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Abstract

Background: Prostate cancer (PCa) is a prevalent form of malignant tumors affecting the prostate gland and is frequently diagnosed
in males in Western countries. Identifying diagnostic and prognostic biomarkers is not only important for screening drug targets but
also for understanding their pathways and reducing the cost of experimental verification of PCa. The objective of this study was to
identify and validate promising diagnostic and prognostic biomarkers for PCa. Methods: This study implemented a machine learning
technique to evaluate the diagnostic and prognostic biomarkers of PCa using protein-protein interaction (PPI) networks. In addition,
multi-database validation and literature review were performed to verify the diagnostic biomarkers. To optimize the prognosis of our
results, univariate Cox regression analysis was utilized to screen survival-related genes. This study employed stepwise multivariate Cox
regression analysis to develop a prognostic risk model. Finally, receiver operating characteristic analysis confirmed that these predictive
biomarkers demonstrated a substantial level of sensitivity and specificity when predicting the prognostic survival of patients. Results:
The hub genes were UBE2C (Ubiquitin Conjugating Enzyme E2 C), CCNB1 (Cyclin B1), TOP2A (DNA Topoisomerase II Alpha),
TPX2 (TPX2 Microtubule Nucleation Factor), CENPM (Centromere Protein M), F5 (Coagulation Factor V), APOE (Apolipoprotein E),
NPY (Neuropeptide Y), and TRIM36 (Tripartite Motif Containing 36). All of these hub genes were validated by multiple databases. By
validation in these databases, these 10 hub genes were significantly involved in significant pathways. The risk model was constructed
by a four-gene-based prognostic factor that included TOP2A, UBE2C,MYL9, and FLNA. Conclusions: The machine learning algorithm
combined with PPI networks identified hub genes that can serve as diagnostic and prognostic biomarkers for PCa. This risk model will
enable patients with PCa to be more accurately diagnosed and predict new drugs in clinical trials.
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1. Introduction

Prostate cancer (PCa), the leading cause of cancer-
related death in Western countries, predominantly affects
men between the ages of 40 and 60 [1,2]. Early detection
of the disease relies greatly on clinical indicators (biomark-
ers) and drug targets, which are crucial for monitoring dis-
ease development and successful therapy. Urinary liquid
biopsy is attractive and promising for PCa detection. Apart
from the specific biomarkers from urine, potential serum
biomarkers that may allow the precision medicine revo-
lution to take place include androgen receptor (AR) vari-
ants, bone metabolism, and neuroendocrine and metabolite
biomarkers. In the subset of patients with bone metastases,
bone sialoprotein (BSP) and osteopontin (OPN) have prog-
nostic value. Higher BSP levels are related to a shorter
time to develop bone metastases in patients with PCa. OPN
may be useful for assessing the treatment response after
chemotherapy in patients with castration-resistant PCa [3].
Older men over age of 50 are most likely to develop PCa.

The rate of PCa diagnosis has been increasingly growing,
and certain patients may experience extended survival even
following the metastasis of cancer to distant locations.

PCa is a heterogeneous disease of the male reproduc-
tive system associated with gene aberrations, cellular con-
text, and the environment [4,5]. Lack of understanding per-
taining to the exact molecular mechanisms that drive PCa
advancement hampers the potential to effectively manage
advanced conditions. Hence, a comprehensive understand-
ing of the PCa biomarkers implicated in the proliferation,
apoptosis, and invasion of PCa holds utmost significance
for enhancing the efficacy of diagnostic and therapeutic ap-
proaches.

Advances in molecular biological, high-throughput
platforms, and machine learning techniques have enhanced
the identification of novel biomarkers and the screening of
potential drug targets for PCa. Germline or somatic aber-
rations in the DNA damage repair genes are found in 19%
of primary PCa and almost 23% of metastatic castration-
resistant PCa, and compromise genomic integrity. Patients
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Fig. 1. Workflow for identifying hub genes and drug targets in prostate cancer. TCGA, The Cancer Genome Atlas; DEGs, differ-
entially expressed genes; PPI, protein–protein interaction.

with breast cancer 2 (BRCA2) pathogenic sequence vari-
ants have increased levels of serum prostate-serum albumin
(PSA) at diagnosis, an increased proportion of tumors with
high Gleason score (GS), elevated rates of nodal and dis-
tant metastases, and high recurrence rates. Therapeutically,
several poly (ADP-ribose) polymerase inhibitors have been
investigated in patients with metastatic castration-resistant

PCa and are effective against germline BRCA2-mutant tu-
mors [6]. This study assessed the potential of PCa biomark-
ers to both diagnose and predict disease status, and evalu-
ated their effectiveness in predicting the response to drugs
and the occurrence of treatment-related toxicities. The
scope of this research ranged from molecular diagnosis to
the classification of cancers at a molecular level. It also en-
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Fig. 2. Significant enriched genes. (a) Biological process. (b) Cellular component. (c) Molecular function.

compassed patient stratification, prognosis prediction, and
the identification of novel targets for drug development
as well as predicting the tumor response [7–9]. Conse-
quently, high-throughput technologies, such as RNA se-
quencing (RNA-Seq) andmicroarray, have made it possible
to identify PCa biomarkers for tumor prognosis in the de-
velopment and progression of PCa. The integration of ama-
chine learning approach with RNA-Seq data for PCa analy-
sis is proving to be significant in unraveling the intricacy of
the transcriptome [10,11]. RNA-Seq technology possesses
numerous distinctive benefits including elevated sensitiv-
ity. However, it also has several novel challenges, the most
notable of which involves the management of voluminous
data. Despite the potential of machine learning technol-
ogy to diminish superfluous and unrelated information, it
necessitates substantial computational resources. Follow-
ing years of advancement, microarrays have established a
comprehensive framework, approach, and utilities. Conse-
quently, microarray data can now be analyzed utilizing a
personal computer, instead of relying on a workstation.

In this study, two types of microarray datasets,
GSE6919 (public on Jan. 30, 2007) and GSE30174 (pub-
lic on Dec. 21, 2012), were obtained from Gene Expression
Omnibus (http://www.ncbi.nlm.nih.gov/geo/). Then differ-
entially expressed genes (DEGs) associated with PCa were
calculated. Subsequently, the results of hub genes were
generated by a machine learning algorithm and visualized
by Cytoscape software (version 3.5.1, University of Cali-
fornia San Diego, 9500 GilmanDrive, LaJolla, CA, USA).
Finally, 10 candidate hub genes were found to be associated
with PCa. Gene Ontology (GO) and pathway enrichment
analyses were performed by Gene Set Enrichment Anal-
ysis (GSEA). By examining the biological functions and

Table 1. Gene expression profile information associated with
PCa.

Dataset type Dataset Platform Tumor samples Normal samples

Training
GSE6919

GPL92 91 77
GPL93 90 75
GPL8300 90 81

GSE30174 GPL570 70 10
Validation GSE16560 GPL5474 0 281
PCa, Prostate cancer.

pathways, potential biomarkers that could be used for di-
agnosis, prognosis, and as drug targets can be identified
and explored. Finally, all of these target genes and drug
targets were validated by different types of bioinformatics
database.

Graphs such as molecules, atoms, and proteins are
considered chemical bonds and nodes are treated as edges.
Numerous strategies have been suggested to carry out the
classification of nodes, classification of graphs, and genera-
tion of graphs with the aim of focusing onmolecular/protein
graphs to anticipate molecular characteristics [12] and de-
duce protein interfaces [13]. In this short review, we discuss
graph application on biological function prediction. There
are three primary categories of graph embedding meth-
ods: factorization-based, random walks-based, and deep
learning-based methods [14–16].

Analyzing key biomarkers in disease progression can
benefit from the utilization of various algorithms that carry
out intricate graphmining tasks. Some algorithms are semi-
supervised learning for node-level classification [17], su-
pervised learning for graph-level classification [18], and
unsupervised learning for graph embedding [19]. We iden-
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Fig. 3. Validation of hub genes by Gene Expression Profiling Interactive Analysis (red: tumor sample; grey: normal sample).
PRAD, Prostate adenocarcinoma.

tified the diagnostic and prognostic biomarkers associated
with PCa using the graph autoencoder (GAE) algorithm.
Then prognostic biomarkers were verified in The Can-
cer Genome Atlas (TCGA) and Gene Expression Omnibus
(GEO) dataset. TCGA, a landmark cancer genomics pro-
gram, molecularly characterized over 20000 primary cancer
andmatched normal samples spanning 33 cancer types. The
methodology employed in this study is presented in Fig. 1.

2. Materials and Methods
2.1 Definitions

Definition 1. Let graph G (V, E) denote a graph with a
collection of protein nodes, where V = {v1,…, v12} and
E = {eij}. G and E corresponds to the graph and edges set
for protein–protein interaction (PPI) networks.

Definition 2. Given graph G (V, E), graph embedding
is a mapping f : vi → yi ∈ Rd∀i ∈ [n] such that d ≪
|V | and the function f preserve some proximity measure
defined on graph G.

Each node in the graph embedding could be mapped
to a low-dimensional feature vector.

2.2 Datasets

Three cohorts were utilized in our study; the de-
scriptions of these cohorts are as follows. GSE6919

Table 2. Validation database for PCa.
Dataset name Data link References

GEPIA http://gepia.cancer-pku.cn/ [27]
Human Protein Atlas https://www.proteinatlas.org/ [28–30]
cBioProtal https://www.cbioportal.org/ [31,32]
GTEx https://www.gtexportal.org/home/ [33]
Ualcan http://ualcan.path.uab.edu/ [34]
Oncomine https://www.oncomine.org/ [35]
DrugBank https://www.drugbank.ca/ [36]

systemsDock
http://systemsdock.unit.oist.jp/
(accessed November 2022)

[37,38]

GTEx https://gtexportal.org/home/ [39]
GEPIA, Gene Expression Profiling Interactive Analysis; GTEx,
Genotype-Tissue Expression.

and GSE30174 were obtained from the GEO database as
training datasets. GSE6919 was based on the Agilent
GPL92, GPL93, and GPL8300 platforms (Affymetrix Hu-
man Genome U95 Version 2 Array), submitted by Federico
Alberto Monzon (2018). The GSE6919 dataset contained
504 samples, including 233 normal prostate tissues and
271 metastatic prostate tumors. GSE30174 was based on
the GPL570 platform (Affymetrix Human Genome U133
Plus 2.0 Array), submitted by Jennifer Barb (2019). The
GSE30174 dataset contained 80 samples, including 10
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Table 3. KEGG pathway analysis of DEGs associated with
PCa.

Pathway Count p-value

Dilated cardiomyopathy 23 1.28 × 10−7

Hypertrophic cardiomyopathy 19 1.25 × 10−5

ECM-receptor interaction 19 6.00 × 10−5

Proteoglycans in cancer 31 1.72 × 10−4

Arrhythmogenic right ventricular
cardiomyopathy

15 3.51 × 10−4

Morphine addiction 18 3.52 × 10−4

Adrenergic signaling in cardiomyocytes 23 5.37 × 10−4

Amoebiasis 19 7.92 × 10−4

Insulin secretion 16 0.001420903
GABAergic synapse 16 0.001420903
Pathways in cancer 46 0.002427201
Retrograde endocannabinoid signaling 17 0.003179689
Tyrosine metabolism 9 0.003610174
Focal adhesion 27 0.005655205
Vascular smooth muscle contraction 18 0.00596106
Phenylalanine metabolism 6 0.006699088
Transforming growth factor beta signaling
pathway

14 0.009099806

KEGG, Kyoto Encyclopedia of Genes and Genomes; ECM, Ecm-
receptor-interaction.

healthy peripheral blood and 70 non-metastatic prostate tu-
mors. GSE16560 as a validation dataset was based on the
GPL5474 platform (Human 6k Transcriptionally Informa-
tive Gene Panel for DASL), submitted by Andrea Sboner
(2013), contained 281 samples including primary prostate
tumors ordered by different GS. Dataset information is
summarized in Table 1.

All of the training datasets were analyzed using the on-
line tool GEO2R. Then the DEGs were calculated using the
limma R package (version 3.36.5, WEHI Bioinformatics,
Bundoora, Victoria, Australia) between normal and tumor
samples [20]. Multiple testing was corrected by the Ben-
jamini and Hochberg (BH) [21] method to obtain the ad-
justed p value. The cutoff values for screening DEGs were
set at an adjusted p < 0.05 and |log2FC| >1.5.

2.3 Functional Enrichment and Pathway Analysis of DEGs
GO analysis is a widely used technique for annotat-

ing genes and gene products to identify the biological pro-
cess (BP), cellular component (CC), and molecular func-
tion (MF) [22]. The Kyoto Encyclopedia of Genes and
Genomes (KEGG) database serves as a valuable resource
for systematically analyzing gene functions and connecting
genomic information with higher level functional informa-
tion [23]. To ensure the success of any high-throughput
gene functional analysis, it is crucial to map the user’s
genes to the appropriate biological annotations within the
Database for Annotation, Visualization, and Integrated Dis-
covery (DAVID) database [24]. This serves as a founda-
tional step for the analysis process.

2.4 Transformed Features Using Machine Learning
Framework

To construct a graph-embedding network based on
the PPI network extracted from gene expression profile
data, the Search Tool for the Retrieval of Interacting Genes
(STRING) database was utilized to transform gene expres-
sion data into vector input. To assess the interactive as-
sociations among DEGs, we carried out mapping of the
DEGs onto STRING database, exclusively considering ex-
perimentally confirmed interactions with a combined score
≥0.4. Graphs are good at denoting information and rela-
tionships in PPI networks [25]. Due to the presence of iden-
tical protein complexes, proteins that possess similar topol-
ogy exhibit comparable biological functions [26]. Conse-
quently, the exploration of distinctive structural attributes
among PPI networks associated with cancer might offer
valuable insights into the advancement of tumors. With the
aim of extracting, characterizing, and distinguishing net-
work structures within intricate PPI networks, this research
paper introduces an extensive and organized analysis of di-
verse graph embedding algorithms. Within the realm of
graph embedding, numerous studies have been conducted,
concentrating on the development of novel algorithms suit-
able for graphs encompassing millions of nodes and edges.

In this paper, we employed an unsupervised learning
framework known as GAEs (graph autoencoders) to en-
code graphs or nodes into a latent vector space, and subse-
quently reconstructed the graph data based on the encoded
information. GAEs can encode the node features and graph
construction into the latent representations and decode the
graph construction. So GAEs are suitable to acquire knowl-
edge on network embedding and graph generative distri-
butions from PPI nodes. Regarding network embedding,
GAEs primarily focus on learning representations of pro-
tein nodes through the PPI graph’s structural characteristics
such as the graph adjacencymatrix. Regarding graph gener-
ation, diverse approaches exist, including step-by-step gen-
eration of nodes and edges or the simultaneous generation
of an entire graph. Finally, the GAE results were visualized
by Cytoscape software.

2.5 Cross-Validation of Hub Genes and Drug Targets

To assess the validity of the hub genes and drug tar-
gets identified in the training dataset, cross-validation was
conducted utilizing the merged databases. The databases
utilized in this study are listed in Table 2 (Ref. [27–39]).

Evaluation of the performance of GAEs for 10 hub
genes was performed by receiver operating characteristic
(ROC) analysis (Supplementary Material 1).

2.6 Construction and Validation of the Gene-Related
Prognostic Model

To further investigate the relationship between patient
overall survival (OS) and the expression levels of individ-
ual hub genes, univariate Cox analysis [40,41] was carried
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Fig. 4. Validation of hub genes in the Oncomine database.

Fig. 5. Significant downregulated genes in the Genotype-Tissue Expression (GTEx) database.

out to construct a prognostic model of PCa. The survival
and survminer R package [42] were utilized for this analy-
sis. The screened genes with p< 0.01 in univariate Cox re-
gression analysis were considered significant. Next, an in-
dependent investigation using the multivariate Cox propor-
tional hazards regression analysis was performed to evalu-
ate the influence of numerous genes as individual prognos-
tic indicators impacting the survival of patients [43]. Fi-
nally, the stepwise method was used to select the optimized
model. The risk score was calculated as follows:

risk score =
∑

coefficient of genei × expression level of genei.

ROC analysis was performed to assess the prognostic
risk model, and the area under the curve (AUC) was calcu-

lated. The performance of the prognostic risk model was
then validated using the GEO dataset GSE16560.

3. Results
3.1 Identification of DEGs in PCa

After data preprocessing, 6269 of 26,696 DEGs were
identified; the top 200 DEGs included 153 upregulated
genes and 47 downregulated genes (Supplementary Fig.
1). The DEGs are shown in Supplementary Fig. 2.

3.2 GO Enrichment Analysis and KEGG Pathway Analysis
To identify overrepresented GO categories and KEGG

pathways, the obtainedDEGswere subjected to analysis us-
ing the online software DAVID. The GO analysis results
(Supplementary Material 2) revealed the significant en-
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richment of DEGs in various BPs such as signal transduc-
tion, positive regulation of transcription from RNA poly-
merase II promoter, and cell adhesion (Fig. 2a). Further-
more, GO analysis demonstrated the significant enrichment
of DEGs in cellular compartments such as the cytoplasmic
vesicle membrane, integral component of membrane, and
plasma membrane (Fig. 2b). Regarding the MF, the DEGs
showed enrichment in protein binding, protein homodimer-
ization, and calcium ion binding (Fig. 2c). The overall dis-
tribution of the GO results are shown in Supplementary
Fig. 3.

Table 3 presents the enriched pathways of the upreg-
ulated and downregulated DEGs. These pathways were
analyzed using KEGG analysis. The upregulated DEGs
demonstrated enrichment in pathways such as the cell cy-
cle, DNA replication, progesterone-mediated oocyte mat-
uration, p53 signaling pathway, and extracellular matrix
(ECM)–receptor interaction. Conversely, the downreg-
ulated DEGs exhibited enrichment in pathways includ-
ing drug metabolism, metabolism of xenobiotics by cy-
tochrome P450, retinol metabolism, hematopoietic cell lin-
eage, and calcium signaling. The results of KEGG en-
richment analysis conducted by GSEA [44] is shown in
Supplementary Fig. 4. All of the upregulated genes
were significantly enriched in dilated cardiomyopathy, hy-
pertrophic cardiomyopathy, ECM–receptor interaction, ar-
rhythmogenic right ventricular cardiomyopathy, focal ad-
hesion, and the transforming growth factor beta signaling
pathway.

3.3 Important Structures Resulted in Graphs of
PCa-Related Genes

All DEGs were uploaded to the STRING database,
with the analysis results shown in Supplementary Fig.
5. Based on the information available in the STRING
database, a total of 6475 nodes were identified in topolog-
ical form. In this paper, we present the illustrated GAEs,
which utilize an encoder for extracting network embeddings
and employ a decoder to ensure the preservation of nodes’
topological information through the adjacency matrix [45]
as:

PPMIv1,v2 = max
(
log (

count (v1, v2) · |D|
count (v1) count (v2)

)

)
, 0)

Where v1, v2 ∈ V, |D| =
∑

v1,v2
count (v1, v2)

and the count (·) function returns the frequency that node
v and/or node u co-occur/occur in sampled random walks.

The top 100 genes generated by GAEs are visualized
in Supplementary Fig. 6. The significantly upregulated
genes were ubiquitin-conjugating enzyme E2C (UBE2C),
cyclin B1 (CCNB1), topoisomerase IIα (TOP2A), Xeno-
pus kinesin-like protein 2 targeting protein (TPX2), cen-
tromere protein M (CENPM), coagulation factor V (F5),
apolipoprotein E (APOE), neuropeptide Y (NPY ), and

Table 4. Hub genes screened by the graph autoencoders
(GAEs) algorithm.

Expression Gene Score Expression Protein-protein
interaction (PPI)

module

Upregulated

UBE2C 207 up module 1
CCNB1 138 up module 1
TOP2A 138 up module 1
TPX2 121 up module 1

CENPM 103 up module 1
F5 97 up module 3

APOE 96 up module 3
NPY 85 up module 2

TRIM36 78 up module 4

Downregulated

MYH11 31 down module 1
FLNA 31 down module 1
ACTA2 31 down module 2
MYL9 27 down module 2
TAGLN 22 down module 3
ACTG2 22 down module 4

UBE2C, Ubiquitin Conjugating Enzyme E2 C; CCNB1, Cyclin
B1; TOP2A, DNA Topoisomerase II Alpha; TPX2, TPX2 Mi-
crotubule Nucleation Factor; CENPM, Centromere Protein M;
F5, Coagulation Factor V; APOE, Apolipoprotein E; NPY, Neu-
ropeptide Y; TRIM6, Tripartite Motif Containing 36; MYH11,
Myosin Heavy Chain 11; FLNA, Filamin A; ACTA2, Actin Alpha
2, Smooth Muscle;MYL9, Myosin Light Chain 9; TAGLN, Trans-
gelin; ACTG2, Actin Gamma 2, Smooth Muscle.

tripartite motif-containing 36 (TRIM36). The signifi-
cantly downregulated genes were myosin heavy chain 11
(MYH11), filamin A (FLNA), actin alpha 2, smooth mus-
cle (ACTA2), myosin light chain 9 (MYL9), transgelin
(TAGLN), and actin gamma 2, smooth muscle (ACTG2)
(Table 4).

3.4 Cross-Validation of Hub Genes in the Multi-Database

To conduct deeper exploration of the potential hub
genes, validation of these findings was carried out using the
Gene Expression Profiling Interactive Analysis database.
The results obtained from this analysis are illustrated in
Fig. 3. Notably, the hub genes demonstrated distinct sig-
nificance in both the tumor and normal groups.

To confirm the hub gene expression among various
cancers, the Oncomine database was employed to evaluate
the expression of hub genes in tumor and normal tissues.
By employing the criteria of p < 0.01 and |log2FC| >1.5,
a total of 396, 470, 461, 426, 459, 470, 452, 399, 419, and
443 unique analyses for UBE2C, CCNB1, TOP2A, TPX2,
CENPM, F5, APOE, NPY, and TRIM36, respectively, were
performed in Fig. 4.

Some of the downregulated hub genes were enriched
in ACTG2, MYH11, MYL9, FLNA, TAGLN, and ACTA2,
which were validated by the Genotype-Tissue Expression
database (Fig. 5). Genotype-Tissue Expression (GTEx)

7

https://www.imrpress.com


Fig. 6. Validation of the hub genes was performed using the Human Protein Atlas database.
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Fig. 7. Kaplan–Meier plots for biomarkers in the high- and low risk groups.

Fig. 8. Time-dependent (receiver operating characteristic,
ROC) biomarker curves of 1-, 3- and 5-year overall survival.

Program established a data resource and tissue bank to study
the relationship between genetic variants and gene expres-
sion in multiple human tissues.

The Human Protein Atlas database was utilized for the
validation of hub genes (Fig. 6). However, there was no
pathology results for TRIM36 in this database.

3.5 Construction of a Prognostic Model to Predict the OS
of PCa Patients

Given the crucial role of hub genes in PCa, we ana-
lyzed the role of hub genes in predicting OS in PCa using
univariate Cox regression analysis. Our findings revealed
that nine genes exhibited a significant association with OS
in patients with PCa (Table 5).

Finally, a stepwise multivariate Cox proportional haz-
ards model was constructed (Table 6), and four genes were
selected to build the following risk model:

risk score = (–0.5663 * expression level of TOP2A)
+ (–1.2489 * expression level of UBE2C)
+ (–1.4976 * expression level of MYL9)
+ (–0.9500 * expression level of FLNA)

Risk scores were computed for every patient in the
training group, and subsequently, the patients were cate-
gorized into high- and low-risk groups. Fig. 7 illustrates
the Kaplan–Meier OS curves, which clearly demonstrated
that patients with high-risk scores exhibited markedly dis-
tinct survival outcomes compared to those with low-risk
scores. The AUC values of the four-gene biomarker prog-
nostic model at 1, 3, and 5 years were 0.973, 0.793, and
0.66, respectively (Fig. 8).

3.6 Validation of the Independent of Prognostic Model
with Clinical Information

To assess the autonomous predictive significance of
a prognostic model composed of four genes, univariate and
multivariate Cox regression analyses were implemented us-
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Table 5. Prognostic genes related to (overall survival) OS based on univariate Cox analysis.
Gene Coef (Hazard Ratio) HR (Confidence Interval) CI p-value Regulation

TPX2 0.5047 1.656432 1.023110–2.681788 0.0040816 up
CENPM 0.2255 1.252922 0.7103220–2.210004 0.4361504 up
NPY –0.1172 0.889405 0.7681821–1.029757 0.1169458 up
APOE 0.0829 1.086374 0.663267–1.779384 0.7420967 up
TOP2A 0.3193 1.376153 0.903891–2.095159 0.1365386 up
CCNB1 0.422 1.524966 0.7778998–2.989488 0.2191977 up
TRIM36 0.2853 1.330103 0.5813955–3.042977 0.4993109 up
UBE2C 0.4762 1.610022 1.052690–2.462424 0.0080329 up
F5 0.1178 1.125063 0.8306933–1.523748 0.4464131 up
MYL9 –0.386 0.679401 0.4523929–1.020319 0.0624607 down
ACTA2 –0.3975 0.671972 0.425578–1.061018 0.0880427 down
MYH11 –0.301 0.740083 0.5300268–1.033387 0.0772040 down
TAGLN –0.3541 0.701817 0.4527059–1.088007 0.0034455 down
ACTG2 –0.3208 0.725560 0.5270065–0.9989209 0.0492314 down
FLNA –0.3015 0.739676 0.4698100–1.164557 0.1928742 down
TPX2, TPX2 Microtubule Nucleation Factor; CENPM, Centromere Protein M; NPY, Neuropeptide
Y; APOE, Apolipoprotein E; TOP2A, DNA Topoisomerase II Alpha; CCNB1, Cyclin B1; TRIM6,
Tripartite Motif Containing 36; UBE2C, Ubiquitin Conjugating Enzyme E2 C; F5, Coagulation Factor
V; MYL9, Myosin Light Chain 9; ACTG2, Actin Gamma 2, Smooth Muscle; MYH11, Myosin Heavy
Chain 11; TAGLN, Transgelin; ACTA2, Actin Alpha 2, Smooth Muscle; FLNA, Filamin A.

Fig. 9. Forest plot of risk scores and clinical factors based on univariate Cox regression analysis.

ing both TCGA prostate adenocarcinoma (PRAD) cohort
and GSE 16560 cohort. Univariate Cox regression analysis
demonstrated that the prognostic model incorporating clin-
ical information such as GS and pathologic stage exhibited
some prognostic value (Fig. 9). The statistical significance
of age and GS was nearly achieved, which prompted us to
include age, GS, and the prognostic model in the multivari-

ate Cox regression analysis (Fig. 10). The results of the
multivariate Cox regression analysis showed that the prog-
nostic model was independently associated with OS.

In addition, the prognostic model’s predictive value
was evaluated using the GSE16560 dataset. The dataset
consisted of 280 patients, who were divided into a high-
risk group (n = 190) and low-risk group (n = 90) based
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Fig. 10. Forest plot of risk scores and clinical factors based on multivariate Cox regression analysis.

Fig. 11. Kaplan–Meier plots for biomarkers in the GSE16560 dataset.
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Table 6. OS-related prognostic genes based on the multivariate Cox proportional hazards model.
Gene Coef (Hazard Ratio) HR (Confidence Interval) CI p-value

TOP2A –0.5663 0.567603 0.547639–0.867957 0.00276814
UBE2C –1.2489 0.28680 0.181526–0.318121 0.00694469
MYL9 –1.4976 0.22372 0.201772–0.499484 0.00732035
FLNA –0.9500 0.38651 0. 203403–0.479835 0.00419485
TPX2, TPX2 Microtubule Nucleation Factor; UBE2C, Ubiquitin Conjugating Enzyme E2
C; MYL9, Myosin Light Chain 9; FLNA, Filamin A.

Table 7. Expression of candidate tumor suppressor genes in
different PCa stages (H: upregulated; NO: not significant).

Hub gene
Gleason Score (GS)

GS = 6 GS = 7 GS = 8 GS = 9 GS = 10

UBE2C NO NO H H H
CCNB1 H H H H H
TOP2A NO NO H H H
TPX2 NO NO H H H
CENPM H H H H H
F5 NO H H H H
APOE H H H H H
NPY H H H H NO
TRIM36 H H H H H

UBE2C, Ubiquitin Conjugating Enzyme E2 C; CCNB1, Cyclin
B1; TOP2A, DNA Topoisomerase II Alpha; TPX2, TPX2Micro-
tubule Nucleation Factor; CENPM, Centromere Protein M; F5,
Coagulation Factor V; APOE, Apolipoprotein E; NPY, europep-
tide Y; TRIM6, Tripartite Motif Containing 36.

Fig. 12. Time-dependent (ROC) curve of biomarkers in the
GSE16560 dataset.

on the optimal cut-off value (Fig. 11). Fig. 12 illustrates
the time-dependent ROC analysis results for the prognostic

model’s survival prediction, which showed AUC values of
0.69, 0.58, and 0.61 at 1, 3, and 5 years, respectively.

3.7 Integrated Analyze for Drug Targets
All of the hub genes were uploaded to the cBioPortal

to make pan-cancer analysis by TCGA PRAD dataset. The
results showed that most of the hub genes had significant
mutations (Supplementary Fig. 7). Furthermore, network
analysis showed that the hub genes of NYP, TOP2A, and
TPX2 could also serve as drug targets (Fig. 13).

In the DrugBank database, the drugs amsacrine, bi-
calutamide, dexrazoxane, doxorubicin, daunorubicin, enza-
lutamide, epirubicin, fleroxacin, mitoxantrone, teniposide,
and valrubicin were PCa target drugs (SupplementaryMa-
terial 3). The drug targets calculated by systemsDock
showed that NY, TOP2A, and TPX2 had significant dock-
ing scores with drug targets (Fig. 14).

3.8 Gleason Score (GS) System for PCa
PCa is usually classified by the GS system. The anal-

ysis of PCa tissue is done through the GS grading sys-
tem, which characterizes the tissue based on its microscopic
growth pattern. This evaluation method, known as the GS
system, encompasses various levels of stratification. These
include GS ≤6, 3+4, 4+3, 8, 4+5, 5+4, and 10, corre-
sponding with Gleason Grading Group 1, 2, 3, 4, and 5,
respectively [46]. Consequently, GS ranges from 4 (2+2)
to 10 (5+5). A favorable prognosis can be expected for
individuals with a low GS score (≤6), as it indicates no
risk of lymphatic metastasis. Conversely, individuals with
a high GS score (>8) are more likely to experience dis-
tal metastasis. Table 7 shows the significant deregulation
of UBE2C, CCNB1, TOP2A, TPX2, CENPM, F5, APOE,
NPY, and TRIM36 in PCa based on the GS. Significant gene
expression of UBE2C, CCNB1, TOP2A, TPX2, CENPM,
and APOE was observed in the tumor samples (Fig. 15).
There was no expression of NYP, which had a GS of 10. A
nomogram with clinical information indicated that the GS
score showed moderate value in PCa (Supplementary Fig.
8).

3.9 PSA-Related Pathway
PCa exhibited PSA dependence on AR signaling [47].

The relationship between PSA and the AR pathway is
shown in Supplementary Fig. 9. PSA is a significant
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Fig. 13. Integration analysis for drug target. (a) Expression of hub genes in TCGA pan-cancer dataset. (b) Alteration frequency of
hub genes in PCa. (c) Clustering of multivariate data. (d) Network of hub genes and drug targets.

biomarker that is currently used for PCa screening and di-
agnosis [48]. AR splice variants may contribute to the pro-
gression of PCa. Several therapeutic drugs, including bica-
lutamide and enzalutamide, specifically target AR signaling
in the treatment of PCa [49].

4. Discussion
PCa is a prevalent and highly malignant tumor that

is known for its complex molecular heterogeneity, mak-
ing it a worldwide health concern. Therefore, uncover-
ing its biological process may provide insights into the di-
agnosis and treatment for this disease. In this study, we
used GSE6919 and GSE30174 as training datasets, and
GSE16560 as the validation dataset. Univariate Cox regres-
sion analysis showed that 10 hub genes were related to the
survival of patients with PCa. The four-gene risk model
was established by multivariate Cox regression analysis.

The AR plays a crucial role in the development and
progression of PCa. From the therapeutic perspective, abi-
raterone with prednisolone combined with androgen depri-
vation therapy (ADT) should be considered a new standard
treatment for patients with high-risk non-metastatic PCa. In
the metastatic setting, enzalutamide and abiraterone should

not be combined for those starting long-term ADT. Clin-
ically important improvements in survival from the addi-
tion of abiraterone to ADT are maintained for longer than
7 years [50]. By conducting genome-wide mapping of AR-
binding sites, researchers identified AR-binding regions
that regulate the expression of UBE2C, a gene targeted by
AR [51]. UBE2C has been shown to specifically regulate
AR splice variant 7 (AR-V7) through the UBE2C promoter
[52]. The expression of UBE2C is tightly controlled by
the cell cycle, which makes it a highly relevant target for
AR regulation, even under conditions of androgen indepen-
dence. Chromatin immunoprecipitation sequencing analy-
sis using an antibody that recognizes the N-terminal sec-
tion of the AR [53] led to the identification of AR-binding
sites. Previous studies have also confirmed a significant
correlation between UBE2C and AR-V7/AR3 [54]. CCNB1
is crucial for controlling the cell cycle at the G2/M (mi-
tosis) transition [55,56]. The upregulation of CCNB1 can
occur through Akt phosphorylation when there is overex-
pression of Jagged1 and AR in PCa [57]. Li and col-
leagues [58] found androgen and the AR can increase the
transactivation of CCNB1 in LNCaP cells. Moreover, the
co-overexpression of Jagged1 and AR in PCa leads to the
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Fig. 14. Molecule docking prediction for drug target genes (NY, TOP2A, and TPX2).

high expression of CCNB1 [52]. The AR signaling path-
way interacts with several other cell signaling pathways in
PCa [59]. Forkhead box M1 serves as a common central
transcriptional regulator that may play an important role
in cell cycle-related targets such as CCNB1 [60]. Upregu-

lated CCNB1 may affect proliferation and contribute to tu-
morigenesis [61–64]. Compounds of small-molecule drugs
that can inhibit PCa growth and block CCNB1-related path-
ways [58,60]. TOP2A has the function of controlling DNA
topological structure, cell cycle progression, tumor devel-
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Fig. 15. Expression of hub genes according to the Gleason Score system.
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opment [65]. Numerous studies have shown that aberrantly
expressed TOP2A is associated with tumor progression in
PCa [66]. Expression of the TOP2A protein is associated
with increased GSs and elevated levels of preoperative PSA
[67]. Modulation of DNA topological states and replication
mainly account for the expression of TOP2A [68–70]. Dur-
ing mitosis, TPX2 performs a crucial function in the process
of chromosome segregation [71]. In mitosis, TPX2 acti-
vates Aurora kinase A and directs its activity towards the
mitotic spindle, thus playing a significant role [72]. Anal-
ysis using microarray techniques revealed a positive cor-
relation between TPX2 and the GS. The overexpression of
TPX2 is associated with the aggressiveness of PCa [73,74].
Inhibiting TPX2 leads to the inhibition of PCa cell growth,
increased apoptosis, and a reduction in tumorigenesis. Nu-
merous studies have confirmed the potential therapeutic
value of targeting TPX2 in the treatment of PCa [73,74].
CENPM is a complex protein that plays a pivotal role in
the assembly of kinetochore proteins, the progression of
mitosis, and the segregation of chromosomes. CENPM is
reportedly a signature PCa-related gene [75]. F5 is a cen-
tral regulator of hemostasis. It serves as a critical cofactor
linked to cancer progression [76]. APOE is a crucial pro-
tein involved in regulating cholesterol levels. It also has the
potential to inhibit cell proliferation, modulate immune reg-
ulation, and regulate cell growth and differentiation [77].
APOE has a potential role in PCa progression [78]. NPY
has been implicated in the regulation of tumor advance-
ment, including neuroendocrine tumors, as well as breast
cancer and PCa [79]. The presence of reduced NPY ex-
pression levels is significantly linked to a more aggressive
clinical phenotype in PCa. In TCGA pan-cancer cohort,
PCa exhibits elevated NPY expression [80,81]. TRIM36, a
member of the B-box family of zinc-finger proteins, plays a
crucial role in cell cycle progression and cell growth atten-
uation [82]. Numerous studies have established a signifi-
cant association between TRIM36 and the GS, as well as
its upregulation in the majority of PCa. Moreover, TRIM36
delays the progression of the PCa cell cycle and prevents
excessive cell proliferation. Intriguingly, restoring TRIM36
expression during anti-androgen therapy has been shown to
enhance the effectiveness of the drug [83].

5. Conclusions
In this study, a genome-wide analysis approach was

utilized to indicate hub genes and drug targets in PCa. The
findings hold promise in terms of offering a valuable collec-
tion of biomarkers for further exploration into the underly-
ing molecular mechanisms of PCa. The identified biomark-
ers were found to be significantly associated with the OS of
patients by employing multiple databases and multivariate
analysis for validation. The AUC curve was used to verify
the classification of these biomarkers and risk model. All
of the biomarkers and pathways were based on a mathemat-
ical algorithm and bioinformatics tools. These potentially

prognostic biomarkers may be used to predict the molecu-
lar mechanisms and drug targets associated with PCa. Fur-
ther experimental validation and clinical studies on these
biomarkers should be conducted.
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