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Abstract

Background: Metabolic reprogramming provides a new perspective for understanding cancer. The targeting of dysregulated metabolic
pathways may help to reprogram the immune status of the tumor microenvironment (TME), thereby increasing the effectiveness of im-
mune checkpoint therapy. Colorectal cancer (CRC), especially colon adenocarcinoma (COAD)), is associated with poor patient survival.
The aim of the present study was to identify novel pathways involved in the development and prognosis of COAD, and to explore
whether these pathways could be used as targets to improve the efficacy of immunotherapy. Methods: Metabolism-related differentially
expressed genes (MRDEGs) between tumor and normal tissues were identified using The Cancer Genome Atlas (TCGA) dataset, to-
gether with metabolism-related prognostic genes (MRPGs). Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment
analysis was performed separately for the MRDEGs and MRPGs. Gene Set Variation Analysis (GSVA) was also performed to explore
the role of purine metabolism in COAD tumorigenesis. Consensus clustering of purine metabolism genes with the overall survival (OS)
of patients and with anti-tumor immunity was also performed. Pearson correlation analysis was used to identify potential targets that cor-
related strongly with the expression of immune checkpoints. Results: A 6-gene signature that had independent prognostic significance
for COAD was identified, together with a predictive model for risk stratification and prognosis. The most significantly enriched pathway
amongst MRDEGs and MRPGs was purine metabolism. Differentially expressed purine metabolism genes could divide patients into two
clusters with distinct prognosis and anti-tumor immunity. Further analysis suggested that purine metabolism was involved in anti-tumor
immunity. Conclusions: This study confirmed the importance of metabolism-related pathways and in particular purine metabolism in
the tumorigenesis, prognosis and anti-tumor immunity of COAD. We identified a 6-gene prognostic signature comprised of EPHX2,
GPX3, PTGDS, NAT2, ACOXI and CPT2. In addition, four potential immune-metabolic checkpoints (GUCY141, GUCYIBI, PDEIA
and PDE5A) were identified, which could be used to improve the efficacy of immunotherapy in COAD.
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in cancer cells have attracted considerable attention. In
particular, enhanced aerobic glycolysis, also known as the
Warburg effect, is a well-known alternative metabolic path-
way in tumor cells [4]. The Kyoto Encyclopedia of Genes
and Genomes (KEGQ) database contains approximately 50
metabolism pathways. However, few comprehensive anal-
yses have been conducted to identify the metabolic path-
ways involved in the poor prognosis of COAD.

1. Introduction

Colon cancer has the third highest incidence of all ma-
lignant tumors, with approximately one million new cases
diagnosed worldwide in 2018 and 551,269 patients dying
from this disease [1]. Colon adenocarcinoma (COAD) is
the most common type of colon cancer. A better under-
standing of the mechanism of COAD malignancies is ur-
gently needed to help improve therapy.

Metabolic reprogramming is a critical hallmark of hu-
man cancer and is an adaptive response to the hypoxic and
hypo-nutrient conditions of the tumor microenvironment
(TME) [2,3]. Several reprogrammed metabolic pathways

There are several ways in which metabolic reprogram-
ming may contribute to the tumor development and progres-
sion, including tumor immunity [5-8]. Tumor cells adjust
their metabolism to maintain continuous proliferation. Tu-
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mor tissue is therefore very different from normal tissue in
terms of nutrient intake and waste accumulation. This can
impact the presentation and recognition of antigens and im-
pose metabolic stress on infiltrating immune cells, result-
ing in immune escape [9—12]. Cancer immunotherapy is a
major breakthrough in tumor treatment. However, many
patients show no response to such therapy, possibly due
to abnormal metabolic reprogramming of the immunosup-
pressive TME, resulting in the regression of the antitumor
immune response [13]. Therefore, the targeting of dysreg-
ulated metabolism pathways that affect anti-tumor immu-
nity may help to reprogram the immune status of the TME,
thereby increasing the effectiveness of immune checkpoint
therapy.

The aim of the present study was to identify poten-
tial pathways involved in the development and prognosis
of COAD, and to explore whether these can be targeted to
improve the efficacy of immunotherapy.

2. Material and Methods

2.1 Preprocessing of Transcriptome and Clinical Data

mRNA expression profiles and corresponding clini-
cal information from The Cancer Genome Atlas (TCGA)
(https://portal.gdc.cancer.gov/) COAD dataset were used
as the discovery cohort in this study. Eligible sam-
ples met the following criteria: (1) histologically con-
firmed COAD; (2) mRNA expression profile data and clin-
ical information were both available; and (3) only sam-
ples with a patient survival time >30 days were included
in the survival analysis. Adjacent normal tissues (n =
40) and COAD samples (n = 404) were used to identify
DEGs. The FPKM expression of each gene was applied
with Log (1+FPKM) and normalized with Z-score (mean-
centered). For external validation, gene expression matri-
ces for the GSE91061, GSE78220, GSE74602, GSE17536,
and GSE17537 series were obtained from the Gene Ex-
pression Omnibus (GEO) database (https://www.ncbi.nlm
.nih.gov/geo/). GSE91061 and GSE78220 datasets have
high-throughput RNA sequencing information. GSE91061
contains 109 RNA-seq samples (58 on-treatment and 51
pre-treatment) from 65 patients, while GSE74602 contains
30 matched pairs of normal and colorectal tumor samples.
GSE78220 contains the RNA-seq transcriptome of respon-
sive (n = 15) and non-responsive (n = 13) pretreated tu-
mors with high-quality RNA (27 pretreatment and 1 early
treatment). GSE17536 and GSE17537 contain microarray
data from 177 and 55 colorectal cancer patient samples,
respectively. The R package “sva” was used to eliminate
batch effects that can occur because of the different data
sources. To explore the metabolic landscape in colon can-
cer more comprehensively, genes from all metabolic KEGG
pathways were extracted from the Molecular Signature
Database (MsigDb) v7.1 (https://www.gsea-msigdb.org/gs
ea/msigdb/human/genesets.jsp?collection=CP:KEGG). A
total of 38 metabolic pathways were analysed, includ-

ing alanine aspartate and glutamate metabolism, alpha
linolenic acid metabolism, amino sugar and nucleotide
sugar metabolism, arachidonic acid metabolism, arginine
and proline metabolism, ascorbate and aldarate metabolism,
beta alanine metabolism, butanoate metabolism, cysteine
and methionine metabolism. The 38 metabolic pathways
and the genes within them are listed in Supplementary Ta-
ble 1.

This study was approved by the Institutional Ethics
Review Board of the Third People’s Hospital of Chengdu
and conducted following the Chinese ethical guidelines for
human genome/gene research.

2.2 Bioinformatics Analysis

The R package “limma” was used to perform differen-
tiation analysis of metabolism-related gene expression by
comparing tumor and normal samples. The thresholds for
DEGs were |logFC| >1 and adjusted p < 0.05. Heatmaps
were drawn using the “pheatmap” package and used to vi-
sualize differential gene expression.

Univariate analysis and least absolute shrinkage and
selector operation (LASSO) Cox regression analysis were
performed using the R packages “glmnet” and “survival”.
These were used to identify metabolism-related prognos-
tic gene signatures and included only those genes with p <
0.01. The risk score for each patient in the training and val-
idation cohorts was calculated separately according to the
following formula:

Risk score = > coef ficient
expression value(mRN A;)

The median value of the risk scores was set as the
cutoff point, and subsequently used to divide patients into
high- and low-risk groups. Survival analysis was performed
using Kaplan-Meier (K-M) survival curves. Discrimina-
tion between the outcomes for observations and predic-
tions were performed using the area under the curve (AUC)
of ROC in the package “survivalROC”. The AUC value
ranged 0.5 to 1.0, with 0.5 indicating a random probabil-
ity and 1.0 indicating perfect predictive ability.

KEGG analysis (p-value < 0.01) was performed
using the KEGG automatic annotation web service
(https://www.genome.jp/tools/kaas/). = GSVA was per-
formed using the R package “GSVA” [14]. All genes in
the purine metabolism pathway were extracted from the
KEGG database using the R package “KEGGREST” (ver-
sion 1.35.0). Consensus clustering was performed using the
R package “ConsensusClusterPlus”. Patients were divided
into two clusters according to the expression of DEGs in the
purine metabolism pathway. CIBERSORT was performed
using the webserver tool (https://cibersort.stanford.edu/).
Gene Set Enrichment Analysis (GSEA) was performed
using GSEA software (http://www.broadinstitute.org/gse
a). The Gene Expression Profiling Interactive Analysis
(GEPIA) database (http://gepia.cancer-pku.cn/detail.php)
was used to assess the expression level of genes highly
related to immune checkpoints. Images of immunohisto-
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Fig. 1. Construction of a metabolism-related prognostic signature for COAD. (A) Heatmap showing the expression of MRDEGs.

(B) Forest plots of univariate analysis for OS in patients from the TCGA database. (C) LASSO coefficient profile for the common

genes. (D) Cross-validation for turning parameter screening in the LASSO regression model. (E) Kaplan-Meier survival curves for

patients from the TCGA dataset stratified according to their risk score. (F) Distribution of the risk scores and survival times for TCGA

patients. (G,H) Receiver operating characteristic (ROC) curve analyses for the prediction of 3- and 5-year OS according to the risk score

and other clinical features. COAD, colon adenocarcinoma; MRDEGs, metabolism-related differentially expressed genes; TCGA, The

Cancer Genome Atlas; LASSO, least absolute shrinkage and selector operation; OS, overall survival.

chemical staining for the selected core genes in normal tis-
sue and COAD tissue were obtained from the Human Pro-
tein Atlas (HPA) database (https://www.proteinatlas.org/)
[15].

2.3 Immunohistochemistry (IHC) Analysis

Tissues were fixed in 4% PFA at room temperature,
embedded in paraffin and sectioned at 3 pum, then incu-
bated with HoO2 to block endogenous peroxidases. Pri-
mary antibodies used for IHC analysis included rabbit anti-
PDEIA (Proteintech, 12442-2-AP, Wuhan, China), rab-
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bit anti-PDESA (Proteintech, 22624-1-AP, Wuhan, China),
rabbit anti-GUCY1A1 (Proteintech, 12605-1-AP, Wuhan,
China), and rabbit anti-GUCY 1B1 (Proteintech, 19011-1-
AP, Wuhan, China). The IHC images were captured us-
ing an OLYMPUS v200 ASW microscope. All human par-
ticipant experiments were conducted in compliance with
the ethical standards of the Declaration of Helsinki. This
study was approved by the Institutional Ethics Review
Board of the Third People’s Hospital of Chengdu and con-
ducted following the Chinese ethical guidelines for human
genome/gene research.
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Fig. 2. Validation of the prognostic value of the MRDEG signature. (A) Univariate analysis for the OS of patients from the TCGA
database. (B) Multivariate analysis for the OS of patients from the TCGA database. (C,D) Distribution of risk scores and survival times

for GEO patients stratified according to their risk score. (E) K-M survival curves for patients in the GEO dataset stratified according to

their risk score. GEO, Gene Expression Omnibus; K-M survival curves, Kaplan-Meier survival curves.

2.4 Statistical Analysis

The software package R 3.6.0 (R Foundation for Sta-
tistical Computing, Vienna, Austria) was used for statisti-
cal analyses. Groupwise comparisons were performed by
Wilcox-ranked sum testing. Pearson correlation analysis
was performed to identify metabolism-related prognostic
genes (MRPGs) and potential immune-metabolic check-
points. The overall survival (OS) rate of patients was es-
timated using K-M analysis, and the log-rank test was used
to evaluate differences between groups. p < 0.05 indicated
statistical significance.

3. Results

3.1 Identification of a Metabolism-Related Prognostic
Signature for COAD

Data for 945 metabolism-related genes was extracted
from the KEGG dataset for the differential expression anal-
ysis. Using the criteria of adjusted p < 0.05 and |log2FC]
>1, atotal of 129 MRDEGs were identified (Fig. 1 A). Uni-
variate Cox regression analysis was performed to identify
MRDEGs with prognostic value, which identified 7 genes
with p < 0.01 (Fig. 1B). The Lasso regression algorithm
with non-zero regression coefficients was used to select
the most valuable prognostic genes. Using lasso regres-

sion analysis (lambda = 6), a prognostic model comprised
of 6 MRDEGs was constructed (EPHX2, GPX3, PTGDS,
NAT2, ACOX1, and CPT2) (Fig. 1C,D). To further validate
the prognostic value of this 6-gene signature in COAD, the
risk score for each patient in the TCGA and GEO databases
was calculated using the formula: (exprGPX3 x 0.0083)
+ (exprPTGDS x 0.0269) — (exprEPHX2 x 0.0314) — (ex-
prNAT2 x 0.0249) — (exprACOX1 x 0.0584) — (exprCPT2
x 0.067). All patients were then divided into high- or low-
risk groups according to the median risk score (Fig. 1E).
The log-rank test found that patients in the high-risk group
of the TCGA cohort had significantly shorter overall sur-
vival (OS) (p = 0.0012; Fig. 1F). The AUCs for 3- and 5-
year OS were 0.693 and 0.822 respectively (Fig. 1G,H), and
the predictive ability of the signature was better than that of
TNM stage.

3.2 Validation of the Prognostic Value of the
Metabolism-Related Gene Expression Signature

To determine whether the 6-gene signature was an
independent prognostic factor for COAD patients, the
expression of these genes was determined using pub-
licly available transcriptome data (TCGA). The expres-
sion of EPHX2, GPX3, NAT2, PTGDS, ACOX1, and CPT2
were lower in COAD tumor tissue than in normal tis-
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sues (Supplementary Fig. 1A-F). K-M survival analysis
showed that three genes were positively correlated with the
OS of COAD patients (Supplementary Fig. 1G-I). Pa-
tients with high CPT2, EPHX2 and NAT?2 expression levels
showed better OS. Additional independent cancer datasets
on immunotherapy for melanoma (GSE91061, GSE78220)
were used to evaluate the predictive value of these genes
for sensitivity to immunotherapy. Patients with higher ex-
pression of PTGDS were more sensitive to immunother-
apy (Supplementary Fig. 1J). Patients with high CPT2
and NAT?2 expression also showed significantly better re-
sponse to immunotherapy than those with low expression
(Supplementary Fig. 1J). The above results suggest that
patients with high expression levels of PTGDS, CPT2 and
NAT?2 are more likely to benefit from immunotherapy.

We next performed univariate and multivariate Cox
regression analysis. TNM stage and the risk score showed
significant prognostic value for OS in univariate analysis
(Fig. 2A). Significant factors were then entered into a mul-
tivariate Cox regression model. The 6-gene signature risk
score and patient age were found to be independent predic-
tors of OS (Fig. 2B).

To validate the prognostic value of the signature, pa-
tients in the GSE17536 and GSE17537 series were sepa-
rated into high- and low-risk groups according to the 6-
gene signature risk score (Fig. 2C,D). Patients in the high-
risk group had worse OS than those in the low-risk group
(Fig. 2E), thus confirming the prognostic value of the 6-
gene signature based MRDEGs.

3.3 Purine Metabolism is the Most Significantly Altered
Pathway in COAD and Plays an Important Role in Tumor
Development

We next investigated the metabolic pathways involved
in determining the prognosis of COAD. KEGG enrich-
ment analysis was performed on the 129 MRDEGs to iden-
tify reprogrammed metabolic pathways in COAD. Purine
metabolism was found to be the most significantly en-
riched pathway (Fig. 3A). Other significantly altered path-
ways were drug metabolism, retinol metabolism, tyrosine
metabolism, and pentose and glucuronate interconversion.
Pearson correlation analysis was used to identify genes
that were co-expressed with the 6-gene signature, using
p < 0.01 and |R| >0.5 as the cut-off criterion. A to-
tal of 615 genes were retained and these were defined as
metabolism-related prognostic genes (MRPGs). KEGG en-
richment analysis was performed on the MRPGs to iden-
tify metabolic pathways that could play a role in determin-
ing the prognosis of COAD (Fig. 3B). The results showed
that purine metabolism, biosynthesis of antibiotics, pyrim-
idine metabolism, carbon metabolism, fatty acid degrada-
tion, and pyruvate metabolism were associated with the
prognosis of COAD patients. Interestingly, and consistent
with the results shown in Fig. 3A, the purine metabolism
pathway was the most enriched for metabolism-related dif-
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ferentially expressed genes s (p = 3.20 x 10732) and also
contained the most metabolism-related prognostic genes (p
=3.14 x 10~ 7). Therefore, its significance in COAD can-
not be ignored.

GSVA was used to confirm that purine metabolism
played an important role in COAD and to further exam-
ine the biological role of purine metabolism in COAD.
The GSVA enrichment score was calculated for each pa-
tient, who were then divided into two groups according
to the median score. The heatmap for the two groups
showed a significant difference in the expression of genes
for purine metabolism (Fig. 3C). The Wilcox test was per-
formed to compare the GSVA enrichment score between pa-
tients with different clinical characteristics (Fig. 3D-QG). A
lower purine metabolism enrichment score was associated
with higher tumor-node-metastasis (TNM) stage (p < 0.05).
Pearson correlation analysis was performed to explore the
relationships between purine metabolism and other path-
ways in the KEGG and hallmark gene sets. The P53 signal-
ing pathway, cell cycle, PI3K/AKT/mTOR signaling, and
MYC targets were found to be positively correlated with
purine metabolism, indicating these pathways were acti-
vated (Fig. 3H-K). The above results indicate that purine
metabolism plays an essential role in COAD development.

3.4 Consensus Clustering of Purine Metabolism Genes
with COAD Patient Survival

In view of the importance of purine metabolism in
COAD, we next performed consensus clustering. The k=2
was identified by optimal clustering stability from k = 2 to
10 based on the similarity displayed by the expression levels
of the MRDEGs and the proportion of ambiguous cluster-
ing measure. Patients were divided into cluster-1 (n = 177)
and cluster-2 (n = 139) (Fig. 4A—C). The OS of cluster-
1 patients was significantly better (p < 0.01) than that of
cluster-2 patients (Fig. 4D). The cluster subtypes defined
by differentially expressed purine metabolism genes were
closely related to the survival of COAD patients, thus fur-
ther confirming our hypothesis on the important role of this
pathway in COAD.

3.5 Consensus Clustering for Purine Metabolism Genes
with Anti-Tumor Immunity

GSEA analysis was performed to compare the biologi-
cal features between the two subtypes. Samples in cluster-2
were more enriched in immune-related pathways, including
the immune network for IgA production, natural killer cell-
mediated cytotoxicity, antigen processing and presentation,
graft versus host disease, and cytokine-receptor interaction
(Fig. 5A). These results suggest that purine metabolism may
have some interaction with tumor immunity.

The expression of immune checkpoints are closely re-
lated to the efficacy of immunotherapy. For example, the
overexpression of PD-L1 is widely used as a predictive
biomarker for the response to immunotherapy with check-
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point inhibitors. The expression of immune checkpoints
was therefore investigated in the two subtypes. Patients in
cluster-2 expressed higher levels of PD1, PD-L1, PD-L2,
LGALS9, HAVCR2, CD86, CD80, CTLA4, TNFRSF9 and
TNFSF9 than patients in cluster-1 (Fig. 5B—K), indicating
they may respond better to immunotherapy.

The distribution of 22 immune cell types in the
two subgroups was compared using the CIBERSORT al-
gorithm. Cluster-1 showed higher levels of infiltration
with monocytes and CD4 memory-resting T cells, whereas
cluster-2 showed more CDS8 T-cells, M1 macrophages, and
follicular helper T cells (Fig. SL).

3.6 Identification of Potential Immuno-Metabolic
Checkpoints in COAD

Purine metabolism status had closely related to the ex-
pression of immune checkpoints [16,17]. Therefore, tar-
geting of the purine metabolism pathway may be a poten-
tial strategy for improving the efficacy of immune block-
ade therapy. Pearson correlation analysis was used to com-
pare the expression of genes in the purine metabolism path-
way with immune checkpoints. With a cut-off point of |R|

&% IMR Press

>0.5, we found 8 genes that were highly correlated with
the expression of immune checkpoints. The expression of
four of these genes (GUCYIAI, GUCYIBI, PDEIA and
PDES5A) were significantly lower in COAD than normal tis-
sues (Fig. 6A—-D). Moreover, a similar expression pattern
for these genes was seen in an independent patient cohort
(GSE74602) (Supplementary Fig. 2A). IHC staining also
revealed the expression of GUCY1A1, GUCY1B1, PDE1A
and PDESA were downregulated in COAD tissues (Fig. 6E,
Supplementary Fig. 2B). As shown in Fig. 6F-K, PD-L2
expression was positively correlated with the expression of
GUCYIAI (r = 0.55, p = 8.52 x 10734, GUCYIBI (r =
0.55, p = 2.41 x 10733) and PDEIA (r = 0.52, p = 6.05
x 1073%). The expression of CD80 was positively corre-
lated to that of GUCYIAI (r = 0.55, p = 1.44 x 10733)
and PDE5A (r=0.56, p=3.63 x 10~3%), while the expres-
sion of CD86 was positively correlated with GUCY1B1 ex-
pression (r=0.51, p = 5.24 x 10~2%). These findings sug-
gest that targeting of GUCY1A1, GUCY1B1, PDEIA and
PDESA may improve the effectiveness of immunotherapy,
especially in patients with higher PDE1A (Supplementary
Fig. 2C).
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The heatmap shown in Supplementary Fig. 2D
provides an overview of the correlation coefficients be-
tween the signature genes and the immune checkpoints.
We found no significant difference in the expression of
PDEG6C, NT5C1B, ENTPD1 and AMPD3 between COAD
and normal tissues (Supplementary Fig. 3A-G). How-
ever, the expression levels of PDE6C, NT5C1B, ENTPD1
and AMPD3 were also positively correlated to the expres-
sion of immune checkpoints (Supplementary Fig. 3H-
M).

4. Discussion

Ever since the “Warburg effect” was first described,
much attention has been paid to metabolic reprogramming.
This concept has been pivotal in our understanding of tu-
mor metabolism. In the present study, KEGG analysis of
MRDEGs and MRPGs revealed the involvement of purine
metabolism in COAD. Activation of the purine metabolism
pathway plays a critical role in the development of COAD,
TME function, and the efficacy of immunotherapy. Target-
ing of GUCY1Al, GUCY1B1, PDE1A or PDE5SA in the
purine metabolism pathway may improve the effectiveness
of immune checkpoint blockade therapy.

Screening for MRDEGs identified EPHX2, GPX3,
PTGDS, NAT2, ACOXI, and CPT2 to have the strongest
prognostic values. The expression and prognostic value
of these genes in COAD were validated in independent
datasets. In addition, we developed a risk score formula
based on this 6-gene signature and validated its prognos-
tic value. MRPGs were the genes that were highly corre-
lated with the 6-gene signature (|r| >0.3). KEGG analysis
was performed separately for MRDEGs and MRPGs. In-
terestingly, the purine metabolism pathway was enriched
not only with the strongest MRDEGs, but also with the
MRPGs. These novel findings highlight the importance of
purine metabolism in COAD. Impaired purine metabolism
is known to be the major factor in gout pathogenesis. Purine
nucleotides are also fundamental for tumor cell prolifera-
tion, and the major role of purine metabolism in tumors
is well known [18,19]. Purine metabolism includes three
main pathways: the de novo purine biosynthetic pathway,
the purine salvage pathway, and the degradation pathway.
A previous metabolomic study revealed how the purine
metabolism pathway was reprogrammed [20]. Colorectal
tumor tissues have higher levels of inositol monophosphate,
adenosine, adenosine monophosphate, hypoxanthine and
xanthine than normal tissues, as well as a lower level of
uric acid. This indicates switching from the purine biosyn-
thetic pathway to the more efficient salvage pathway dur-
ing tumorigenesis [20]. The current transcriptome-level
study highlights the importance of reprogrammed purine
metabolism in the initiation and prognosis of COAD. Our
novel findings extend the results of previous studies in this
field.
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Different stages of COAD tumors were shown here to
have different purine metabolism enrichment scores. More-
over, GSVA enrichment scores for the purine metabolism
pathway were strongly associated with pathways that pro-
mote COAD tumorigenesis (|Cor| >0.7), thus demonstrat-
ing the involvement of purine metabolism in COAD. A pre-
vious study showed that metabolic reprogramming of col-
orectal cancer is mainly caused by aberrant MYC expres-
sion [21]. This could explain the strong correlation ob-
served in the present study between reprogrammed purine
metabolism and the MYC target signature. Target genes
associated with PDE1A, PI3K/AKT/mTOR signaling, p53
signaling, and cell cycle pathway may lie downstream of
the purine metabolism pathway [22-24].

Two tumor clusters were obtained by consensus clus-
tering based on the expression of purine metabolism
genes. The main clinical differences between these clus-
ters were OS and anti-tumor immunity. We conclude that
purine metabolism can reprogram the TME immune status,
thereby impacting anti-tumor immunity and tumor progno-
sis. The purine nucleoside adenosine (ADO) is a product
of purine metabolism and has an immunosuppressive effect
[25]. ADO is able to suppress differentiation of monocytes
into macrophages via the activation of A2 receptor signal-
ing [25-27]. This could explain the different level of infil-
tration of monocytes and of M1 macrophages between the
two clusters. Inosine is known to serve as an alternative
carbon source for CD8™ T cells in the absence of glucose.
It also enhances their tumor-killing ability and promotes the
expression of effector molecules such as tumor necrosis fac-
tor alpha [28]. The current finding that purine metabolism
has an important role in anti-tumor immunity is consistent
with these earlier results.

Immune checkpoint blockade therapy has revolution-
ized cancer treatment due to its durable responses and
fewer side-effects compared with conventional cancer treat-
ments [29-31]. However, a considerable proportion of pa-
tients remain unresponsive to these treatments, while about
one-third of patients relapse after the initial response and
develop adaptive resistance [32]. In the present study,
higher expression of immune checkpoints was observed
in cluster-2 COAD patients, suggesting these patients may
have better immunotherapy response. Therefore, the purine
metabolism status of tumor may predict their response to
immunotherapy. Current and future research strategies may
involve targeting of the purine metabolism pathway, and
the development of combination strategies to increase the
efficacy of immunotherapy. The adenosinergic pathway
forms a part of the purine metabolism pathway and rep-
resents an attractive target for cancer therapy. The ecto-
nucleotidases CD39 and CD73, also known as ENTPDI
and NT5E, respectively, are critical mediators of adenosine
accumulation in the TME [32,33]. Extensive pre-clinical
experiments with colon cancer cells have shown promising
results by targeting the adenosinergic pathway, including
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CD39, CD73 and receptors for adenosine, in combination
with chemotherapy or immunotherapy [34-37]. In the cur-
rent study we identified 8 genes as potential targets for in-
creasing the efficacy of immunotherapy. The expression
of these genes was highly correlated with the expression of
immune checkpoints. GUCY1A1 and GUCY1B1 are sub-
units of soluble guanylyl cyclase (sGC) and produce the
second messenger cyclic GMP (¢cGMP). The role of sGC
in other cancers has been reported [38,39], but there are
currently no reports on its effectiveness for improving im-
munotherapy. We found that GUCY1A1 and GUCY1BI
were downregulated in COAD, and their expression was
highly correlated with PD-L2, CD80 and CD86. PDE1A
and PDESA are members of the phosphodiesterase (PDE)
family, which catalyze the hydrolysis of 3’ cyclic phosphate
bonds in adenosine and/or guanine 3’,5" cyclic monophos-
phate [40]. PDE inhibitors have been used as a novel ap-
proach to treat colon cancer [41]. The present study is the
first to show a strong correlation between the expression of
PDEs (PDE1A and PDESA) and immune checkpoints. Our
study also found a strong correlation between the expres-
sion of CD39 (ENTPD1) and immune checkpoints (Sup-
plementary Fig. 3J-L), consistent with the results of a
previous study [34].

There are several limitations to our study. First, the
relationship between reprogrammed purine metabolism and
COAD prognosis was detected at the transcriptome level in-
stead of protein level. Second, it is not known whether other
metabolites in the purine metabolism pathway in addition
to adenosine contribute to human tumor progression. Fi-
nally, only correlations between the expression of immune
checkpoints and potential immuno-metabolic genes were
identified, and further inference regarding causality cannot
be drawn. Additional experiments are therefore required to
justify this hypothesis.

5. Conclusions

This study highlights the importance of purine
metabolism in the development of COAD, and identified
several important metabolism-related genes involved in
anti-tumor immunity. In particular, we identified four po-
tential targets in purine metabolism that may increase the
efficacy of immunotherapy. Our findings provide new in-
sights into purine metabolism in cancer and serve as a vi-
tal reference for the discovery of new immune-metabolic
checkpoints in COAD patient.
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