). Meanwhile, the expression of
VEGF, VEGFR2, PLGF, and sFlt-1 in the correspond-
ing MVD-increased organs of CBDL rats was also signif-
icantly elevated (Figs. 4,5). Our results suggest that ex-
trahepatic injury and pathological angiogenesis were com-
mon in CBDL rats, accompanied by significant changes in
the VEGF family and its receptors, specific for tissue and
angiogenesis-associated factors.

3.4 Changes in the sFlt-1 /PLGF Ratio

PLGF was obvious up-regulated in rodent model
of liver cirrhosis and cirrhotic patients, and PLGF played
an important role in pathological angiogenesis in liver cir-
rhosis [30]. Recently, PLGF has also attracted intense inter-
est as a possible antiangiogenic therapeutic target for treat-
ing HPS [17]. In our study, we noticed moderate levels of
sFIt-1 in liver, lung, and cerebral cortex, whereas levels of
PLGF increased significantly in the same tissues. More-
over, the ratio of sFlt-1/PLGF in kidney and intestine of
CBDL rats was increased, while the ratio of sFlt-1/PLGF in
the liver, lung, and cerebral cortex was decreased (Fig. 5).
Interestingly, a reduction in the level of sFlt-1/PLGF ratio
was accompanied by a more significant increase in MVD in
the tissues. Our findings suggest that the sFlt-1/PLGF ra-
tio might be a potential further study target for extrahepatic
pathological angiogenesis in cholestatic cirrhosis.
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the box. *Compared with the sham group, p < 0.05, **Compared with the sham group, p < 0.01, ***Compared with the sham group,
p < 0.001. VEGF, Vascular Endothelial Growth Factor; VEGFR1, Vascular Endothelial Growth Factor Receptor 1; VEGFR2, Vascular
Endothelial Growth Factor Receptor 2; PLGF, Placental Growth Factor.
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4. Discussion

Our current study has two main novel findings. First,
extrahepatic angiogenesis may be a potential common
pathophysiological basis for multiple organ dysfunction in
rats with cholestatic cirrhosis (Fig. 6). Since the VEGF
family varies in each organ, the degree of extrahepatic
angiogenesis also varies. Second, the imbalance of pro-
angiogenetic and anti-angiogenetic factors reflected by the
sF1t-1/PLGF ratio may be a potential target for extrahepatic
pathological angiogenesis in cholestatic cirrhosis.

It is well recognized that hemodynamic disorders as-
sociated with PH in liver cirrhosis contribute to the devel-
opment of dysfunction of systemic organs [11,13,31]. The
mechanisms of PH and associated extra-hepatic injuries are
complex, in which pathological angiogenesis is accepted
as one of the important mechanisms of hemodynamic dis-
turbances in liver cirrhosis [13] and targeting only “patho-
logical angiogenic activity” is promising for a novel ap-
proach to ameliorate cirrhotic-associated complications [5].
Our study showed that CBDL rats suffers multiple organ
damage, with liver, lung and cerebral cortex injuries be-
ing the most pronounced, which is in line with similar re-
ports [32]. These findings are consistent with previous clin-
ical reports that patients with advanced liver cirrhosis often
have pulmonary, cerebral and renal failure [33]. Moreover,
we found that the more obvious the pathological angio-
genesis in specific organ, the more severe injury occurred,
especially in the liver, lung and cerebral cortex. These
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pathological changes may help to explain, to some extent,
that extrahepatic angiogenesis is involved in multiple or-
gan injury. In addition, the MVD of extrahepatic organs in
CBDL rats exhibited significant organ-specific elevations,
with the highest MVD in the liver, lung, and cerebral cor-
tex, followed by the kidney and intestine, with no signifi-
cant change in the spleen. The current evidences indicated
that multiorgan angiogenesis as a potential mechanism be-
sides hemodynamic disorders is involved cirrhotic multi-
organ damage and complex mechanisms target on differ-
ent organs with different emphasis. It is accepted that pul-
monary angiogenesis is an important pathological process
in the development of HPS [34]. In hepatic encephalopathy,
chronic hypoxia cerebral stimulation secondary to redistri-
bution of the cerebral blood flow may induce brain angio-
genesis and vascular remodeling [35]. And in turn, angio-
genesis has abnormally high blood-brain barrier permeabil-
ity, might have a share in the pathogenesis of aggravating
hepatic encephalopathy [36,37]. Although hepatorenal syn-
drome (HRS) is not rare in cirrhotic patients, MVD is not
altered as markedly as in the lung and the cerebral cortex in
the CBDL rats. It may be related to the fact that HRS is in-
duced by a cascade of events such as hemodynamic changes
and collateral circulation [16], rather than just pathologi-
cal angiogenesis. Overall, this phenomenon indicates that
extrahepatic injury and pathological angiogenesis are com-
mon and tissue-specific, most notably in the lung and the
cerebral cortex.
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In the present study, we found that pathological an-
giogenesis has shared characteristics in regarded to injury
to different organs: elevated VEGF family cytokines induce
increased angiogenesis, leading to create rampant growth of
blood vessels and organ dysfunction eventually (Fig. 6). In
mammals, the VEGF family is composed of five mem-
bers, VEGF-A to D and PLGF, which bind to their recep-
tors promoting angiogenesis. VEGF-A (usually referred
to as VEGF) is a trophic factor for both physiological and
pathological angiogenesis, whereas PLGF is used only for
pathological angiogenesis. The most important receptors
for VEGF and PLGF are VEGFR1, VEGFR2, and sFIt-1.
An up-regulation of VEGF family was previously reported
in animal models as well clinical studies and linked with
ongoing angiogenesis in HPS and other extrahepatic tissues
in the setting of liver cirrhosis [30]. Indeed, Raevens ef al.
[17] found that elevated levels of PLGF in the lung was also
responsible for the development of HPS, and neutralization
of PLGF with antibodies ameliorated HPS by counteract-
ing pulmonary angiogenesis. Genetic knockout of PLGF
or inhibition of PLGF activity resulted in reduction of an-
giogenesis and liver fibrosis [38]. In our model, CBDL
rats were accompanied by increased pathological angiogen-
esis and significantly increased levels of VEGF, VEGFR2,

and PLGF in multiple extrahepatic organ, with the consis-
tent with previous studies [11,26]. sFlt-1 was also signif-
icantly elevated in the liver, lung, cerebral cortex, kidney,
and intestine with increased MVD. As an endogenous anti-
angiogenetic factor, sFlt-1 binds to VEGF and PLGF to
negatively regulate their activity, and elevated sFlt-1 lev-
els are tied to worse prognosis in sepsis, preeclampsia, and
cirrhosis [39].

Our study also provides novel data on the relation-
ship between sFlt-1 and PLGF serum levels as well as
well as the correlation between the ratio of sFlt-1/PLGF
and pathological angiogenesis. It has been found that the
serum levels of sFlt-1 and PLGF are inversely correlated
with hepatic and pulmonary function [40,41], further sup-
porting sFlt-1 and sFlt-1/PLGF as promising markers for
diseases. In regards to pathological angiogenesis, experi-
mental data suggest that sFlt-1/PLGF was significantly de-
creased in HPS rat liver, lung, and cerebral cortex, which
are the tissues with the most increased MVD. Conversely,
although kidney and intestine injuries were accompanied by
increased MVD, sFlt-1/PLGF was significantly elevated. It
thus may suggest that the pathological angiogenesis mech-
anism in the liver, lung and cerebral cortex is different from
that in the kidney and intestine, and indicate that cirrhosis-
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associated kidney and intestine injures have other important
mechanisms (which causes other well-known sequelae of
portal hypertension and hyperdynamic circulation) besides
pathological angiogenesis. Our results demonstrated that
changes in the VEGF family and its receptors also vary in
different extrahepatic tissues, following tissue-specific in-
jury and angiogenesis. Moreover, sFlt-1/PLGF may be one
of the key factors for pathological angiogenesis in the liver,
lung, and cerebral cortex, and is expected to be a promising
target for extrahepatic angiogenesis in liver cirrhosis. Im-
portantly, as liver cirrhosis is characterized by multiorgan
angiogenesis with elevated circulating sFlt-1and PLGF, to-
tal PLGF can now be easily calculated from already avail-
able free PLGF and sFlt-1 levels, allowing subsequent eval-
uation of PLGF alternation in cirrhotic situation [42].

Our study has some limitations. First, we only re-
ported an interesting phenomenon, that is, angiogenesis in
extrahepatic organs (the lung, kidney, brain, and intestine,
etc.) accompanied by injury in CBDL rats; however, no
intervention studies were performed here to explain their
causal relationship. Despite the well-defined pathophysio-
logical roles of sFlt-1 and PLGF, the underlying molecular
and cellular mechanisms are not completely understood, es-
pecially the exact relationships between biochemical events
and molecular pathways regulated by sFlt-1 and PLGF,
whose inhibition exhibits a protective role in cirrhotic mul-
tiorgan syndrome. Second, in our study, this is only an an-
imal experiment, and clinical observations are required for
practice guidance.

5. Conclusions

Taken together, the pathophysiological hallmark of
liver cirrhosis is the presence of angiogenesis, which can
involve multiple affected organs, such as the lung, kidney,
brain and intestine. Extrahepatic angiogenesis may be a po-
tential common pathophysiological basis for multiple organ
dysfunction induced by cholestasis cirrhosis. Meanwhile,
sF1t-1/PLGF ratio may be a potential further study target for
extrahepatic pathological angiogenesis in cholestatic cir-
rhosis.
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