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Abstract

Nuclear pore complexes (NPCs) are intricate intracellular structures composed of approximately 30 nuclear pore proteins (NUPs) that
regulate the transport of materials between the nucleus and cytoplasm in eukaryotic cells. The heart is a crucial organ for sustaining
the vital functions of the body, pumping blood rich in nutrients and energy to all organs and tissues. Recent studies have shown that
NPCs play pivotal roles not only in normal cardiac physiological processes such as myocardial cell proliferation and differentiation but
also in various pathological processes such as ischemic and hypoxic myocardial injury. Due to their mass and complicated nature, the
structures of NPCs have been challenging to identify by the scientific community. With the development of cryo-electron microscopy
and advanced sampling techniques, researchers have made significant progress in understanding the structures of NPCs. This review
aims to summarize the latest research on the structural aspects of NPCs and their roles in cardiac physiology and pathology, increase the
understanding of the intricate mechanisms of NPC actions, provide valuable insights into the pathogenesis of heart diseases and describe
the development of potential novel therapeutic strategies.
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1. Introduction the cytoplasm; therefore, the nuclear membrane is one of
the features that distinguishes eukaryotes from prokaryotes
[17]. In eukaryotic cells, transcription and translation oc-
cur at different sites. RNA transcription occurs in the nu-
cleus, while protein translation takes place in the cytoplasm
[18,19]. The NPC is an important bridge for nucleoplasmic
transport, consisting of large proteins that assemble bidirec-
tionally (Fig. 1). They are embedded in the nuclear mem-
brane and consist of four circular scaffolds: the cytoplasmic
ring (CR), the inner ring (IR), the nuclear ring (NR), and the
luminal ring (LR) [20]. Cytoplasmic fibrils are attached to
the cytoplasmic ring, while the nuclear basket is attached to
the nucleoplasmic ring [2,21-24].

Nucleoporins (NUPs) constitute a class of proteins
that form the nuclear pore complex (NPC), which is crit-
ical for the transport of molecules between the nucleus and
cytoplasm in eukaryotic cells [1]. NUPs form the structure
of an NPC and mediate the selective transport of molecules
such as RNAs and proteins [2—4]. They play distinct roles
in an NPC; some function as receptors for transport factors,
others form the permeability barrier and another group of
NPCs are involved in NPC assembly [5,6]. NPCs are also
involved in maintaining the structural integrity of an NPC
and in regulating the flow of macromolecules mediated by
NPCs. An NPC is a large assembly of protein molecules
and plays a crucial role in the transport of molecules be-
tween the nucleus and the cytoplasm [7]. As the “gate-
keeper” of the nucleus, NPCs vary in composition and
structure across organisms, tissues, physiological states,
and pathological conditions [7—10]. Moreover, NPCs per-
form multiple functions, including nucleoplasmic translo-
cation, chromatin remodeling, regulation of gene expres-

The structure of the nuclear membrane on the oocyte
nucleus was first observed by electron microscopy in 1950,
and nuclear pores were then described [25]. In 1959,
Waston used terms such as pore complex to describe a com-
plex, which appears as a relatively independent cylindrical
structure on the nuclear membrane [26]. The eightfold sym-
metric cylindrical structure of an assembled NPC was con-

sion, and DNA repair, through various mechanisms [11—
16].

2. Exploration of the NPC Structure

The nucleus is surrounded by a double nuclear mem-
brane that divides the cell into two parts, the nucleus and

firmed in 1967 [27]. With advancements in biotechnology,
knowledge of NPCs has advanced, and the determination of
its molecular mass, production of structural models, prepa-
ration of antibodies, and cloning of phenylalanine-glycine
(FG)-NUP have all been accomplished in the past century
[28-31].
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Fig. 1. The structure of nuclear pore complexes (NPCs) and the function of nucleoporins in heart tissues. NPCs are anchored to

the nuclear membrane and consist of four annular scaffolds: the cytoplasmic ring, the inner ring, the nuclear ring, and the luminal ring.

As the gatekeepers of the nucleus, NPCs exhibit asymmetric modifications that are essential for nucleoplasmic transport. In heart tissues,

NPCs perform multiple functions through various mechanisms, including nucleoplasmic translocation, chromatin remodeling, and gene

expression regulation. In the nucleus, genes are transcribed into mRNA, which then enters the cytoplasm through nuclear pores, which

are transcribed into proteins. Moreover, proteins in the cytoplasm can enter the nucleus through nuclear pores and participate in gene

expression regulation. These processes are crucial for the normal growth and development of organisms.

In 1993, an NPC in yeast was isolated, and a cryo-
electron microscope map was drawn, which revealed the
NPC structure, which was an epoch-making discovery [32,
33]. In the early 21st century, Michael adopted a compre-
hensive approach to identify and locate each NPC in yeast
[34]. The next two decades were followed by the realiza-
tion that the NPC is a “behemoth” composed of multiple
modules. In other words, multiple different nucleoporins
constitute the subcellular structural complex of a nucleo-
porin [3]. Multimers containing NUP62 (yeast NSP1) iso-
lated from Xenopus laevis and yeast constitute proof of the
NPC multimeric structure [35,36].

With the development of visualization-related tech-
nologies, including immune electron microscopy and cryo-
electron tomography (cryo-ET), the three-dimensional lo-
cation and in vitro reconstruction of NPCs have been re-
alized, which has led to more intuitive understanding of
their spatial structure [23,31,33,34,37]. The detailed molec-
ular structures of NPCs are gradually being determined, in-
cluding those from the Baker’s yeast Saccharomyces cere-
visiae, the slime mold Dictyocele dictyocele, Xenopus lae-
vis oocytes, and the unicellular algae Chlamydomonas rein-
hinella to those in cultured human cells [38—40].

The NPC is one of the largest macromolecular com-
plexes in a cell, and it consists of an eightfold rotationally
symmetric core with asymmetric distribution on the nucle-
oplasmic surface [3,41,42]. The size, number, and con-

formation of the NPC vary across organisms, tissues, and
physiological states, making it a complex structure to study
[43,44]. An NPC is constructed from multiple copies of
more than 30-50 different NUPs, with different molecular
mass, ranging from 50 kDa to 358 kDa [2,34,45—48]. Most
of these NUPs are conserved in eukaryotes, indicating their
importance in the function of NPCs. The composition of an
NPC also varies within the same organism, depending on
the function of the cell, the degree of cell differentiation,
and the cell cycle of the cell in which it is located [49].

Scientists have been studying the structure and func-
tion of NPCs for decades using techniques such as low-
resolution imaging and high-resolution composition anal-
ysis. However, reproducing a complete high-resolution
structure of an NPC remains a primary challenge for NPC
researchers [40]. Despite this difficulty, our knowledge of
the structure of NPCs continues to evolve, providing us with
a better understanding of the assembly of different protein
copies of cellular NPCs.

3. Progress in Understanding the NPC
Structure

In recent years, significant progress has been made in
the study of the structure of the NPC [50]. Multiple stud-
ies have revealed the near-atomic resolution structure of the
human NPC obtained by cryo-electron microscopy, as well
as images of single particles of the vertebrate NPC from the
African clawed toad obtained via cryo-electron microscopy
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[9,20,51-53]. These findings are groundbreaking in terms
of both the understanding of the symmetric core structure
and asymmetric distribution of the NPC.

One study reported the complete structural set captur-
ing all linker—scaffold interactions of the symmetric core, as
determined by docking the complete linker—scaffold struc-
ture to a cryo-ET reconstruction of a human NPC resolved
at~12 A and an in situ cryo-ET reconstruction of a brewer’s
yeast NPC resolved at ~25 A [52]. From these finding at the
near-atomic level, the molecular structure and evolutionary
conservation of the linker—scaffold of the human NPC has
been established.

Another study reported a 70-MKDa model of the hu-
man NPC scaffold based on artificial intelligence predic-
tions. By fitting individual NUP structural models to high-
resolution cryo-electron chromatograms of human NPC in
contracted and expanded conformational states, the NPC
structure was resolved through dynamic states of flux. This
finding indicated conformational changes occur during both
expansion and contraction, and this dynamic model has pro-
vided the basis for identifying the precise anchoring points
of intrinsically disordered NUPs [53].

The study of the human NPC cytoplasmic surface has
been a topic of interest, particularly NPC asymmetric mod-
ifications, for scientists. Researchers such as Bley at Cal-
tech have made significant progress in this area, establish-
ing a near-atomic composite structure through a combina-
tion of techniques, including in vitro complex reconstruc-
tion, crystal structure determination, quantitative docking,
and in vivo validation [51]. One important finding is the role
of the cytoplasmic filament (CF) NUP in targeting exported
mRNA by modifying mRNP in preparation for subsequent
translation [3,54]. This process is crucial for protein func-
tion. The assembly of the CF NUP complex (CFNC) mod-
ule has been shown to be conserved in humans and C. ther-
mophilum. It consists of a central heterotrimeric coiled-coil
hub that tethers two independent mRNP-remodeling com-
plexes together [51]. This is an extension and expansion of
previous studies on CFNC in S. cerevisiae [40,55,56].

Another key component on the NUP cytoplasmic sur-
face is NUP358, which is a postnatally acquired animal-
specific CF component and the largest protein predicted to
be in NPCs [20,57,58]. Biochemical analysis and determi-
nation of its crystal structure have revealed that NUP358
is composed of 16 distinct structural domains. These do-
mains include an N-terminal S-shaped a-helical solenoid, a
coiled-coil oligomeric element, numerous Ran-interacting
structural domains, an E3 ligase structural domain, and a
C-terminal alanine isomerase structural domain. The basic
FG repeat sequence is involved in selective cargo passaging
mediated through a disordered C-terminal region [20,51].

Nup358 is one of the key components of the CR. The
cytoplasmic loop of the African clawed toad NPC was re-
constructed using single-particle cryo-electron microscopy,
and the near-complete NPC cytoplasmic loop structure in
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African clawed toad oocytes was determined using Al-
phaFold [9,20]. Cryo-electron microscopy-based structural
maps were obtained, showing that each CR subunit in-
cluded five copies of Nup358, two copies of Nup93, two
copies of Nup205, and two copies of the Y-complex. The
final model of the African clawed toad CR was generated
via AlphaFold prediction [9].

Another team also reported five copies of Nup358,
four of which were sandwiched around the internal and ex-
ternal regions of a Y-complex to stabilize the CR, with a
fifth Nup358 copy located in the center of the sandwiched
cluster. The binding pattern was identified, and the homo-
oligomeric coiled-coil structure of Nup358 was predicted
by AlphaFold. This result suggests the possibility that
Nup358 is recruited to NPCs and lowers the threshold for
Nup358 condensation during NPC biogenesis [20].

4. NPC and Heart Development

The development of the heart is a complex process that
is not fully understood. The heart is the first organ to form
during embryonic development, and cardiomyocytes orig-
inate in the mesoderm [59]. During myocardial differenti-
ation, a series of transcription factors are activated, but the
molecular regulatory mechanisms involved in this process
are still not clear [60].

Recent research has shown that NUPs expression and
distribution are significantly altered during myocardial dif-
ferentiation [61,62]. The annulate lamellae, which are
thought to be a collection of extraneous NUPs, are almost
all absent in stem cells, whereas they are significantly more
abundant in mature cardiomyocytes. This suggests that
fewer extraneous NUPs are in stem cells, allowing the trans-
port through the nuclear membrane into the nucleus to be
maximized [63].

Cardiomyocytes highly proliferate during the mam-
malian embryonic period and gradually cease to proliferate
in neonates. Differentiated mature cardiomyocytes show
little proliferative capacity and in contrast promote cardiac
growth through polyploidization and increased cell volume,
eventually entering a state of terminal differentiation [64].
Nuclear pores are the only pathways for the entry and exit
of macromolecules into and out of the nucleus, and they
regulate gene expression by regulating the entry of signal
transduction proteins into the nucleus [65]. Recent stud-
ies have shown that as cardiomyocytes mature, the number
of nuclear pores in the nuclear membrane decreases, par-
alleling the reduced transmission of cytoplasmic signals to
the nucleus [61]. This alters the transcription of a range of
genes, as it affects proliferative signaling, consistent with
previous reports of neurons during the progressive deterio-
ration of nuclear pore structure and function during aging
[61,66].

As a channel for the transfer of information between
the nucleoplasm and the nucleus, changes in the number
of nuclear pores are closely related to nuclear input [67].
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To explore the reasons underlying the decrease in the num-
ber of nuclear pores during cardiac cell maturation, scien-
tists studied nuclear pores in mice. The results showed that
mammalian cardiomyocytes with a marked reduction in the
number of nuclear pores during maturation reduced the nu-
clear input of signal transduction molecules, decreased gene
expression, and ameliorated adverse myocardial remodel-
ing caused by signals, such as stress signals [61,68]. Stem
cell-derived cardiomyocytes ensure the translocation of nu-
clear transport regulators such as cell cycle regulators and
cardiac cells-derived transcription factors, suggesting that
NPCs may influence the proliferative capacity of cardiomy-
ocytes by participating in the regulation of the cell cycle. In
addition, the nuclear transport requirements necessary for
cardiomyocyte proliferation may also be met by structural
adaptations of NPCs, thereby increasing internucleoplas-
mic communication [62]. Taken together, adaptive changes
in NPCs may be responses to changing cellular needs dur-
ing cardiac tissue development.

5. NPC and Cardiovascular Disease

NPCs are crucial components of the nuclear mem-
brane in eukaryotic cells. NUPs comprise two major
classes: structural scaffold NUPs and peripheral component
NUPs. These NUPs are critical for regulating molecular
transport to and from the nuclear membrane, and they play
vital roles in many important cellular activities [16]. How-
ever, NUPs have been associated with various diseases, in-
cluding immune disorders, neurological disorders, cancers,
and cardiovascular diseases [69].

Among these diseases, cardiovascular disease is cur-
rently a hot topic of research. NUPs have been found to
play important roles in the pathophysiology of cardiovascu-
lar diseases (Fig. 1). In fact, the first link between NUPs and
cardiovascular disease was reported in a study of a family
with atrial fibrillation (AF) with member who succumbed
to sudden death in early childhood. The study identified a
mutation in NUP155, R391H, which affected the nuclear
localization of NUP155 and reduced the permeability of
the nuclear membrane [70,71]. Subsequent animal and cell
experimental studies confirmed these findings, identifying
NUP155 as a driver of AF. The possible mechanism in-
volved a lamin A/C mutation that impaired lamin A/C inter-
action with NUP155, resulting in impaired export of Hsp70
mRNA and nuclear import of Hsp70 protein. This dam-
age led to AF and early incidents of sudden cardiac death
[72]. Another study, conducted by genetically analyzing
samples from subjects with heterotaxy, a congenital heart
disease caused by abnormalities in left and right body pat-
terns, revealed Nup188 with previously undocumented ge-
netic Copy number variations (CNVs) [73]. To elucidate
the importance of nuclear pore proteins in congenital heart
disease, Del Viso et al. [74] used the African clawed toad as
a model animal and revealed that deletion of the inner ring
nuclear pore proteins, including Nup188, was critical to the

absence of cilia in embryonic development. This finding
may explain the connection of cilium deletion and ectopic
Nup188 duplication in patients.

Recent research has elucidated the relationship be-
tween NUPs and cardiovascular diseases, specifically
metabolic alterations in cardiomyocytes under ischemic and
hypoxic conditions. However, the mechanisms underly-
ing these relationships are still unclear. One NUP, namely,
Nup35, has been shown to regulate cardiomyocyte NHE1
expression and modulate pH homeostasis under normal and
hypoxic-ischemic conditions by controlling NHEI mRNA
nucleoplasmic transport. Proper expression of NUPs is cru-
cial to maintain normal metabolic functions of cardiomy-
ocytes [75]. Another study revealed that Nup93 was signif-
icantly downregulated in hypoxic cardiomyocytes, which
was associated with abnormal NUP expression and ulti-
mately led to cardiomyocyte injury and death. The ex-
pression of Nup93 was negatively correlated with that of
Atrial natriuretic peptide (ANP) and Brain natriuretic pep-
tide (BNP), molecular markers of cardiomyocyte function.
Furthermore, knockdown of Nup93 regulated the transcrip-
tion of various mRNAs in cardiac myocytes, most notably
Yes-associated protein 1 (YAP1), which resulted in abnor-
malities in oxidative phosphorylation and ribosome biogen-
esis in cardiac myocytes [76]. These findings highlight
the importance of proper NUP expression in maintaining
healthy cardiomyocyte function and suggest potential ther-
apeutic targets for cardiovascular disease.

Recent research has indicated that NUP plays a crucial
role in cell-specific gene regulation, particularly in cardiac
electrophysiology and electrocardiography-measurable ac-
tivity. Potassium ion channels, known as Kcna4, are com-
plex voltage-gated ion channels that are essential for reg-
ulating myocardial membrane potential by enabling the
transport of potassium ions across the excitable cell mem-
brane [77]. Nup50, which is localized to the nucleus of
cardiomyocytes, has been shown to bind directly to the
Kcna4 FG-repeat domain, thus enhancing Kcna4 expres-
sion at the transcriptional and translational levels [78]. An-
other important ion channel, SCN5A, mediates the voltage-
dependent sodium ion permeability of excitable membranes
[79]. Nup107 is involved in regulating Scn5a mRNA out-
put through the control of nucleoplasmic transport of Scn5a
mRNA. Furthermore, Nup107 has been observed to rapidly
regulate cardiomyocyte Nav1.5 channels posttranscription-
ally in cardiomyocytes and heart tissue injured under hy-
poxic and ischemic conditions [80]. These findings suggest
that the Nup107 protein is associated with ischemic heart
damage.

Taken together, these studies suggest that abnormal-
ities in Nups can lead to cardiovascular disease, particu-
larly metabolism-related ischemic/hypoxic cardiomyocyte-
damaging diseases. Further research into the role of NUPs
is necessary to better understand the pathogenesis of cardio-
vascular disease and identify potential therapeutic targets.
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6. Conclusions

NPC:s play crucial roles in the transport of molecules
between the nucleus and cytoplasm of a cell. The charac-
teristics of NPCs vary across different organisms and dis-
ease conditions. Over the past decade, advancements in
biochemical reconstructions, X-ray crystallography, mass
spectrometry, mutagenesis, and cell biology have allowed
scientists to reconstruct a human NPC at near-atomic res-
olution. Artificial intelligence has also been used to ac-
curately model the components of NPCs. These advance-
ments have provided a better understanding of the struc-
ture and function of NPCs. They have also shed light on
how defects in NPCs lead to various diseases, especially
cardiac diseases. The plasticity of NPCs ensures that they
play essential roles in cardiac developmental processes such
as myocardial differentiation and proliferation. Cardiovas-
cular diseases are polygenic complex diseases, and NUPs
are considered a potential causes of various heart diseases.
Further research in this area may lead to the development
of new therapies for these conditions.
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