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Abstract

Background: Peroxisomes are membrane-bound organelles that contain one or more types of oxidative enzymes. Aberrant localization
of peroxisomal proteins can contribute to the development of various diseases. To more accurately identify and locate peroxisomal
proteins, we developed the ProSE-Pero model. Methods: We employed three methods based on deep representation learning models to
extract the characteristics of peroxisomal proteins and compared their performance. Furthermore, we used the SVMSMOTE balanced
dataset, SHAP interpretation model, variance analysis (ANOVA), and light gradient boosting machine (LightGBM) to select and compare
the extracted features. We also constructed several traditional machine learning methods and four deep learning models to train and test
our model on a dataset of 160 peroxisomal proteins using tenfold cross-validation. Results: Our proposed ProSE-Pero model achieves
high performance with a specificity (Sp) of 93.37%, a sensitivity (Sn) of 82.41%, an accuracy (Acc) of 95.77%, a Matthews correlation
coefficient (MCC) of 0.8241, an F1 score of 0.8996, and an area under the curve (AUC) of 0.9818. Additionally, we extended our method
to identify plant vacuole proteins and achieved an accuracy of 91.90% on the independent test set, which is approximately 5% higher than
the latest iPVP-DRLF model. Conclusions: Our model surpasses the existing In-Pero model in terms of peroxisomal protein localization
and identification. Additionally, our study showcases the proficient performance of the pre-trained multitasking language model ProSE in
extracting features from protein sequences. With its established validity and broad generalization, our model holds considerable potential
for expanding its application to the localization and identification of proteins in other organelles, such as mitochondria and Golgi proteins,
in future investigations.

Keywords: peroxisomal localization identification; SVMSMOTE; multitasking language model; feature selection; deep learning; vac-
uole proteins identification

1. Introduction

Organelle proteins are a diverse group of proteins that
are either bound to or distributed throughout different re-
gions of the organelle [1]. Their presence is essential for the
organelle to carry out a range of life-sustaining activities.
Each organelle protein has a specific biological function
that contributes to the overall functionality of the organelle
[2]. Accurate identification of organelle protein types is
crucial for researchers to gain a deeper understanding of
their roles and to develop effective treatment strategies for
diseases. Moreover, precise knowledge of the spatial distri-
bution of organelle proteins is essential for their functional
characterization. This knowledge has far-reaching implica-
tions for advancing our understanding of cell biology and
developing targeted therapeutic interventions.

Most studies on identifying the localization of or-
ganelle proteins rely on machine-learning approaches. For
instance, Zhou et al. [3] introduced a novel method for pre-
dicting Golgi protein types, which integrates pseudo amino

acid composition (PseAAC), dipeptide composition (DC),
pseudo-position specific scoring matrix (PsePSSM), and
encoding based on grouped weight (EBGW) to extract fea-
ture vectors. The authors employed the extreme gradient
boosting (XGBoost) algorithm as a classifier and achieved
an impressive overall prediction accuracy of 92.1% in the
internal validation using the training set, surpassing the per-
formance of existing state-of-the-art methods. However,
when evaluating the model’s generalization ability on an
independent test set, the accuracy drops to 86.5%. This dis-
crepancy suggests that further improvements are needed to
enhance the method’s performance. Lv et al. [4] developed
a Golgi protein classifier called rfGPT, which employs 2-
gap dipeptide and split amino acid composition as feature
vectors. The authors utilized the SMOTE technique to bal-
ance the dataset and analysis of variance (ANOVA) as the
feature selection method and then input the selected fea-
tures into the random forest (RF) model. The independent
test accuracy of rfGPT was found to be 90.6%. While rfGP
presents itself as a practical tool that eliminates the need
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for location-specific scoring matrices and their derived fea-
tures, the lower accuracy observed on the independent test
set suggests that further enhancements are required in the
tool’s feature fusion methodology. In another study, Yu
et al. [5] proposed SubMito-XGBoost, an XGBoost-based
method for predicting protein submitochondrial type, us-
ing two training datasets, M317 and M983. The SubMito-
XGBoost method demonstrated high prediction accuracies
of 97.7% and 98.9%, respectively, on these datasets while
achieving a prediction accuracy of 94.8% on an indepen-
dent test set, M495. While SubMito-XGBoost exhibits
improvements in the accuracy of protein submitochondrial
prediction to some extent, there remains significant poten-
tial for further enhancement in both prediction accuracy and
algorithm efficiency. Numerous other studies have also in-
vestigated the identification of organelle proteins [6–8].

In this paper, we studied the localization identification
of peroxisomal proteins. Peroxisomes, also known as mi-
crobodies, are important organelles surrounded by a mono-
layer of membranes containing one or more oxidases. Per-
oxisomes play an important role in regulating cellular im-
munity and cancers characterized by metabolic abnormal-
ities [9]. These cancers include prostate cancer [10,11],
bladder cancer [12], and so on. Human peroxisomal mal-
function can result in certain diseases, such as Alzheimer’s

disease and X-linked adrenoleukodystrophy (X-ALD) [13].
At present, the treatment of these diseases mainly utilizes
different chemical drugs, such as anti-inflammatory and
neuroprotective therapy, but in most cases, these treatments
cannot provide a permanent cure [14–17]. Therefore, it
is very important to detect abnormalities and injuries in
time. Accurate identification and localization of peroxiso-
mal proteins play an important role and significance in the
treatment of corresponding diseases. However, the prob-
lem of localization and recognition of peroxisomal pro-
teins has received too little attention. At present, the lo-
calization and identification tool of peroxisomal proteins
is only In-Pero, constructed by Anteghini et al. [18] in
2021. They utilized deep learning embedding methods
UniRep [19] and SeqVec [20] to extract the characteristics
of peroxisomal protein sequences and compared four differ-
ent machine learning methods, namely logistic regression
(LR), random forest (RF), support vector machine (SVM)
and partial least squares discriminant analysis (PLS-DA).
By combining five protein embedding methods, a cross-
validation classification accuracy of 0.92 was ultimately
achieved. This work became the first work on this topic
and provided a complete method and benchmark.

In this work, we proposed the ProSE-Pero model,
which utilized the deep learning method to locate and iden-

Fig. 1. Flow chart of the ProSE-Peromodel. GaussianNB, Gaussian Naive Bayes; LR, Logistic Regression; RF, Random Forest; SVM,
Support Vector Machine; LightGBM, Light Gradient Boosting; GBDT, Gradient Boosted Decision Trees; MLP, Multilayer Perceptron;
KNN, K-Nearest Neighbors; Acc, Accuracy; BACC, Balanced Accuracy; Sn, Sensitivity; Sp, Specificity; MCC, Matthews correlation
coefficient; TP, True Positive; FP, False Positive; TN, True Negative; FN, False Negative; ROC-AUC, Receiver Operating Characteristic
- Area Under the Curve; PR-AUC, Precision-Recall Area Under the Curve.
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tify peroxisomal proteins for the first time. We utilized
three deep representation learning models to extract the fea-
tures of peroxisome protein sequences. These three meth-
ods include SeqVec [20], which is based on the ELMO
model, TAPE [21], which is based on the BERTmodel; and
ProSE, which is based on a pre-trained multi-task language
model [22]. In order to address the issue of imbalanced
data, the SVMSMOTE technique was employed to balance
the dataset. Furthermore, variance analysis using ANOVA
[23] and a light gradient boosting machine (LightGBM)
were utilized to select the most informative features from
the extracted feature set. At the same time, these feature ex-
traction and feature selection methods were compared. Fi-
nally, the selected features were applied to nine traditional
machine learning methods and four deep learning methods.
The overall flowchart of the ProSE-Pero model is shown in
Fig. 1.

2. Materials and Methods
2.1 Datasets
2.1.1 Peroxisomal Datasets

The selection of appropriate datasets is a crucial step
in the classification model and has a significant impact
on the model’s performance. In this study, we utilized
the peroxisomal protein dataset, as constructed by Antegh-
ini et al. [18] in 2021, which was obtained from the
UniprotKB/SwissProt database (https://www.uniprot.org/)
[24]. After filtering the data, CD-HIT [25] was applied
for clustering with a sequence similarity threshold of 40%.
The final dataset comprised 132 peroxisomal membrane
protein sequences and 28 peroxisome matrix protein se-
quences, resulting in an imbalanced dataset with a ratio of
approximately 5:1 between the two classes. This observa-
tion underscores the importance of addressing class imbal-
ance when training classification models.

2.1.2 Vacuole Datasets
In the study of plant vacuole protein identification, we

used the data set collected by Yadav et al. [26] to train
and test the model. Both PVPs and non-PVPs are from
the UniProtKB/SwissProt database [24]. They utilized CD-
HIT software to remove redundant samples by setting the
sequence identity threshold to 60%. A total of 274 positive
and 274 negative samples were initially obtained. Subse-
quently, a sequence identity threshold of 40% was applied,
resulting in the screening of 200 out of the 274 PVPs as pos-
itive samples for the training set, while the remaining PVPs
were assigned as positive samples for the test set. Simi-
larly, the same number of 40% identical negative samples
were collected to construct balanced training and indepen-
dent test datasets, respectively, as shown in Fig. 2.

2.2 Feature Extraction
In previous models, feature extraction is mainly based

on component features, location features, physical and

chemical properties, etc. In recent years, with the contin-
uous maturity and development of deep learning methods,
deep learning has begun to be applied to sequence-based
protein characterization tasks [27–32]. Natural language
processing (NLP) has received more and more attention in
the field of protein sequence analysis in bioinformatics [33].
To obtain a vector representation of a protein sequence, the
sequence is treated as a sentence, where an amino acid or
k-mers is treated as a word [34,35].

In this work, we utilized SeqVec, ProSE, and TAPE,
three feature extraction methods based on NLP pre-training
models; we utilized the idea of transfer learning. And we
will introduce these three feature extraction methods.

2.2.1 SeqVec
This feature extraction method utilizes the deep bidi-

rectional model ELMo, commonly used in natural language
processing (NLP), to represent protein sequences as con-
tinuous vectors known as embeddings. ELMo effectively
captures the biophysical properties of protein sequences by
leveraging unlabeled large-scale data. It employs a proba-
bility distribution model to generate embeddings that incor-
porate evolutionary information. The trained model cap-
tures important biophysical properties from the unlabeled
database (UniRef50) and transfers this knowledge to indi-
vidual protein sequences by predicting relevant sequence
characteristics [20].

2.2.2 ProSE
The feature extraction method uses three learning

tasks to simultaneously train a three-layer bidirectional
LSTM with skip connections: (a) Masked language model-
ing task; (b) Contact prediction between residues in protein
structure; (c) Structural similarity prediction. Training pro-
tein language models by self-supervised learning of large
amounts of natural sequence data and structural supervision
of smaller sequence sets [22]. The authors believed that
prior knowledge of protein function and structure could be
encoded into the learned representation through supervised
training of structural similarity tasks.

2.2.3 TAPE
With the continuous development of protein represen-

tation learning in machine learning research, the author in-
troduced a task to evaluate protein embedding (TAPE). The
author selected supervised tasks based on three areas of
protein biology where self-supervised learning can lead to
improvements (structural prediction, remote identification,
protein engineering). In this paper, we chose the BERT-
based TAPE model.

Each organelle protein sequence is first converted to
an integer sequence according to the following function:

f (mj) = i (1)
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Fig. 2. Flow chart of vacuole datasets construction. PVPs, plant vacuole proteins.

i = 1, 2 . . . . . . ., 20, if 20 canonical amino acid (2)

where mj is the j th amino acid of the sequence, The
integer sequence f (mj), j = 1,2,3,4, ……L (length of pro-
tein sequence) was embedded into 1024-long feature vec-
tors via the SeqVec method, 6165-long feature vectors via
the ProSE method, 768-long feature vectors via the TAPE
method.

2.3 Feature Selection

Since the extracted features may have redundant infor-
mation to make the prediction results inaccurate, it may also
lead to overfitting problems. We employed the SHAP inter-
pretation model visualization technique to identify the fea-
ture dimension that strongly influences prediction results.
Subsequently, we used ANOVA [23] and LightGBM to se-
lect the relevant features within this dimension and com-
pared their performance by incorporating them into the clas-
sifier. The better feature selection method is selected from
the two and utilized as the feature extraction method of the
model.

2.4 Balanced Dataset

Since we utilized the peroxisomal protein data set con-
structed by Anteghini et al. [18] in 2021, there are 132
membrane protein sequences and 28 matrix proteins, and
the ratio of the two is about 5:1. There is an imbalance in
the data set; and unbalanced data sets will affect the perfor-
mance of the model. The SMOTE algorithm is a method
for random oversampling of samples, and it is also a com-
mon method for processing unbalanced data. In this work,
we utilized the SVMSMOTE algorithm, which focused on
adding a few points along the decision boundary [36].

2.5 Classification Model

In the construction and selection of classificationmod-
els, we first constructed nine traditional machine learn-
ingmodels, includingGaussian naive Bayes (GaussianNB),
LR, RF, SVM, LightGBM, gradient tree boosting (GBDT),
multilayer perceptron (MLP), k-nearest neighbor (KNN),

and XGBoost. These models were implemented through
the scikit-learn [37], and we fine-tuned their hyperparame-
ters through grid search to achieve the best possible perfor-
mance. In this study, we fed feature vectors of peroxisomal
proteins into different algorithms and compared their per-
formance to select the most effective one.

In the past studies of protein identification and local-
ization, most of them utilized traditional machine learn-
ing methods as classification models, and there was almost
no use of deep learning methods as classification models,
but we believe that deep learning methods as classification
models will also achieve good results, not worse than tradi-
tional machine learning methods. So we tried to construct a
deep learning model; first, because the ordered amino acids
of a protein can be seen as words in a sentence, we see the
protein as a ‘language’, so we can model it using neural
structures developed for natural language. Therefore we
constructed TextCNN [38] and FastText [39] models. In
the construction of TextCNN, the model is composed of
two superimposed CNN layers, a maximum pool layer, and
two linear layers. We embed each protein sequence into a
matrix X of 1 × M dimension, M is the dimension of fea-
ture extraction, the batch size is 8, the step distance of the
first convolution layer is 2, the convolution kernel size is
3, the CNN layer is followed by a maximum pool layer, the
step distance is 3, the same as the second convolution layer,
the maximum pool layer. Since the first two have achieved
good results, we combined CNN and BiLSTM [40] to con-
struct a CNNBiLSTM model [41], which uses a convolu-
tional layer, a maximum pool layer, BiLSTM, and two fully
connected layers. The convolutional layer has a step dis-
tance of 2, the convolution kernel size is 3, and the CNN
layer is followed by a maximum pool layer with a step dis-
tance of 3. The size of the hidden layer of the BiLSTM is
100, the number of cycles is set to 1, and the dropout ran-
dom inactivation is 0.5. At the same time, we also tried to
add an attention mechanism to quantify the degree to which
each part of the protein sequence is focused, as shown in
Fig. 3. Each depth model uses the Adam optimizer, the
learning rate is 0.001, the activation function is the Soft-
max function, and the loss function is the cross entropy loss
function.
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Fig. 3. CNNBiLSTM + Attention model. CNN, Convolutional Neural Network; LSTM, Long Short-Term Memory.

2.6 Evaluation Metrics and Methods
Accuracy (Acc), sensitivity (Sn), specificity (Sp),

Matthews correlation coefficient (MCC), and F1-score
were used to evaluate the performance of the prediction sys-
tem [42–48]. The calculation method is as follows:

Sp =
TN

TN + FP
(3)

Sn =
TP

TP + FN
(4)

Acc =
TP + TN

TP + FN + TN + FP
(5)

F1 =
2× TP

2× TP + FN + FP
(6)

MCC =
TP × TN − FP × FN√

(TP + FP ) × (TP + FN) × (TN + FN) × (TN + FP )
(7)

For a binary classification problem, the actual predic-
tion will have only two values, 0 and 1. True class (TP)
if the instance is positive and is predicted to be positive,
false positive class (FP) if the instance is negative and is
predicted to be positive, and negative class if the instance
is negative and is predicted to be negative. Sn, Sp are the
proportion of correct predictions in positive and negative
samples, respectively. The F1 score reflects the robustness
of the model. The higher the score, the more robust the

model is. Acc reflects the overall accuracy of the predictor.
When the data set is unbalanced, Acc cannot really assess
the quality of the classification results. In this case, it can be
evaluated by MCC. The horizontal axis of the receiver op-
erating characteristic (ROC) curve is generally the ratio of
false positive rate(FPR), i.e., the ratio of negative class sam-
ples being judged as positive class samples, and the vertical
axis is the ratio of true positive rate(TPR), i.e., the ratio of
positive class samples being judged as positive class sam-
ples. In addition, we also draw the PR curve. The vertical
axis of the curve is precision, and the horizontal axis is re-
call. In this paper, area under the curve (AUC) defaults to
ROC-AUC. ROC-AUC represents the area under the ROC
curve, and the higher the value, the better the model. Like
ROC-AUC, we can calculate the area under the PR curve
to describe the performance of the model. We can think of
PRAUC as the average precision calculated for each Recall
threshold. In this study, we utilized the PyCharm software,
specifically version 2020.3.2, developed by JetBrains, to
write the model code. The software originates from Prague,
Czech Republic.

3. Results
3.1 Experiment on Peroxisome Protein Dataset
3.1.1 Performance of Features Extracted by Different
Methods on Different Classification Models after
Balancing the Dataset

In this study, three feature extraction methods, namely
SeqVec [18] based on the ELMO model, TAPE [19] based
on the BERT model, and ProSE [20] based on a pre-trained
multi-task language model, were employed to extract fea-
tures from peroxisomal protein sequences. To address class
imbalance, the SVMSMOTE algorithm was utilized to bal-
ance the dataset. Subsequently, the extracted features were
inputted into nine traditional machine learning models, in-
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Table 1. SeqVec + SVMSMOTE.
Model Acc F1-score Sp Sn MCC AUC

GaussianNB 0.6332 0.6639 0.7959 0.5636 0.3291 0.7679
LR 0.7339 0.8216 0.3262 0.9462 0.3734 0.8652
RF 0.8797 0.9140 0.6931 0.9748 0.7099 0.8829
SVM 0.8922 0.9223 0.7759 0.9461 0.7383 0.9200
LightGBM 0.8930 0.9228 0.7736 0.9486 0.7385 0.9153
GBDT 0.8934 0.9225 0.7744 0.9465 0.7372 0.9106
MLP 0.8695 0.9025 0.8334 0.8808 0.6990 0.9047
KNN 0.7739 0.8079 0.8292 0.7482 0.5612 0.8666
XGBoost 0.7789 0.8187 0.7852 0.7750 0.5476 0.9036
LR, logistic regression; RF, random forest; SVM, support vector machine;
GBDT, gradient tree boosting; MLP, multilayer perceptron; KNN, k-nearest
neighbor; Acc, accuracy; Sp, specificity; MCC, Matthews correlation coeffi-
cient; AUC, area under the curve; LightGBM, light gradient boosting machine.

Table 2. TAPE + SVMSMOTE.
Model Acc F1-score Sp Sn MCC AUC

GaussianNB 0.8933 0.8889 0.8844 0.8978 0.7954 0.9316
LR 0.9390 0.9356 0.9838 0.8948 0.8844 0.9619
RF 0.9427 0.9360 0.9775 0.9061 0.8927 0.9917
SVM 0.9447 0.9392 0.9852 0.9035 0.8961 0.9783
LightGBM 0.9428 0.9378 0.9819 0.9022 0.8914 0.9823
GBDT 0.9409 0.9355 0.9793 0.9014 0.8878 0.9832
MLP 0.9275 0.9308 0.9383 0.9108 0.8590 0.9238
KNN 0.9125 0.9043 0.9656 0.8543 0.8350 0.9345
XGBoost 0.9048 0.8940 0.9598 0.8463 0.8178 0.9551

cluding GaussianNB, LR, RF, SVM, LightGBM, GBDT,
MLP, KNN, and XGBoost. The experimental results, as
summarized in Table 1, Table 2, and Table 3, revealed that
the ProSE feature extractionmethod outperformed the other
two methods across all nine traditional machine learning
models. Notably, LightGBM achieved the highest perfor-
mance on the tenfold cross-validation, with an accuracy of
95.22%, F1-score of 0.9510, specificity of 96.63%, sen-
sitivity of 93.71%, MCC of 0.9072, and AUC of 0.9901.
Moreover, the TAPE method in combination with SVM
achieved an accuracy of 94.47%, F1-score of 0.9392, speci-
ficity of 98.52%, sensitivity of 90.35%, MCC of 0.8961,
and AUC of 0.9783 on the tenfold cross-validation. Fi-
nally, the SeqVec method combined with the GBDT model
demonstrated the best performance on the tenfold cross-
validation, yielding an accuracy of 89.34%, F1-score of
0.9225, specificity of 77.44%, sensitivity of 94.65%, MCC
of 0.7372, and AUC of 0.9106.

3.1.2 Performance of Features Extracted by Different
Methods on Different Classification Models after Feature
Selection

In the next step, we conducted experiments on the fea-
tures extracted by the ProSE method and utilized the SHAP
interpretation model to plot all instances. In this way, we
can see that the size of the feature’s impact on the predic-

tion is shown in Fig. 4. Each row in the figure represents
a feature and the abscissa is the Shap value. The ranking
of features is based on the average absolute value of Shap,
which can be seen as an arrangement diagram of feature
importance. The 4614th dimension feature shown in the
figure is the most important feature of the model and has
the greatest impact on the results. The features of the first
N that have the greatest impact on the model are generally
obtained by the mean of the absolute values of each feature
(abs → mean ()). The absolute value is used to solve the
problem of positive and negative cancellation, and the size
of the correlation is more concerned; as shown in Fig. 5, it
can be seen from the figure that the first 4614 dimensional
features have the greatest effect on the model. Combining
the results of the first two graphs, we selected the features
of the first 4616.

It is evident that the 4614-dimensional features have a
significant impact on the prediction results. Therefore, the
features extracted using the ProSE method were subjected
to feature selection using ANOVA and LightGBM, result-
ing in a feature dimension of 4614. These selected features
were then fed into nine traditional machine learning models
and four deep learning models, and the results are presented
in Table 4 and Table 5. The ANOVA and LightGBM fea-
ture selection methods exhibit varying performances across
different models. Notably, for the FastText model, the
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Table 3. ProSE + SVMSMOTE.
Model Acc F1-score Sp Sn MCC AUC

GaussianNB 0.8937 0.8921 0.8901 0.8923 0.7952 0.8941
LR 0.9473 0.9463 0.9656 0.9230 0.8974 0.9770
RF 0.9434 0.9435 0.9531 0.9331 0.8894 0.9893
SVM 0.9472 0.9460 0.9653 0.9288 0.8973 0.9869
LightGBM 0.9522 0.9510 0.9663 0.9371 0.9072 0.9901
GBDT 0.9443 0.9437 0.9525 0.9336 0.8909 0.9795
MLP 0.9434 0.9420 0.9502 0.9293 0.8909 0.9799
KNN 0.9415 0.9382 0.9670 0.9103 0.8870 0.9787
XGBoost 0.9344 0.9309 0.9621 0.9018 0.8726 0.9858

Fig. 4. Size of influence of features on prediction.

ANOVA feature selection method demonstrates the best
performance on the tenfold cross-validation, achieving an
accuracy of 95.77%, F1-score of 0.8996, specificity of
93.37%, sensitivity of 82.41%, MCC of 0.8241, AUC of
0.9818, and PRAUC of 0.9880. Conversely, for the tra-
ditional machine learning model LightGBM, the ANOVA
feature selection method yields the best results on the ten-
fold cross-validation, with an accuracy of 95.22%, F1-score
of 0.9514, specificity of 96.75%, sensitivity of 93.39%,
MCC of 0.9068, AUC of 0.9925, and PRAUC of 0.9924.
Furthermore, the LightGBM method demonstrates the best
performance when combined with the MLP model in the
traditional machine learning setting, achieving an accuracy
of 95.46%, F1-score of 0.9524, specificity of 97.47%, sen-
sitivity of 92.93%, MCC of 0.9119, AUC of 0.9759, and
PRAUC of 0.9811 on the tenfold cross-validation.

Fig. 5. Size of influence of mean prediction of feature absolute
values.

At the same time, we also draw the ROC and PR
curves of the deep learning model after ANONA and Light-
GBM feature selection methods, as shown in Fig. 6, Fig. 7,
Fig. 8, and Fig. 9.

To evaluate the impact of the SVMSMOTEmethod on
data set balancing, we conducted experiments without in-
corporating SVMSMOTE-generated features into the Fast-
Text model. The results, as depicted in Fig. 10, clearly
demonstrate significant improvements in model perfor-
mance after applying the SVMSMOTE method. This ob-
servation confirms the crucial role of data set balancing in
enhancing model indicators.

3.1.3 Comparison with Previous Models

Finally, our ProSE-Pero model was compared with the
In-Pero model developed by Anteghini et al. [18] in 2021,
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Table 4. ProSE + SVMSMOTE + ANOVA.
Model Acc F1-score Sp Sn MCC AUC PRAUC

GaussianNB 0.8900 0.8896 0.8824 0.8923 0.7882 0.8948 0.9184
LR 0.9509 0.9494 0.9747 0.9238 0.9050 0.9758 0.9691
RF 0.9396 0.9388 0.9531 0.9234 0.8801 0.9923 0.9539
SVM 0.9472 0.9458 0.9684 0.9239 0.8966 0.9910 0.9730
LightGBM 0.9522 0.9514 0.9675 0.9339 0.9068 0.9925 0.9924
GBDT 0.9489 0.9487 0.9619 0.9343 0.9003 0.9868 0.9296
MLP 0.9433 0.9428 0.9565 0.9230 0.8900 0.9871 0.9560
KNN 0.9415 0.9386 0.9701 0.9071 0.8866 0.9849 0.9671
XGBoost 0.9345 0.9318 0.9620 0.9029 0.8724 0.9899 0.9671
FastText 0.9577 0.8996 0.9337 0.8841 0.8241 0.9818 0.9880
TextCNN 0.9430 0.8798 0.9314 0.8610 0.7971 0.9617 0.9745
CNNBiLSTM 0.9450 0.8921 0.9260 0.8763 0.8108 0.9715 0.9790
CNNBiLSTM + Attention 0.9434 0.8787 0.9186 0.8638 0.7928 0.9733 0.9792
ANOVA, analysis of variance.

Table 5. ProSE + SVMSMOTE + LightGBM.
Model Acc F1-score Sp Sn MCC AUC PRAUC

GaussianNB 0.8708 0.8693 0.8741 0.8619 0.7480 0.8817 0.9210
LR 0.9472 0.9447 0.9747 0.9147 0.8975 0.9741 0.7500
RF 0.9511 0.9502 0.9622 0.9398 0.9051 0.9939 0.9883
SVM 0.9529 0.9512 0.9734 0.9321 0.9087 0.9842 0.9886
LightGBM 0.9535 0.9524 0.9687 0.9371 0.9098 0.9884 0.9923
GBDT 0.9481 0.9473 0.9623 0.9323 0.8991 0.9822 0.9689
MLP 0.9546 0.9524 0.9747 0.9293 0.9119 0.9759 0.9811
KNN 0.9471 0.9434 0.9792 0.9103 0.8976 0.9766 0.9994
XGBoost 0.9396 0.9371 0.9673 0.9078 0.8825 0.9844 0.9994
FastText 0.9507 0.8899 0.9325 0.8749 0.8159 0.9833 0.9884
TextCNN 0.9477 0.8883 0.9177 0.8778 0.8032 0.9549 0.9555
CNNBiLSTM 0.9438 0.8907 0.9156 0.8803 0.8023 0.9708 0.9813
CNNBiLSTM + Attention 0.9493 0.8926 0.8926 0.8905 0.8078 0.9681 0.9763

Fig. 6. ROC curve for deep learning models based on ProSE
+ SVMSMOTE + ANOVA.

as depicted in Fig. 11. The comparison clearly illustrates
that our proposed ProSE-Pero model achieves an approx-
imately 4% higher accuracy than the In-Pero model. This

Fig. 7. PR curve for deep learning models based on ProSE +
SVMSMOTE + ANOVA.
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Fig. 8. ROC curve for deep learning models based on ProSE
+ SVMSMOTE + LightGBM.

Fig. 9. PR curve for deep learning models based on ProSE +
SVMSMOTE + LightGBM.

notable improvement underscores the effectiveness of our
model. The detailed parameters of our ProSE-Pero model
are provided in Table 6.

3.2 Extending ProSE-Pero to Predict Vacuole Proteins
3.2.1 Comparison of the Performance of Different
Classification Models on the Plant Vacuole Protein
Independent Data Set

Vacuoles are unique organelles in plant cells and play
a key role in plant growth and development. Vacuoles have
cell functions such as degradation, autolysis, and regula-
tion. The basis for studying the maintenance mechanism
of vacuole biogenesis is to understand the biochemical and
physiological functions of vacuole proteins [49–51]. Accu-
rate identification of vacuolar proteins plays an important
role in understanding their biological properties. But now,
there are few tools for identifying vacuolar proteins [52–
54].

In order to verify the generalization performance of
our model and find an effective way to identify plant vac-

Fig. 10. Performance of FastText model before and after bal-
ancing the dataset.

Fig. 11. Performance of In-Pero and ProSE-Pero on the per-
oxisomal protein dataset.

uole proteins. We extended our method to the identification
of vacuole proteins and utilized the ProSE method based on
the self-supervised multi-task language pre-training model
to extract the features of vacuole protein sequences. By us-
ing the SHAP interpretable model and ANOVA method to
select the extracted features, we can see the size of the influ-
ence of the features on the prediction, as shown in Fig. 12,
and select 606-dimensional data.

Subsequently, we conducted a comparative analysis of
the performance of nine traditional machine learning mod-
els and the deep learningmodel FastText on the independent
test set. As shown in Table 7, FastText exhibited superior
performance, achieving an accuracy of 91.90%, F1-score
of 0.9122, specificity of 86.64%, sensitivity of 97.05%,
MCC of 0.8379, and AUC of 0.9626 on the independent
dataset. Notably, among the nine traditional machine learn-
ing models, LightGBM demonstrated the highest accuracy
of 89.19%, along with an F1-score of 0.9000, specificity of
81.08%, sensitivity of 97.30%, MCC of 0.7943, and AUC
of 0.9573 on the independent dataset.
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Table 6. The parameters of Our ProSE-Pero model.
Parameter Name Parameter value

Hidden Units 256
Learn Rate 0.001
Dropout Rate 0.5
Activation Function Relu
Optimizer Adam

Fig. 12. Size of influence of features on prediction.

3.2.2 Comparison with Previous Models
Finally, we compared our method with the previous

vacuole protein identification model. As shown in Fig. 13,
it can be seen that our method is superior to the iPVP-DRLF
model [48] and the previous model in Acc Sp, Sn, MCC,
and AUC, which are about 5%, 2%, 8%, 0.1 and 0.05 higher
than the PVP-DRLF model respectively.

4. Discussion
The experimental results of our study have demon-

strated the effectiveness of our approach, which utilizes the
multi-training task pre-training model ProSE, in extract-
ing peroxisomal and plant vacuole proteins. These find-
ings hold significant biomedical implications as they pro-
vide insights into the understanding of protein localization
and function within specific organelles. Moreover, the suc-
cess of our approach opens up avenues for its application in
extracting features of proteins from other organelles.

The accurate identification and localization of or-
ganelle proteins play a crucial role in unraveling the bio-

Fig. 13. Performance of our method with previous models on
the plant vacuole protein independent data set.

logical functions of organelles. For instance, dysregulation
of the Golgi apparatus has been implicated in various ge-
netic and neurodegenerative disorders, including diabetes
[55], cancer [56], Alzheimer’s disease [57], and Parkin-
son’s disease [58]. Although current therapeutic strate-
gies primarily rely on pharmacological interventions such
as anti-inflammatory and neuroprotective treatments, they
often fall short of providing a definitive cure [3]. To
gain deeper insights into Golgi dysfunction, timely de-
tection of abnormalities and damage is of utmost impor-
tance. Hence, precise identification of Golgi-resident pro-
tein types holds significant potential in advancing our un-
derstanding of the roles played by Golgi proteins in the
aforementioned pathologies. Mitochondria, essential or-
ganelles in eukaryotic cells, play critical roles in various
physiological processes, including cell differentiation, cel-
lular signaling, apoptosis, and growth [5]. Impaired mi-
tochondrial function disrupts energy metabolism and ulti-
mately leads to cell death [59]. Aberrant identification and
localization of submitochondrial proteins can lead to detri-
mental interactions, thereby contributing to the onset and
progression of various disorders, including Parkinson’s dis-
ease [60], multifactorial diseases [61], and type II diabetes
[62], among others. Therefore, investigating the subcellular
localization of mitochondrial proteins holds significant im-
portance in elucidating the molecular mechanisms underly-
ing these diseases, facilitating their diagnosis, and fostering
the development of novel therapeutic interventions. Vac-
uoles, being the largest organelle in plants, play a pivotal
role in diverse cellular functions such as the storage of in-
organic ions and metabolites, protein degradation, detox-
ification, and the regulation of cytoplasmic ionic home-
ostasis [63]. These vital functions contribute to the over-
all cellular integrity and homeostasis in plants. Accurate
identification of plant vacuole proteins and subsequent ex-
ploration of their biochemical properties and physiological
functions serve as fundamental steps toward understanding
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Table 7. Comparison of different models.
Model Acc (%) F1-score Sp (%) Sn (%) MCC AUC

GaussianNB 79.73 0.7887 83.78 75.68 0.5966 0.8456
LR 83.78 0.8421 81.08 86.49 0.6767 0.9255
RF 85.81 0.8758 83.78 90.54 0.7449 0.9385
SVM 87.16 0.8645 81.08 90.54 0.7194 0.9368
LightGBM 89.19 0.9000 81.08 97.30 0.7943 0.9573
GBDT 86.49 0.8734 79.73 93.24 0.7365 0.9556
MLP 89.19 0.8987 82.43 95.95 0.7910 0.9272
KNN 88.51 0.8903 83.78 93.24 0.7737 0.9546
XGBoost 83.11 0.8344 81.08 85.14 0.6627 0.9262
FastText 91.90 0.9122 86.64 97.05 0.8379 0.9626

the mechanisms underlying vacuole biogenesis and main-
tenance [53]. In this study, we have demonstrated the va-
lidity and broad generalizability of our proposed ProSE-
Pero model. The ProSE-Pero model presented in this study
holds significant potential for its application in accurately
identifying and precisely localizing the organelle proteins
mentioned above, including submitochondrial proteins and
Golgi proteins. This model offers promising prospects for
future studies in this field, allowing for an improved under-
standing of the roles and functions of these organelle pro-
teins in various cellular processes.

However, it is important to acknowledge the limita-
tions of our research. Currently, our focus is primarily on
the identification of organelle proteins, and our methods
may not be directly applicable to other protein prediction
tasks. Further research and refinement are needed to expand
the scope of ourmethods to encompass other protein-related
analyses, such as protein function prediction, protein fold-
ing studies, solubility prediction, and drug design.

By addressing these limitations and advancing our
methods, we aim to contribute to the broader field of pro-
teomics and facilitate advancements in protein analysis and
prediction. Ultimately, our research holds the potential
to enable more accurate and comprehensive investigations
into protein structure, function, and their roles in biolog-
ical processes, ultimately benefiting biomedical research
and applications.

5. Conclusions
Through this study, we discovered that the ProSE

method, which is based on a self-supervised multi-task lan-
guage pre-training model, is highly effective in identify-
ing peroxisomal protein localization. In addition to tra-
ditional machine learning methods, we also utilized deep
learning methods such as FastText, TextCNN, CNNBiL-
STM, and CNNBiLSTMwith an attention mechanism. Our
deep learning methods achieved accuracy rates of over
94% in peroxisomal protein localization and identification,
yielding impressive results. After balancing the dataset
with SVMSMOTE and comparing feature selection meth-
ods such as ANOVA and LGBM, our approach achieved

95.77% in Acc, 0.8996 in F1-score, 93.37% in Sp, 82.41%
in Sn, 0.8241 in MCC, and 0.9818 in AUC on the FastText
model using tenfold cross-validation. These results repre-
sent a 4% improvement over the In-Pero model proposed
by Anteghini et al. [18] in 2021, placing our approach at
the forefront of peroxisome protein localization and identi-
fication research. This study highlights the importance of
balancing imbalanced datasets and utilizing feature selec-
tion methods to enhance model performance. Moreover, in
comparison with the In-Pero model that combines the Se-
qVec method and UniRep method, our approach only uses
ProSE as the feature extraction method, demonstrating the
superior performance of the ProSE method in peroxisomal
protein localization and identification.

Furthermore, our approach has also been extended to
identify vacuolar proteins in plant organelles. Notably,
our method achieved remarkable results on the indepen-
dent test set using the FastText model, with an accuracy
of 91.90%, F1-score of 0.9122, specificity of 86.64%, sen-
sitivity of 97.05%, MCC of 0.8379, and AUC of 0.9626,
which is approximately four percentage points higher than
the iPVP-DRLF model ACC proposed by Jiao et al. [54] in
2022. Moreover, the method we utilize in the ProSE-Pero
model has demonstrated excellent effectiveness and gener-
alization, as evidenced by the leading level of performance
achieved on the independent test set for tonoplast proteins.

The above results show that the ProSE method based
on a self-supervised multi-task language pre-training model
has a good effect on extracting the features of organelle pro-
tein sequences. It also shows the superiority of enriching
the model with biological prior knowledge and integrating
protein structure knowledge into coding. At the same time,
we believe that our method can be extended to other or-
ganelle protein localization and recognition, such as mito-
chondria and Golgi proteins. In the future, we will put it
into practice and expand it on the basis of this work.

Availability of Data and Materials
The pre-trained ELMo-based SeqVec model and a

description on how to implement the embeddings can
be found here: https://github.com/Rostlab/SeqVec. The
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ProSE model and a description on how to implement the
embeddings can be found here: https://github.com/tbepler
/prose. The ProSE-Pero model and datasets can be found
here: https://github.com/SJNNNN/ProSE-Pero.
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