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Abstract

Background: Renal cell carcinoma has several subtypes, with kidney renal clear cell carcinoma (KIRC) being the most common and
heterogeneous. Purine metabolism is associated with cancer progression. However, the role of purine metabolism-related long non-
coding RNAs (lncRNAs) in KIRC remains unknown. Methods: KIRC were grouped into Cluster-1 and Cluster-2 based on purine
genes. Limma package was used to identify differentially expressed lncRNAs between two classes of purine genes. Single-factor
screening was used followed by random forest dimensionality reduction and Lassomethod to screen lncRNAs. A risk score model (Purine
Score) containing the 3 lncRNAs was developed using the Lasso method. Results: A total of 22 differentially expressed lncRNAs were
identified. These were reduced to a final set of three (LINC01671, ARAP1-AS1 and LINC02747). Age and metastasis (M) were identified
as independent prognostic factors for KIRC using univariate and multivariate Cox analysis. An abnormal immune cell response was also
associated with patient survival. The Purine Score correlated with abnormal expression of immune checkpoint genes. Genetic analysis
of KIRC found somatic mutations in TP53, TRIOBP, PBRM1, PKHD1, VHL, NPHP3, TLN2, CABIN1, ABCC6, XIRP2, and CHD4. In
vitro cell experiments showed that knockdown of LINC01671 promoted the proliferation and migration of 786-O cells, while inhibiting
apoptosis. Overexpression of LINC01671 inhibited the proliferation and migration of CAKI-1 cells, while promoting apoptosis. Gene
Set Enrichment Analysis (GSEA) analysis revealed that LINC01671 was significantly enriched in the MAPK, NF-kappa B, mTOR,
PI3K-Akt, and Wnt signaling pathways. Conclusions: LINC01671 may be a novel prognostic marker with important therapeutic value
for KIRC.
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1. Introduction
Kidney epithelium is the site of origin of renal cell

carcinoma (RCC), which accounts for around 90% of all
kidney cancers [1]. The most prevalent subtype of RCC is
kidney renal clear cell carcinoma (KIRC) [2], characterized
by a high cytoplasmic lipid content and considered to be a
metabolic cancer [3]. KIRC is a highly metastatic and re-
current malignant renal tumor associated with high morbid-
ity and mortality [4], and has become a major health prob-
lem worldwide [5]. This cancer type is characterized by
mutations in genes that control the hypoxia signaling path-
way, thus leading to metabolic imbalance, enhanced angio-
genesis, intra-tumoral heterogeneity, and a harmful tumor
microenvironment (TME) [6]. KIRC also interacts with the
TME, which helps to guide appropriate treatment [7]. It
is therefore imperative to achieve a comprehensive under-
standing of the molecular mechanisms that underlie KIRC
and to devise effective strategies for its timely diagnosis and
treatment.

The reprogramming of energy metabolism is a hall-
mark of cancer that has recently gained special attention
due to its promotion of cell growth and proliferation [8].
Purine is a vital substrate in organisms and serves as a cru-
cial material for cell proliferation and important factor in
immune regulation [9]. It is also an essential component
of various cellular processes, including energy metabolism,
cell signaling, and the encoding of genetic material [10].
The final product of purine metabolism in humans, uric
acid, has potent antioxidant properties [11]. Dysfunction
of purine metabolism has serious physiological and patho-
logical consequences [12], and impaired purine metabolism
is associated with cancer progression [13]. Jackson RC et
al. [14] were the first to describe the involvement of purine
metabolism enzymes in the renal cortex and kidney cells
of RCC in humans and rats. However, the role of purine
metabolism in KIRC is not yet fully understood.

Long non-coding RNAs (lncRNAs) are RNA tran-
scripts >200 nucleotides in length that bind to DNA, RNA

https://www.imrpress.com/journal/FBL
https://doi.org/10.31083/j.fbl2812354
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


and proteins [15] and are thus capable of modulating cellu-
lar physiology and function. Disruption of lncRNA expres-
sion or function is closely associated with various inherited,
autoimmune andmetabolic diseases, as well as tumors [16].
The overexpression of oncogenic lncRNAs and reduction of
tumor suppressor lncRNAs are common features of human
RCC. Abnormal expression of lncRNAs is a crucial factor
in RCC progression and an indicator of poor prognosis for
these patients [17]. The role in KIRC of lncRNAs related
to purine metabolism has yet to be determined.

With the above background in mind, we performed
non-negative matrix factorization (NMF) clustering to clas-
sify KIRC and identify purine-related patterns. We de-
veloped a purine-related, differential lncRNA risk score
(Purine Score) to predict the outcome of KIRC patients.
We also conducted analyses of immune cell infiltration, im-
mune checkpoint expression, and gene mutation. Finally,
we carried out preliminary in vitro cell experiments to val-
idate the function of purine metabolism-related differential
lncRNAs. Characterization of these lncRNAs could help
to guide the development of more personalized treatment
strategies for KIRC.

2. Materials and Methods
2.1 Dataset and Preprocessing

The dataset for KIRC was downloaded from The Can-
cer Genome Atlas (TCGA) located at UCSC Xena (https:
//xenabrowser.net/). RNA sequencing (RNA-seq) data was
extracted from the TCGA data portal. Values for fragments
per kilobase million (FPKM) were converted to transcripts
per million (TPM).

2.2 Clustering of Purine Genes in KIRC
A total of 130 purine-related geneswere obtained from

KEGG (hsa00230; purine metabolism), and 129 overlap-
ping genes were identified by intersecting with the TCGA
gene set. Single-factor Cox filtering was used to identify
65 genes with p < 0.01. NMF clustering was used to clas-
sify KIRC and to identify purine-related patterns, with the
patients then grouped for subsequent analysis.

2.3 Development of a Purine-Related LncRNA Risk Score
The limma package (version 3.56.2,

https://bioinf.wehi.edu.au/limma/) was employed for
single-factor filtering and to identify differentially ex-
pressed lncRNAs in the purine-associated category,
using a significance threshold of p < 0.05 and |logFC|
>1. Random survival forest was then used to per-
form further screening, and the Lasso method was
employed to build a model using the selected genes.
The risk score was calculated by multiplying gene ex-
pression values with the regression coefficients. The
surv_cutpoint function of the survminer package (version
0.4.9, https://rpkgs.datanovia.com/survminer/index.html)
was then applied to classify patients into high- and low-risk

groups. The timeROC R package (version 0.4, https://ww
w.rdocumentation.org/packages/timeROC/versions/0.4)
was used to plot time-ROC curves.

2.4 Immune Cell Infiltration and Pathway Analysis
The MCPcounter and TIMER algorithms were uti-

lized to evaluate immune cell abundance in KIRC sam-
ples and to identify disparities in immune cell infiltration
across distinct clustering categories or risk groups. Gene
Set Enrichment Analysis (GSEA) was performed to exam-
ine KEGG pathway regulation. The maftools R package
(version 2.16.0, https://github.com/PoisonAlien/maftools)
was used for mutation analysis.

2.5 Cell Culture and Treatments
The cells of the human RCC line 786-O (AW-

CCH060) and CAKI-1 (AW-CCH173) were purchased
from Abiowell (Changsha, Hunan, China). 786-O or
CAKI-1 cells were cultured in RPMI-1640 or McCoy’s 5A
medium containing 10% fetal bovine serum and 1% Peni-
cillin/Streptomycin. All cells were maintained at 37 °C
with 5% CO2 in a humidified atmosphere. All cell lines
have been authenticated in the past three years. All cell
lines were identified by STR profile. All experiments were
performed with mycoplasma-free cells. Both knockdown
and overexpression of LINC01671 were performed. 786-O
cells were divided into control, sh-NC, and sh-LINC01671
groups, and CAKI-1 cells into control, oe-NC, and oe-
LINC01671 groups. The sh-LINC01671, oe-LINC01671,
and negative controls (sh-NC and oe-NC) were provided by
HonroGene (Changsha, Hunan, China). All transfections
were performed using Lipofectamine 2000 (11668019, In-
vitrogen, Waltham, MA, USA).

2.6 Quantitative Real-Time PCR (qRT-PCR)
qRT-PCR was utilized to evaluate LINC01671,

ARAP1-AS1, and LINC02747 levels. Total RNA was
extracted and reverse transcribed into cDNAs. Ultra
SYBR Mixture (CW2601, CWBIO, Cambridge, MA,
USA) was used to test on the ABI 7900 system. Gene
expression was calculated using the 2−∆∆Ct method,
with GAPDH as the internal reference. Primer sequences
were: LINC01671-F: TCAGGAACACCTCACAGGTC,
LINC01671-R: GCAAACTCCAAGAGGAGTCCA;
ARAP1-AS1-F: TCCTCTACAGCACCCGCTTT, ARAP1-
AS1-R: CCACCCTTTCAGAGGCGTGAG; LINC02747-
F: GAAGATGTGCACCTGCCGAG, LINC02747-R:
GGTTGAGTTCAATGGCAGCA; GAPDH-F: ACAGC-
CTCAAGATCATCAGC, GAPDH-R: GGTCATGAGTC-
CTTCCACGAT.

2.7 Cell Counting Kit 8 (CCK-8) Assay
Cells were seeded at a density of 1 × 104/100 µL in

a 96-well plate and incubated at 37 ℃ in 5% CO2. After
adding 10 µL CCK-8 (NU679, DOJINDO, Tokyo, Japan),
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Fig. 1. Clustering of kidney renal clear cell carcinoma (KIRC) based on purine genes. (A) Non-negative matrix factorization (NMF)
clustering analysis. (B) Survival analysis for Cluster-1 and Cluster-2. (C) Differentially expressed long non-coding RNAs (lncRNAs)
between Cluster-1 and Cluster-2 were visualized by a volcano plot. (D) Clustering heatmap showing the expression of purine-related
lncRNAs in Cluster-1 and Cluster-2. M, Metastasis; N, Node; T, Tumor. ****p < 0.0001.

cells were incubated at 37 ℃ in 5% CO2 for 4 h. Optical
density (OD) values for absorbance at 450 nm were ana-
lyzed using an enzymemarker (MB-530, Heales, Shenzhen,
Guangdong, China).

2.8 Cell Migration Assay

Cells were suspended in serum-free medium at 1 ×
106/mL and 100 µL was added to the upper chamber of
a Transwell (33318035, Corning, Somerville, MA, USA).
The lower chamber was filled with complete medium con-
taining 10% fetal bovine serum (FBS). After removal of
the culture medium from the upper chamber, the upper sur-
face of cells was wiped with a wet cotton swab. The cells
were then fixed and stained with crystal violet. Cells on the
outer surface of the upper chamber were observed and pho-
tographed under a microscope (Olympus, Tokyo, Japan).

2.9 Flow Cytometry

Cells were digested and centrifuged, and about 3.2 ×
105 cells were collected. These were suspended in 500 µL
of binding buffer, and 5 µL allophycocyanin (APC) and
propidium iodide were added and mixed. Reaction was car-
ried out in the dark, and the cells analyzed by flow cytome-
try (A00-1-1102, Beckman, Pasadena, CA, USA) within 1
h.

2.10 Terminal Deoxynucleotidyl Transferase Mediated
dUTP Nick-End Labeling (TUNEL)

A TUNEL apoptosis detection kit (FITC)
(40306ES50, Yeasen, Shanghai, China) was used to
evaluate cell apoptosis. After fixation, cells were perme-
abilized with Triton X-100 and sodium citrate solution,
and then treated with fluorescent-labeled nucleotides
(dUTP) and TdT. TUNEL-positive cells with green fluo-
rescence were observed and quantified with a fluorescence
microscope.

2.11 Statistical Analysis

Normative variables were tested using the Shapiro-
Wilk test, while normally distributed variables were com-
pared with unpaired Student’s t-test. Non-normally dis-
tributed variables were compared using the Wilcoxon
test. One-way analysis of variance (ANOVA) was used
as a parametric method to compare multiple groups,
and the Kruskal-Wallis test as a non-parametric method.
For each dataset, patients were categorized by binary
risk score, with the R package ggplot2 (version 3.4.3,
https://ggplot2.tidyverse.org/) used to visualize data. The
Benjamini-Hochberg method was used to analyze differen-
tial gene expression. Significant genes were identified via
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Fig. 2. Development of a risk score (Purine Score) based on differentially expressed, purine-related lncRNAs. (A) Univariate
Cox analysis identified 16 purine-related lncRNAs. (B) Random forest analysis identified 5 lncRNAs. (C) Lasso analysis identified 3
lncRNAs. (D) Clustering heatmap used to visualize expression of 3 lncRNAs. ****p < 0.0001.
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Table 1. Sixty-five genes were selected by univariate Cox
analysis.

Gene Hazard Ratio (HR) p value

ADA 1.322225732 0.000141
NME6 0.615467044 0.004376
AK6 0.669127204 0.005059
ADCY1 0.574498565 0.000207
ADCY2 0.75597765 0.000395
ADCY5 0.685391664 0
NUDT5 1.626416449 0.000811
ADCY9 0.598294779 0
AK7 0.569865374 3.00 × 10–6

NUDT16 0.605200248 8.90 × 10–5

ADK 0.601568642 3.80 × 10–5

ADSL 0.640166167 0.00343
AK8 0.596918634 5.90 × 10–5

DCK 0.692206957 0.000238
DGUOK 1.86004424 0.002658
AK2 0.542739757 2.30 × 10–5

AK4 0.863904135 0.006743
AK9 0.664702673 0.005243
ENPP4 0.593929734 0
AMPD2 1.383331903 0.009987
PDE7B 0.592125813 0
GUCY1A1 0.787063349 5.00 × 10–5

NUDT2 0.58149016 1.20 × 10–5

IMPDH1 1.926126267 0
ITPA 1.991948966 0.000175
ENTPD8 0.615480519 0.006383
ATIC 1.478253406 0.00086
NME1 1.728680516 1.00 × 10–6

NME2 2.03014889 2.00 × 10–6

NME3 1.42570392 0.00202
NME4 1.788156728 0
PNP 0.655616998 5.00 × 10–6

NPR2 1.798747676 0
NT5E 0.819514456 0.008668
RRM2B 0.679064066 4.20 × 10–5

AK3 0.588356084 0
GMPR2 0.476951021 0
PDE1C 0.710323592 0.001792
PDE2A 0.70866223 0
PDE3A 0.801720547 0.009234
PDE4D 0.535287823 0
PDE9A 0.709025554 0.000394
PDE6B 0.823131936 0.003545
ENPP3 0.901450829 0.002451
ADA2 0.836659234 0.009229
PGM1 0.720722714 0.000803
PKLR 0.804793889 8.00 × 10–6

PKM 0.701745057 0.004423
NUDT9 0.614848462 4.50 × 10–5

PPAT 0.717877922 0.005324

Table 1. Continued.
Gene Hazard Ratio (HR) p value

PGM2 0.641367057 0
PRPS1 0.714070279 0.001607
PRPS2 0.715145179 0.002363
ADPRM 0.576786343 0.000419
RRM1 0.72659287 0.006432
RRM2 1.371503543 4.80 × 10–5

NTPCR 0.686055101 0.004177
PDE5A 0.774305725 0.007502
PAPSS1 0.662694715 0.000202
NT5C1B 0.274690557 0.003612
ENTPD1 0.755673824 0.000805
ENTPD2 0.72814631 7.00 × 10–6

ENTPD6 1.671090139 0.000499
ENTPD5 0.705890706 1.00 × 10–6

GDA 0.813727989 3.10 × 10–5

the conversion of p-values to false discovery rate (FDR).
The Kaplan-Meier method was used to compare survival
of different patient groups, with the logarithmic rank test
used to assess whether differences were statistically sig-
nificant. All survival curves were generated using the
R package survminer, and all heatmaps using pheatmap.
Statistical analysis was performed using R (version 3.6.1,
https://www.r-project.org/), with statistical significance set
at p < 0.05 for two-sided tests.

3. Results
3.1 Clustering of KIRC Based on Purine Genes

A total of 130 purine-related genes (KEGG: hsa00230;
purine metabolism) were identified from the literature. The
intersection of these genes with TCGA resulted in 129
genes. Subsequently, 65 genes were selected by univari-
ate Cox analysis (p < 0.01, Table 1). KIRC were grouped
into Cluster-1 and Cluster-2 according to purine genes. As
the number of clusters increased, the cophenetic coeffi-
cient decreased (Fig. 1A). Survival analysis showed that
Cluster-2 patients had better survival than Cluster-1 patients
(Fig. 1B). A volcano plot was used to visualize differences
in lncRNAs between the two clusters. The limma pack-
age identified 22 differentially expressed lncRNAs between
Cluster-1 and Cluster-2 (Fig. 1C). A heatmap further visual-
ized the expression of purine-related lncRNAs between the
two clusters (Fig. 1D).

3.2 Development of a Risk Score (Purine Score) Based on
Differentially Expressed, Purine-Related LncRNAs

Purine-related lncRNAs were first screened by
univariate Cox analysis (Fig. 2A). This identified
ARAP1-AS1 with an increased hazard ratio, and 15
lncRNAs with a decreased hazard ratio (LINC01320,
LINC02274, LINC00671, LINC02532, ADAMTS9-
AS1, LINC01697, C6orf223, LHFPL3-AS2, DRAIC,
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Fig. 3. Prediction of outcome in KIRC patients using Purine Score. (A) Survival analysis based on the risk score. (B) Receiver
operating characteristic (ROC) analysis. (C) Identification of prognostic factors using univariate and multivariate Cox analyses. (D)
Analysis of Purine Score according to clinical features. TCGA, The Cancer Genome Atlas.

LINC01508, PRKARIB-AS2, LINC2747, LINC02754,
LINC01671, and LINC01550). Next, random forest
analysis was used to reduce the dimension, resulting
in 5 lncRNAs (LINC01671, ARAP1-AS1, LINC02747,
ADAMTS9-AS1, and LINC01697; Fig. 2B). Lasso analysis
then identified 3 lncRNAs (LINC01671, ARAP1-AS1 and
LINC02747; Fig. 2C). Finally, the Lasso method was used
to obtain a risk score model comprised of 3 lncRNAs:
–0.1406 × LINC01671 + 0.0739 × ARAP1-AS1 – 0.1592
× LINC02747. A clustering heatmap was used to visualize
expression of the 3 lncRNAs (LINC01671, ARAP1-AS1,
and LINC02747; Fig. 2D).

3.3 Prediction of KIRC Patient Outcome Using Purine
Score

According to the risk score model established follow-
ing TCGA survival analysis, patients with high risk scores
had worse prognosis (p < 0.05, Fig. 3A). Moreover, based
on receiver operating characteristic (ROC) analysis, the
area under the curve (AUC) for Purine Score in TCGAwere
0.688, 0.681, and 0.695 for 1-, 3-, and 5-year true-positive

rates, respectively (Fig. 3B). We also investigated prog-
nostic factors using univariate and multivariate Cox anal-
yses. Age and metastasis (M) were found to be indepen-
dent prognostic factors for KIRC patients (Fig. 3C). Finally,
the Purine Score was evaluated according to various clini-
cal features (Fig. 3D). Significant differences in the Purine
Score were found according to gender, grade, stage, tumor
(T), node (N) and status (p < 0.05).

3.4 Analysis of Immune Cell Infiltration and Immune
Checkpoints

Next, we performed a correlation analysis between
prognosis and immune cell infiltration. As shown in
Fig. 4A, the Purine Score correlated with cellular im-
mune response and cell components, as determined by
the MCPcounter and TIMER algorithms. The survival
model included abnormalities in cytotoxic lymphocytes,
NK cells, myeloid dendritic cells, monocytic lineage, en-
dothelial cells, neutrophils, B cells, T cells CD4, neu-
trophils, macrophages, and DCs. Patients with a low Purine
Score showed significantly higher scores for ESTIMATE (p
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Fig. 4. Analysis of immune cell infiltration and immune checkpoints. (A) Analysis of immune cell infiltration. (B) ESTIMATE,
Immune, and Stromal Scores. *p < 0.05, ****p < 0.0001.
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Fig. 5. Analysis of gene mutations. (A) Somatic mutation analysis. (B) Gene mutation frequencies in the high and low Purine Score
groups. (C) Co-occurrence of mutated genes in the high and low Purine Score groups. np < 0.05, *p < 0.01.

= 0.0008), immune (p = 0.00026), and stromal (p = 0.0016)
compared to patients with a high Purine Score (Fig. 4B).
Correlation of immune regulation factors with the Purine
Score are shown in Supplementary Fig. 1. The classifi-
cation categories for immune checkpoints were cell adhe-

sion, antigen presentation, co-stimulator, co-inhibitor, lig-
and, other, and receptor. A significant association was ob-
served between the expression of immune checkpoint genes
and the Purine Score.
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Fig. 6. Validation of lncRNA expression. (A) Quantitative real-time PCR (qRT-PCR) analysis of LINC01671, ARAP1-AS1, and
LINC02274 levels in 786-O and CAKI-1 cells. (B) Survival analysis according to LINC01671 expression level. (C) qRT-PCR analysis of
LINC01671 expression after transfection of 786-O and CAKI-1 cells. (D) Cell counting kit 8 (CCK-8) assay results for cell proliferation.
(E) Transwell cell migration results. (F) Flow cytometry analysis of cell apoptosis. (G) Terminal Deoxynucleotidyl Transferase mediated
dUTP Nick-End Labeling (TUNEL) analysis of cell apoptosis. * p < 0.05 vs. sh-NC, # p < 0.05 vs. oe-NC.

3.5 Analysis of Gene Mutations

Somatic mutation analysis revealed alterations in 77
of 97 (79.38%) KIRC with a high Purine Score (Missense
Mutation, Frame Shift Del, Splice Site, Frame Shift Ins, In
Frame Ins, Nonsense Mutation, Translation Start Site, and
Multi Hit). Moreover, 211 of 235 (89.79%) KIRC with
a low Purine Score showed alterations (Nonsense Muta-
tion, Frame Shift Del, Frame Shift Ins, Missense Muta-
tion, In Frame Ins, Translation Start Site, In Frame Del,
and Nonstop Mutation, Fig. 5A). Gene mutation frequen-
cies for the high and low Purine Score groups are shown
in Fig. 5B. The mutation frequencies for TP53, TRIOBP,
PKHD1, NPHP3, TLN2, CABIN1, ABCC6, XIRP2, and
CHD4 were significantly higher in the high Purine Score
group compared to the low Purine Score group, whereas
the mutation frequencies for PBRM1 and VHL were signif-
icantly lower. Furthermore, in the high Purine Score group,
VHLmutation co-occurred with PBRM1mutation, PBRM1
with SETD2, SETD2 with MUC17, MTOR with CHD4,
KDM5C with ABCC6, TP53 with MUC17, XIRP2 with
CHD4 and CSMD3, CSMD3 with CABIN1, and CABIN1

with DST. In the low Purine Score group, PBRM1mutation
did not co-occur with BAP1, TTN mutation co-occurred
with BRCA2, ANK3, HMCN1 and BAP1 mutation, SETD2
mutation co-occurred with LRP2, BAP1 andMUC16 muta-
tion, and ARID1A with DNAH9 (Fig. 5C).

3.6 Validation of LncRNA Expression

Next, we used in vitro experiments to validate cell ex-
pression of the selected 3 lncRNAs (LINC01671, ARAP1-
AS1, and LINC02274). qRT-PCR revealed high expression
of LINC01671 in 786-O cells, and low expression in CAKI-
1 cells. Since ARAP1-AS1 and LINC02274 were highly
expressed in both 786-O and CAKI-1 cell lines (Fig. 6A),
LINC01671 was therefore selected for further study. Sur-
vival analysis showed that high expression of LINC01671
was associated with improved survival (Fig. 6B). Next,
LINC01671 was knocked down in 786-O cells and over-
expressed in CAKI-1 cells. Successful transfection of sh-
LINC01671 and of oe-LINC01671 was achieved, as shown
in Fig. 6C. Cell function experiments showed that knock-
down of LINC01671 in 786-O cells promoted their prolif-
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Fig. 7. Functional enrichment analysis of LINC01671. Gene Set Enrichment Analysis (GSEA) of the function and pathways for
LINC01671.

eration and migration, but inhibited apoptosis. In contrast,
overexpression of LINC01671 in CAKI-1 cells inhibited
their proliferation and migration, while promoting apopto-
sis (Fig. 6D–G).

3.7 Functional Enrichment Analysis of LINC01671

Finally, we performed functional enrichment analysis
of LINC01671. GSEA showed that LINC01671was mainly
enriched in theMAPK (normalized enrichment score (NES)
= 1.6, p < 0.001), NF-kappa B (NES = 1.64, p < 0.001),
mTOR (NES = 1.56, p < 0.001), PI3K-Akt (NES = 1.61,

p < 0.001) and Wnt (NES = 1.51, p = 0.0001) signaling
pathways (Fig. 7). These results suggest that LINC01671
may positively regulate the MAPK, NF-kappa B, mTOR,
PI3K-Akt and Wnt signaling pathways. The flow chart is
shown in Supplementary Fig. 2.

4. Discussion
KIRC is most common histological subtype of RCC

and is more likely to metastasize, relapse, and resist ra-
diotherapy and chemotherapy [18]. Various types of drug
resistance can occur in KIRC due to the highly dynamic,
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adaptable and heterogeneous nature of its TME, as well as
to aberrant glucose and lipid metabolism [19,20]. Hence,
there is an urgent need for non-invasive tools to accu-
rately stratify and select patients for treatment. In the
present study, we performed NMF clustering to develop
a purine-related differential lncRNA risk score (Purine
Score). We then analyzed immune cell infiltration, immune
checkpoints and gene mutations in KIRC. Finally, we con-
ducted in vitro experiments with KIRC cell lines to vali-
date the function of purine metabolism-related differential
lncRNAs. Our study found that purine metabolism-related
LINC01671 may be a key target for KIRC, thus affecting
tumor heterogeneity.

Cancer cells undergo metabolic adaptation through
multiple endogenous and exogenous signaling pathways.
This enhances malignant cell growth and also initiates the
transformative process of cell adaptation to the TME [21].
RCC is essentially a metabolic disease characterized by the
reprogramming of energy metabolism [22–25]. In particu-
lar, the metabolic flux through glycolysis is partitioned [26–
28], and mitochondrial bioenergetics, OxPhox and lipid
metabolism are all impaired [26,29–31]. The translocation
of metabolites related to the pentose phosphate pathway
(PPP) are also known to be altered in RCC. The PPP sup-
ports key aspects of accelerated tumor growth and generates
precursors for nucleotide synthesis. The “Warburg effect”
is the first historical evidence that cancer cells can adjust
their metabolism in order to promote cell growth. Indeed,
the increased glucose uptake and metabolism that underlie
the Warburg effect are now considered as one of the hall-
marks of cancer [32]. Purinergic signaling is a cellular com-
munication pathway mediated by extracellular nucleotides
and nucleosides [33]. The nucleoside adenosine has crucial
roles in the regulation of purine biosynthesis, gene transla-
tion, and the fate of RNA [34]. Purines are components of
nucleic acids and have important physiological functions as
intracellular and extracellular signaling molecules. Purine
metabolites, especially uric acid, are associated with con-
genital and complex diseases [35]. It has been shown that
cellular metabolism is disrupted in RCC tumors, and that
changes in purine metabolism are associated with the poor
survival of RCC patients [36]. In the present study, KIRC
were clustered according to purine genes, and a purine-
related, differential lncRNA risk score (Purine Score) was
developed to predict the outcome of KIRC patients. We
found that age, N, and M were independent prognostic fac-
tors for KIRC patients.

RCC is one of the most heavily immune-infiltrated tu-
mors [37,38], and the immune response is a critical factor in
the occurrence and treatment of KIRC [39]. Emerging evi-
dence suggests that activation of specific metabolic path-
ways may play a role in regulating angiogenesis and in-
flammatory signatures [40,41]. Features of the TME may
also strongly affect disease biology and the response to sys-
temic therapy [42–45]. Therefore, identifying the cells of

origin for RCC, as well as novel cell types within the TME,
are very important for the development of targeted thera-
pies [46]. In the current research we therefore investigated
the relationship between Purine Score and cellular com-
ponents or immune responses. An abnormal immune cell
response was associated with survival models (T, N, M,
stage, gender, age, and status). A correlation was found
between Purine Score and abnormal expression of immune
checkpoint genes. Phenotypic variation can be observed as
intratumoral heterogeneity, which leads to genomic insta-
bility resulting in mutations, somatic copy number alter-
ations, and epigenomic changes [47]. The heterogeneity
observed between RCC subtypes is related to significant
differences in tumor invasiveness and the risk of metastatic
disease [48]. Most clear cell carcinomas (sporadic and fa-
milial) are associated with mutations and deletions of the
VHL gene on 3p.25, as well as other nearby genes (SETD2,
BAP1, PBRM1) [49,50]. In this study, we found mutations
in TP53, TRIOBP, PBRM1, PKHD1, VHL, NPHP3, TLN2,
CABIN1, ABCC6, XIRP2 and CHD4. Deletion of these tu-
mor suppressor genes may play a role in the development
of KIRC and affect the clinical course of this disease.

Molecular characterization of RCC helps to identify
driver genes and specific molecular pathways, as well as
the characterization of TME, thereby enhancing our under-
standing of this cancer type [51]. Aberrant expression of
lncRNAs is closely associated with various diseases, such
as the occurrence and development of cancers [52]. It has
been reported that ferroptosis-related lncRNAs could ac-
curately predict the outcome of KIRC [53]. A prognos-
tic signature of angiogenesis-associated gene-related lncR-
NAs shows promise as an independent prognostic indicator
for KIRC patients [54]. Moreover, previous studies have
suggested that LINC01671 may be a useful indicator for
clinical stratification management and treatment decision-
making in lung adenocarcinoma patients [55,56]. Su et al.
[57] reported that LINC01671 is a protective gene in clear
cell RCC (hazard ratio <1). LINC01671 was found to be
significantly associated with OS using multivariate Cox re-
gression, which is the first report that LINC01671 has been
associated with clear cell RCC in their study. However,
research on LINC01671 in KIRC is limited. In our study,
our bioinformatics analysis also showed that LINC01671
has a hazard ratio <1, indicating that LINC01671 is a pro-
tective gene. Survival analysis revealed that patients with
high expression of LINC01671 have a higher survival rate,
suggesting that LINC01671 has a positive impact on the
prognosis of KIRC. Furthermore, in vitro experiments re-
vealed that interfering with LINC01671 promoted prolifer-
ation and migration of 786-O cells while suppressing apop-
tosis. Overexpression of LINC01671 inhibited proliferation
and migration of CAKI-1 cells while promoting apoptosis.
Therefore, our results provide evidence that LINC01671
is a protective gene in KIRC and enrich our understand-
ing of its regulatory role in cancer. Further analysis sug-
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gested that LINC01671 can positively regulate the MAPK,
NF-kappa B, mTOR, PI3K-Akt, and Wnt signaling path-
ways. However, the specific cellular mechanisms involving
LINC01671 require further study.

5. Conclusions
In summary, purine metabolism-related LINC01671

plays an important role in the development, progression and
prognosis of KIRC.We constructed a purine-related, differ-
ential lncRNA risk score model (Purine Score) that can pre-
dict the survival of KIRC patients with high accuracy. This
study has identified new candidate genes for the treatment
of KIRC patients.
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