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Abstract

Lung cancer has the highest mortality rate amongst all malignancies worldwide, and is the second-highest incidence of cancer in women.
Non-small cell lung cancer (NSCLC) is responsible for approximately 80% of lung cancer cases. Recent studies indicate that cellular
senescence may be a promising cancer biomarker. However, the regulation of cellular senescence and its underlying mechanisms in
NSCLC are not yet fully understood. Here, we present a comprehensive analysis of the genes linked to cellular senescence in NSCLC.
We also describe the secretory phenotype associated with NSCLC and examine its immune profile and prognostic potential. Our findings

offer novel insights into the development of effective NSCLC treatments.
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1. Introduction

Lung cancer is a particularly aggressive disease and
is the leading cause of cancer-related mortality worldwide.
There were approximately 2.2 million new cases of lung
cancer in 2020 and 1.8 million deaths from this disease
[1-3]. Lung cancer is broadly classified into two cat-
egories based on the cell types involved, namely non-
small cell lung cancer (NSCLC) and small cell lung cancer
(SCLC) [4-8]. NSCLC accounts for approximately 80%
of cases and is characterized by the presence of anoma-
lous cells that proliferate and metastasize rapidly, usually
resulting in poor prognosis and limited therapeutic options
[9,10]. NSCLC can be further subdivided into three cat-
egories based on histological characteristics, namely ade-
nocarcinoma, squamous cell carcinoma, and large cell car-
cinoma [11,12]. Adenocarcinoma originates from mucus-
producing cells in the respiratory tract lining and is the most
frequently observed subtype, accounting for approximately
40% of NSCLC cases [13,14]. Squamous cell carcinoma
arises from the cells lining the air passages and accounts
for 30% of NSCLC cases [15]. Large cell carcinoma is a
less frequent subtype, comprising around 1-3% of all pri-
mary lung cancers and usually originating from lung neu-
roendocrine cells [16]. NSCLC is often asymptomatic dur-
ing the early stages, thereby posing a challenge for early
detection. Common symptoms such as coughing, chest
pain, shortness of breath and weight loss are usually experi-
enced at later stages [17]. Smoking is the primary cause of
NSCLC, with several other environmental factors also con-
tributing to its development, including exposure to second-

hand smoke and radon. Available treatments for NSCLC
involve surgery, chemotherapy, radiation therapy, and tar-
geted therapy [18,19]. A better understanding of the molec-
ular mechanisms underlying NSCLC is essential for the de-
velopment of effective therapies that improve patient out-
comes. Ofnote has been recent research on the involvement
of cell senescence in NSCLC.

Senescence is a type of cellular aging and has been in-
vestigated as a potential biomarker for cancer [20]. Senes-
cent cells have been observed to accumulate in several can-
cer types, including NSCLC, and have been linked to tu-
mour growth, resistance to therapy, and unfavourable pa-
tient outcomes. Despite these findings, the mechanisms
that underlie cell aging in NSCLC remain incompletely un-
derstood, with more research needed to clarify the role of
senescence in the development and progression of this dis-
ease. Senescent cells secrete various molecules that can
induce inflammation, angiogenesis and tissue remodelling,
thereby facilitating cancer progression. Although there is
increasing awareness of the significance of cellular senes-
cence in NSCLC, the factors that regulate this process in
cancer cells remain poorly understood. Furthermore, the
presence of senescent cells within NSCLC tissue has been
linked to unfavourable prognosis and reduced patient sur-
vival rates [21]. A better understanding of the role of cellu-
lar senescence in NSCLC could therefore have significant
implications for the development of new therapies and for
more accurate prediction of patient outcomes. It is also im-
portant to identify specific senescence markers of aging that
could be used in the clinic.
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2. Cellular Senescence and NSCLC

Cellular senescence is a biological phenomenon com-
monly referred to as cell aging and which exhibits mul-
tifaceted and intricate involvement in the progression of
NSCLC [22]. Some studies have reported that the onset of
cell aging can impede NSCLC growth and potentially in-
cite tumour regression. However, other studies have impli-
cated senescent cells within the tumour microenvironment
in the progression and metastasis of NSCLC [23,24]. In ad-
dition, the presence of senescent cells in NSCLC has been
correlated not only with the efficacy of treatments such as
chemotherapy and radiotherapy, and also with resistance to
these treatments [20,24-29].

2.1 Definiton of Cell Senescence and Its Role in Cancer

Cell senescence is a state of irreversible growth ar-
rest triggered by various stressors, such as DNA damage,
telomere shortening, and oxidative stress [30]. By study-
ing inducible changes to the epigenome, Yang ef al. [31]
found that disruption of epigenetic information could lead
to aging in mice. On the other hand, restoring the integrity
of the epigenome could reverse the signs of aging, sug-
gesting that loss of epigenetic information is a reversible
cause of aging. The morphology and metabolism of senes-
cent cells are different to those of normal cells. Senescent
cells have a large and flattened cell morphology, increased
expression of senescence-associated -galactosidase (SA-
(-Gal), and elevated expression of p16!™“3, These cells re-
main metabolically active but can no longer divide or prolif-
erate [20]. They secrete a range of inflammatory cytokines
and other molecules in what is known as the senescence-
associated secretory phenotype (SASP) [32,33]. Cell senes-
cence is a complex process involving multiple molecular
pathways, including the TP53 and p16™4/Rb pathways
[34,35]. These can be activated by various stressors, lead-
ing to the induction of cell senescence. While this is thought
to limit the proliferation of potentially cancerous cells, re-
cent evidence suggests senescent cells may also promote
cancer by secreting SASP factors that stimulate inflamma-
tion and tumour growth. Researchers have sought to under-
stand the role of cell senescence in NSCLC progression and
therapy resistance [36]. Accumulation of senescent cells in
NSCLC may contribute to disease progression and therapy
resistance [24]. Exploiting senescence could therefore po-
tentially be used to improve treatment outcomes [29,37,38].

2.2 Factors Regulating Cell Senescence in NSCLC

Several factors have been identified as key regulators
of cell senescence in NSCLC. These encompass genetic
alterations, epigenetic modifications, oxidative stress, in-
flammation, and the tumour microenvironment. For exam-
ple, genetic alterations such as mutation of the 7P53 tu-
mour suppressor gene are known to promote cellular senes-
cence in NSCLC cells [39,40]. Epigenetic alterations such
as DNA methylation and histone modifications can also af-

fect the regulation of cell senescence in NSCLC [41,42].
Furthermore, exposure to environmental toxins such as
cigarette smoke can result in oxidative stress, which can in
turn induce cell senescence in NSCLC [43]. Inflammation
has also been linked to cellular senescence in NSCLC, with
pro-inflammatory cytokines such as the chemokine (C-X-C
motif) receptor 2 playing arole [44]. Lastly, cell senescence
in NSCLC can also be regulated by the tumour microenvi-
ronment, which encompasses interactions between cancer
cells and stromal cells [24]. The matricellular protein cellu-
lar communication network factor 1 (CCN1)/cysteine-rich
61 (CYRG61) suppresses NSCLC cell growth by inducing
senescence [45].

Regulation of cell senescence in NSCLC is a multi-
faceted phenomenon that can be influenced by various fac-
tors. Comprehensive elucidation of the underlying mech-
anisms that regulate cell senescence in NSCLC, as well as
the identification of effective therapeutic interventions that
target this process remain active areas of research. Indeed,
further investigations are warranted to gain a deeper under-
standing of the complexities of this process and to develop
potentially novel therapeutic avenues.

3. Genes Associated with Cell Aging in
NSCLC

The process of cell aging is multifaceted and involves
modifications in gene expression and activity. Multiple
genes have been found to exert regulatory effects on cell
aging in NSCLC. Elucidation of the molecular mechanisms
and identification of the relevant genes that underlie the reg-
ulation of cell aging in NSCLC may provide valuable in-
sights into the pathophysiology of this disease and could in-
form the development of novel therapeutics. Such findings
may have implications for the optimization of therapeutic
strategies against NSCLC.

3.1 Genetic Mutations and Alterations in NSCLC

NSCLC is a highly heterogeneous disease with a di-
verse array of genetic mutations and alterations that con-
tribute to its pathogenesis and progression. Among the
most frequently mutated genes in NSCLC are TP53, KRAS,
EGFR and ALK [46]. Aberrations to these genes can al-
ter the normal signalling pathways, enhance cell prolifera-
tion, and increase resistance to chemotherapy and targeted
therapies. The tumour suppressor gene 7P53 plays a criti-
cal role in regulating cell cycle arrest and apoptosis in re-
sponse to DNA damage. 7P53 mutations are present in
approximately 50% of NSCLC cases and are associated
with poor prognosis and resistance to chemotherapy [47].
Mutations in KRAS are found in approximately 15-25%
of NSCLC cases and activate downstream signalling path-
ways, leading to cell proliferation and survival. KRAS mu-
tations are associated with resistance to targeted therapies
and poor prognosis [48]. EGFR mutations are found in ap-
proximately 10-15% of NSCLC cases, with a higher inci-
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dence reported in non-smokers and Asians [49]. These mu-
tations activate downstream signalling pathways that result
in cell proliferation and survival. EGFR mutations are as-
sociated with sensitivity to EGFR tyrosine kinase inhibitors
(TKIs) and improved prognosis [50]. ALK rearrangements
are found in approximately 5-6% of NSCLC cases and ac-
tivate downstream signalling pathways that lead to cell pro-
liferation and survival. ALK rearrangements are associated
with sensitivity to ALK inhibitors and improved progno-
sis [51]. Other genetic mutations and alterations in BRAF,
HER2, MET, RET, and ROSI also contribute to NSCLC
pathogenesis and may be targets for novel therapies [52].

3.2 Specific Genes and Pathways Implicated in Cell Aging
in NSCLC

Several genes and pathways have been identified as
crucial regulators of cell aging in NSCLC. Aberrant regu-
lation of these genes and pathways has been implicated in
the development and progression of NSCLC. Understand-
ing their mechanism of action is therefore critical in the
development of new therapeutic strategies for this disease.
The tumour suppressor gene 7P53 plays a vital role in regu-
lating cell cycle progression and apoptosis [53]. 7P53 mu-
tations are frequently observed in NSCLC and are associ-
ated with increased cellular proliferation, decreased apopto-
sis, and resistance to chemotherapy, all of which contribute
to tumorigenesis [54]. Oncogene-induced senescence is a
tumour-suppressing defence mechanism [55]. Activation
of the ubiquitin-specific proteases 5 (USP5)-Beclin-1 axis
is pivotal for overcoming intrinsic 7P53-dependent senes-
cence in KRAS-driven NSCLC development [40]. The ma-
tricellular protein CCN1 suppresses NSCLC cell growth by
inducing senescence through the TP53/p21 pathway [45].
Short-carbon chain C (2)-ceramide can effectively sensi-
tize paclitaxel(PTX)-induced senescence of NSCLC cells
via both p21™afl/eiP)_ and p16"42_independent pathways
[56]. Specific gene expression changes also occur during
cellular aging in NSCLC. For example, myeloid zinc fin-
ger 1 mediates oncogene-induced senescence by promot-
ing the transcription of p16™¢ [55]. interferon regula-
tory factor 8 (IRF8) inhibits AKT signalling and promotes
the accumulation of p27%P! protein, resulting in the senes-
cence of NSCLC cells [57]. Homeodomain-only protein
homeobox (HOPX) acts as a tumour suppressor in various
cancer types. Forced expression of HOPX enhances cellu-
lar senescence by activating oncogenic Ras and the down-
stream mitogen-activated protein kinase (MAPK) pathway
in NSCLC [42]. Several other signalling pathways, in-
cluding c-Myc/HIF-1a [58], AKT [57], and nuclear factor
kappa-B (NF-xB) [59] have also been implicated in cellu-
lar aging and NSCLC progression. However, further re-
search is needed to fully elucidate the mechanisms by which
these genes and pathways contribute to cellular senescence
in NSCLC.
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4. Secretory Phenotypes Associated with Cell
Aging in NSCLC

Cellular senescence is a multifaceted process that in-
volves not only the cessation of cellular proliferation, but
also the acquisition of a SASP. This phenotype is marked
by the release of various cytokines, chemokines and growth
factors, and is known to exert a pivotal role in tissue re-
generation. In the context of malignant transformation,
the SASP has been linked to cancer progression, immune
subversion, and metastatic dissemination. Therefore, un-
derstanding the intricate interplay between cellular senes-
cence and the SASP is of paramount importance for devis-
ing novel therapeutic strategies that target age-related dis-
orders and cancer.

4.1 SASP and Its Role in Cancer

The SASP is a characteristic hallmark of senescent
cells, as well as being present in cancer cells. This phe-
notype is characterized by the secretion of a diverse array
of cytokines, chemokines and growth factors with varied
effects on tumorigenesis. SASP is a double-edged sword.
On one hand, early SASP is involved in numerous biologi-
cal processes such as wound healing, immune surveillance,
and tissue regeneration. On the other hand, the prolonged
existence of SASP can reshape the tumour microenviron-
ment by causing chronic inflammation and thus promot-
ing tumour progression. This can lead to increased tumour
vascularisation [60], the promotion of tumour cell migra-
tion and metastasis [61], and the induction of epithelial-to-
mesenchymal transition of neighbouring cells to promote
tumour cell invasion [62].

4.2 Specific SASP Factors Associated with NSCLC

Several specific SASP factors in NSCLC have been
reported to play important roles in inducing angiogenesis,
invasion, and metastasis [61,63]. The Interleukin-6 (IL-
6) cytokine level is increased in the serum of NSCLC pa-
tients and is associated with poor prognosis [64,65]. IL-
6 promotes the proliferation, migration and invasion of
NSCLC cells through activation of the STAT3 signalling
pathway. It also inhibits apoptosis and enhances resis-
tance to chemotherapy and radiotherapy. IL-6 has also
been shown to induce the expression of angiogenic factors
such as VEGF, which promote the formation of new blood
vessels and facilitate tumour growth [66]. Interleukin-8
(IL-8) is another cytokine that is frequently upregulated in
NSCLC and has also been linked to tumour progression and
metastasis [67]. It promotes the proliferation, migration
and invasion of NSCLC cells by activating the AKT and
extracellular regulated protein kinases signalling pathways
[68]. Other SASP factors that have been associated with
NSCLC include matrix metalloproteinases (MMPs) such as
MMP-3 and MMP-9, which are involved in extracellular
matrix remodelling and tumour invasion [69]. In addition,
chemokines such as Chemokine (C-C motif) ligand 2 pro-
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mote the recruitment and polarization of tumour-associated
macrophages and eliminate senescent cells, thereby inhibit-
ing cell carcinogenesis [70]. In summary, specific SASP
factors play important roles in the development and pro-
gression of NSCLC by promoting cell proliferation, migra-
tion and invasion, by enhancing angiogenesis and immune
suppression, and by contributing to chemotherapy and ra-
diotherapy resistance.

5. Immune Profile and Prognosis of Cell
Aging in NSCLC

Immune cells play a critical role in the progression of
NSCLC. The immune profile of NSCLC can be influenced
by cellular senescence, which has been found to affect
prognosis. Recent research suggests that senescent cells
in NSCLC stimulate the recruitment of myeloid-derived
suppressor cells (MDSCs) and regulatory T cells (Tregs)
into the tumour microenvironment, resulting in immune
suppression and tumour progression. Furthermore, these
senescent cells release cytokines and chemokines that not
only further repress the immune response, but also promote
tumour growth [61]. Senescent cells in NSCLC may fa-
cilitate the development of an inflammatory microenviron-
ment marked by elevated levels of cytokines such as IL-6
and IL-8, which may further contribute to tumour growth
and metastasis [44].

A recent study reported that the poor prognosis of
NSCLC was associated with the presence of senescent cells,
since these correlated with worse overall patient survival
[71]. Senescent cell targeting in a mouse model of NSCLC
resulted in a decrease in MDSCs and Tregs in the tumour
microenvironment and an increase in effector T cells, lead-
ing to reduced tumour growth and improved survival [72].
Therefore, the presence of senescent cells and their secre-
tory phenotype may be closely linked to the immune profile
and prognosis of NSCLC. Hence, the targeting of senes-
cent cells and their SASP may be a promising strategy to
improve the immune profile and prognosis of NSCLC. The
potential for precision oncology in NSCLC is suggested by
the underlying mechanism for treatment.

NSCLC is characterized by a complex interplay of
genetic alterations, cell differentiation hierarchies, epige-
netic modifications, microenvironmental factors, and tu-
mour heterogeneity. The intricate microenvironment is
comprised of a diverse population of tumour cells and im-
mune cells, including macrophages, vascular endothelial
cells, MDSCs, dendritic cells (DCs), natural killer (NK)
cells, and various subtypes of T cells, all of which con-
tribute to a highly heterogeneous niche. Consequently,
treatment strategies for NSCLC must take into account the
multifaceted nature of this disease, which requires a com-
prehensive understanding of the interactions between tu-
mour and immune cells within the tumour microenviron-
ment. Further research is needed to identify novel targets
and to develop innovative therapies that can modulate the

intricate network of signalling pathways and immunologi-
cal responses in NSCLC, thereby resulting in improved pa-
tient outcomes.

5.1 Involvement of the Immune System in NSCLC

NSCLC is known for its capacity to evade the immune
system, proliferate, and metastasize throughout the body.
Although the immune system has a crucial role in identify-
ing and eliminating malignant cells, NSCLC cells have the
ability to evade immune recognition by employing various
strategies such as reducing antigen presentation, increas-
ing the expression of immunosuppressive molecules, and
recruiting immunosuppressive cells. These evasion mecha-
nisms are believed to contribute to the resistance of NSCLC
to immune-based therapies [73].

There has been increasing interest in the use of im-
munotherapies, such as immune checkpoint inhibitors, to
activate the immune system and thus improve the outcome
of NSCLC patients [74,75]. Several studies have shown
that immunotherapy can improve the survival of NSCLC
patients with specific biomarkers, such as high expression
of programmed death-ligand 1 (PD-L1), or high tumour
mutational burden (TMB) [76]. The relationship between
cell aging and immune infiltration in NSCLC has also been
investigated [37]. Senescent cells in NSCLC can promote
immune evasion and reduce T cell infiltration in the tumour
microenvironment through the production of SASP factors,
such as IL-6 and IL-8 [77]. Other studies have shown that
the immune system may play a role in clearing senescent
cells from tissues, suggesting that it may also regulate cell
aging in NSCLC [37]. Therefore, a better understanding of
the immune profile of NSCLC and its relationship to cell
aging could provide important insights for the development
of immunotherapies and personalized treatment strategies
in NSCLC patients [21,78].

5.2 Effects of Cell Aging on Immune Response in NSCLC

Cell aging has been shown to have a significant im-
pact on the immune response in NSCLC. SASP factors, in-
cluding IL-6 and IL-8, are known to create an inflamma-
tory microenvironment within the tumour, leading to im-
mune suppression and the escape of cancer cells from im-
mune surveillance [79]. Cell aging can also cause changes
in the tumour microenvironment that promote cancer cell
growth and suppress immune function [80]. Several studies
have indicated that the presence of SASP factors in NSCLC
is linked to reduced infiltration of immune cells such as T
cells and natural killer cells into the tumour microenviron-
ment. Furthermore, SASP factors can induce the accumu-
lation of immunosuppressive cells, including regulatory T
cells and MDSCs, which inhibit immune function [77]. Ad-
ditionally, cell aging can alter the expression of immune
checkpoint proteins, such as programmed cell death pro-
tein 1 (PD-1) and PD-L1, thereby inhibiting T cell function
[81,82]. Elevated expression of PD-L1 in NSCLC has been
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associated with a worse prognosis and reduced response to
immunotherapy [83]. Understanding the effects of cell ag-
ing on the immune response in NSCLC is therefore, critical
for the development of more effective treatment strategies.

5.3 Prognostic Implications of Cell Aging in NSCLC

Emerging evidence suggests the SASP and cell ag-
ing may have prognostic value in NSCLC. Indeed, certain
SASP factors have been identified as potential biomarkers
for poor prognosis in NSCLC patients. Elevated serum lev-
els of IL-6 and IL-8 have for example been linked to re-
duced overall survival of NSCLC patients [84]. Several
studies have also reported that high levels of SASP factors
such as IL-6, IL-8, and matrix metalloproteinase-9 (MMP-
9) are associated with the poor prognosis and survival of
NSCLC patients, while preclinical studies have shown that
SASP factors can promote tumour growth and metasta-
sis. Combining these biomarkers with traditional prognos-
tic factors was found to improve the accuracy for predict-
ing patient survival. Furthermore, elevated levels of the
SASP factor plasminogen activator inhibitor-1 (PAI-1) have
been associated with worse progression-free survival and
overall survival of NSCLC patients [85]. These findings
highlight the potential utility of SASP factors as predictive
biomarkers for NSCLC prognosis and treatment response.
However, further research is needed to validate these find-
ings and to identify additional SASP factors with prognostic
value in NSCLC.

Specific biomarkers linked to cellular senescence
could also serve as valuable predictive tools for therapeu-
tic efficacy in NSCLC patients. Notably, it was reported
that elevated levels of histone H2AX phosphorylation (-
H2AX), a marker for DNA damage, could predict good
response to chemotherapy and the survival of NSCLC pa-
tients [86]. Another study found that a tumour senescence
signature with high expression of p16™4 a senescence-
associated protein, had significant prognostic value for the
overall survival of NSCLC patients [71]. Several methods
and biomarkers are currently available for the detection of
cellular senescence and for the prediction of patient out-
come. However, due to differences at the translational level
and the lack of gold standard biomarkers, there is an ur-
gent need for uniform and consistent biomarkers of cellular
senescence [37].

6. Therapeutic Implications

6.1 Potential Targets for NSCLC Treatment Based on Cell
Aging Mechanisms

Recent advances in our understanding of cell aging
mechanisms in NSCLC have led to the identification of po-
tential targets for treatment. One approach is to develop
drugs that target specific pathways involved in cell ag-
ing, such as the 7P53 pathway or the telomerase pathway
[87]. There are currently several ongoing clinical trials in
NSCLC patients with 7P53 mutations that target the 7P53
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pathway, including PRIMA-1 and APR-246. Another ap-
proach currently in the preclinical research phase is to tar-
get SASP factors using anti-IL-6 and anti-IL-8 antibodies
[88,89]. Using a KRAS-mutant mouse model of lung can-
cer, a combination of MAPK and cyclin-dependent kinase
4/6 inhibitors was found to promote NK cell surveillance
by activating SASP components (tumour necrosis factor-«
and intercellular adhesion molecule-1), leading to tumour
cell death [90].

The identification of predictive biomarkers for treat-
ment response based on cell aging mechanisms is currently
also an active area of research. For example, the expression
level of specific SASP factors or the presence of certain ge-
netic mutations may be accurate predictive biomarkers for
the response to treatment of drugs that target these path-
ways [91]. The development of targeted therapies based
on cell aging mechanisms therefore holds promise for im-
proving the treatment outcomes of NSCLC patients [37].
However, further research is needed to validate these tar-
gets and biomarkers, and to test the safety and efficacy of
the targeted drugs in clinical trials.

6.2 Current and Emerging Therapies That Target Cell
Aging in NSCLC

Recent studies have highlighted the potential of
targeting cell aging mechanisms as a novel strategy for
NSCLC treatment. Several drugs that target specific path-
ways involved in cell aging have shown promising results
in preclinical and clinical studies. Of note, senolytics
are a class of drug that selectively target senescent cells
and induce their apoptosis. The senolytic drugs dasatinib
[92] and quercetin [93] have shown promising results in
preclinical studies of NSCLC [94]. Telomerase inhibitors
such as imetelstat and lipid-modified N3'—P5’ thio-
phosphoramidate oligonucleotide (GRN163L) were found
to inhibit the growth of NSCLC cells in preclinical studies
[95]. Wang et al. [96] reported that bortezomib induced
cellular senescence of A549 lung cancer cells by inducing
telomere shortening. The mammalian target of rapamycin
(mTOR) pathway has also been implicated in the regula-
tion of cell senescence. In preclinical studies, the mTOR
inhibitors rapamycin and everolimus were found to induce
senescence and inhibit the growth of NSCLC cells [97-99].
Another study reported that the anti-proliferative small
molecule ethyl(2-methyl-3-((E)-((naphtha(2,1-b)furan-2-
ylca-rbonyl)hydrazono)methyl)-1H-indole-1-yl)acetate)
(STK899704) promoted cell death by inducing DNA
damage response pathways and senescence after cell cycle
arrest [53]. CBP/p300 histone acetyltransferases (HAT)
are critical transcription coactivators involved in multiple
cellular activities. They appear to act at multiple levels in
NSCLC and may therefore represent promising druggable
targets. Pharmacological targeting of CBP/p300 drives
a redox/autophagy axis that leads to senescence-induced
growth arrest in NSCLC cells [100]. Immune checkpoint
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inhibitors such as pembrolizumab and nivolumab have
also shown promising results for the treatment of NSCLC,
particularly in patients with high levels of PD-L1 expres-
sion [101]. The targeting of SASP factors such as IL-6 and
IL-8 may also enhance the response to immunotherapy.
Other targeted therapies that have been investigated in the
context of NSCLC and cell aging include Cyclin-dependent
kinase (CDK) 4/6 pathway inhibitors, Heat Shock Protein
(HSP) 90 inhibitors, and histone deacetylase (HDAC)
inhibitors [102]. Furthermore, “one-two punch” sequential
treatment provides a therapeutic option to reduce the
risk of tumour progression and avoid adverse reactions
by eliminating senescent cells induced by conventional
anti-cancer treatments such as radiotherapy/chemotherapy
[371.

7. Discussion and Conclusion

Lung cancer remains a major contributor to cancer-
related mortality worldwide, with NSCLC being the most
prevalent subtype. Recently, there has been growing re-
search interest on the role of cellular senescence in the
pathogenesis and progression of NSCLC. This comprehen-
sive analysis covers the multiple facets of cellular senes-
cence in NSCLC, including the relevant genes and sig-
nalling pathways, secretory phenotypes, immune character-
istics, and therapeutic implications.

Cellular senescence is a biological process character-
ized by the irreversible growth arrest of cells due to di-
verse cellular stressors [103]. This process has emerged as
a potentially useful prognostic and predictive biomarker for
cancer, including NSCLC. Numerous genes and pathways
have been implicated in cellular senescence in NSCLC, in-
cluding 7P53, CDKN24 and telomerase. TP53, also re-
ferred to as the “guardian of the genome”, plays a pivotal
role in DNA damage response and is frequently mutated
in NSCLC. CDKN2A is another tumour suppressor gene
that regulates the cell cycle and is frequently inactivated
in NSCLC. Telomerase maintains telomere length and pre-
vents genomic instability. It is frequently reactivated in
cancer cells, including NSCLC. In addition to the presence
of genetic alterations, cellular senescence in NSCLC is as-
sociated with the secretion of several pro-inflammatory and
pro-tumorigenic factors, collectively known as the SASP.
These include a range of cytokines, chemokines, growth
factors, and extracellular matrix proteins. Various SASP
factors, including IL-6 and IL-8, have been associated with
unfavourable prognosis in NSCLC patients.

The pivotal role of the immune system in the de-
velopment and progression of NSCLC is well established.
Emerging evidence now indicates that cell aging can mod-
ulate the immune response in NSCLC. Specifically, senes-
cent cells have been shown to promote the infiltration of
immunosuppressive cells, including MDSCs and regulatory
T cells, into the NSCLC tumour microenvironment, leading
to immune evasion and resistance to immunotherapy. How-

ever, the induction of senescence has also been reported to
enhance the anti-tumour immune response and to improve
the efficacy of immunotherapy in NSCLC. Accordingly,
the targeting of cell aging in NSCLC represents a promis-
ing therapeutic strategy for improving treatment outcomes.
Several potential targets have already been identified and
include SASP components and the immune system. No-
tably, inhibition of the SASP factors IL-6 and IL-8 has been
found to suppress tumour growth in preclinical models of
NSCLC. Immune checkpoint inhibitors that target negative
regulators of the immune response have also shown promise
in the treatment of NSCLC, especially when combined with
senolytic drugs that selectively eliminate senescent cells.

Cell aging is a multifaceted and intricate phenomenon
during the development and progression of NSCLC. The
involvement of specific genes and pathways, SASP factors
and immune factors are all promising areas for further re-
search aimed at improving NSCLC treatment. Future stud-
ies should therefore strive to increase knowledge of the un-
derlying mechanisms responsible for cell aging in NSCLC,
and to identify and validate robust biomarkers for predict-
ing treatment response. This should allow for the develop-
ment of more effective strategies that target cell aging in the
clinical setting.
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