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Abstract

Background: Hepatocellular carcinoma (HCC/LIHC) is the most common type of primary liver cancer, which is a leading cause of
cancer death worldwide. Patients with HCC have a short survival time after diagnosis. Unfortunately, there are no effective treatments
for advanced or aggressive HCC. Thus, the rapid development of new therapeutic drugs or treatment methods for HCC is urgently needed.
Methods: Bioinformatic tools and computer-aided predictions advance the processes of drug development. In this study, we incorporated
bioinformatic analyses and computer-aided drug development processes to investigate the potential application of bilobetin, a bioactive
compound of bioflavonoid, as a therapeutic agent for HCC treatment. Results: Our results revealed that 4 out of 20 predicted hub target
genes of bilobetin displayed functional importance in cancer-related signaling pathways in different cancers, including HCC. Importantly,
the mRNA expression levels of these four key hub genes (VEGFA, SRC, MMP9, and CDK1) were significantly different between normal
and HCC tumor samples. Their expression levels were significantly associated with the clinical survival outcomes of HCC patients, as
well as the immune cell infiltration levels in the HCC tumor microenvironment. In addition, these four genes showed significant co-
expression correlated with immune checkpoint genes, including CD274, PDCD1, CTLA4, and CD47. Furthermore, we used computer-
aided approaches to investigate the binding affinity and potential binding mechanisms between bilobetin and target proteins encoded by
four key hub genes. Conclusions: In conclusion, our study shed light on the potential application of the bioactive bioflavonoid molecule
bilobetin in LIHC treatment by regulating four key hub genes.

Keywords: primary liver cancer; hepatocellular carcinoma; bioactive compound; bilobetin; bioinformatics; molecular docking; protein-
ligand interaction; treatment

1. Introduction the treatment of metabolic diseases, including cancers (e.g.,
brain and breast cancers) [11]. Bilobetin is a bioactive
molecule isolated from the leaves of the Ginkgo biloba.
As the bioflavonoid class of phytochemicals, bilobetin ex-
hibits the pharmacological characteristics of Ginkgo biloba
extract [12]. The important pharmacological properties
of bilobetin include antioxidant, anti-inflammatory, anti-
hyperlipidemic, and anti-proliferative activities [12—14].
Studies have also revealed that bilobetin possesses potent
anti-cancer activity [11,14,15]. For example, bilobetin dis-
plays cytotoxic effects against several human cancer cell
lines [14], including cervical carcinoma (HeLa), large cell
lung cancer (NCI-H460), lymphoma (Daudi), myeloge-
nous leukemia (K562), ovarian adenocarcinoma (SKOV3),
pancreatic carcinoma (MIAPaca-2), and breast carcinoma
(MCF-7). However, the action of bilobetin in liver cancer

The most prevalent type of primary liver cancer is
hepatocellular carcinoma (HCC/LIHC), one of the leading
causes of cancer death worldwide [1,2]. The number of
HCC cases is increasing [3]. It has been estimated that
there will be more than 1 million cases per year globally
by 2025 [4]. HCC can be induced by many factors, such
as extensive alcohol consumption, non-alcoholic fatty liver
disease (NAFLD), liver fibrosis or cirrhosis. The incidence
of NAFLD-associated HCC is increasing, which is also
commonly associated with many other metabolic diseases
such as obesity, type 2 diabetes mellitus, and cardiovascu-
lar disease [5—7]. Most HCC cases are diagnosed at a late
stage; however, current therapies for advanced HCC are not
promising [8,9]. Therefore, the exploration of early diag-

nostic biomarkers and development of effective treatment
drugs or strategies for HCC are urgently needed [10].

Research studies and clinical trials have demonstrated
that Ginkgo biloba extract displays effective activities in

treatment remain to be studied.

In this study, we investigated the activity of bilobetin
in liver cancer treatment. First, we applied a computer-
aided drug design tool, SwissTargetPrediction, to predict
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molecular targets of bilobetin based on the data gener-
ated from both laboratory experiments (binding assay) and
the calculation of similarities between 2D/3D structures
of query molecules and known molecules from online
databases [16,17]. Then, we analyzed protein-protein in-
teraction (PPI), KEGG (Kyoto Encyclopedia of Genes and
Genomes) pathway, and gene ontology (GO) pathway to
examine the functions of target genes, including biological
processes (BP), cellular components (CC), and molecular
functions (MF). Among the target genes, we first identified
20 hub genes using Cytoscape, and then further revealed
the functions and enriched signaling pathways of the hub
genes based on the analyses of KEGG and GO pathways
[18,19]. We subsequently applied bioinformatic tools, such
as UALCAN (the University of Alabama at Birmingham
CANCcer Data Analysis Portal) [20,21], to analyze the ex-
pression levels of hub genes in clinical LIHC/HCC tumor
and non-tumor control samples from the Cancer Genome
Atlas (TCGA) database. Meanwhile, the association of
hub genes with the prognostic outcomes of LIHC patients
was also examined [22,23]. Interestingly, we found that
four key genes out of 20 hub genes showed significantly
different mRNA expression levels between clinical tumor
and non-tumor samples, and their mRNA expression lev-
els were significantly associated with the clinical prognos-
tic outcomes (survival rates) of LIHC patients. In addition,
we analyzed the proteomic expression levels of these four
key genes between normal and primary LIHC tumor sam-
ples [24,25].

Furthermore, we evaluate the correlation between the
expression levels of four key genes with levels of im-
mune cell infiltration [26,27] and the expression of im-
mune checkpoints such as CD274, PDCDI1, CTLA4, and
CD47 in the HCC tumor microenvironment [28,29]. Fi-
nally, computer-aided programming was used to explore
the underlying molecular mechanism of bilobetin as a thera-
peutic agent for LIHC therapy by regulating four key genes.
The binding affinities and modes of bilobetin with four tar-
get proteins were tested using computer-based molecular
docking methods [30]. The key amino acids that were in-
volved in the interactions between the bilobetin molecule
and proteins encoded by four key genes were analyzed, in-
cluding the hydrophobic interaction and formation of hy-
drogen bonds [31,32].

2. Materials and Methods
2.1 Drug Target Prediction

SwissTargetPrediction is a commonly used bioinfor-
matic tool to predict the targets of bioactive small molecules
(e.g., bilobetin) in humans and other vertebrates. It is a use-
ful approach for understanding molecular mechanisms, ra-
tionalizing possible side-effects, and predicting off-targets
of known molecules [14]. In this study, it was used to inves-
tigate the molecular targets of bilobetin by selecting Homo
sapiens genes.

2.2 Construction of the Protein-Protein Interaction
Network

We applied a bioinformatic database, STRING (https:
//string-db.org/), for the construction of a protein-protein
interaction (PPI) network. This tool allows the construc-
tion of an interaction network based on the data obtained
from both experiments and online databases. The cross-
interaction of multiple queried proteins can be predicted us-
ing this tool [33]. For parameters used in this study, Homo
sapiens genes were selected, and 0.4 was set as the default
threshold, which was considered significant for the mini-
mum required interaction specificity score.

2.3 GO Functional Enrichment and KEGG Signaling
Pathway Enrichment Analyses

The Gene Ontology (GO) analysis and Kyoto Ency-
clopedia of Genes and Genomes (KEGQG) analysis were
used to investigate the functional enrichment and signal-
ing pathway enrichment of bilobetin-targeted genes and 20
hub genes. The categories of the GO enrichment analy-
sis included biological processes (BP), cellular components
(CC), and molecular functions (MF). We applied DAVID
bioinformatics resources for the analysis of results and used
the platform (http://www.bioinformatics.com.cn) for result
plotting and visualization [34,35].

2.4 Cytoscape

The Cytoscape (https://cytoscape.org/) platform was
applied for the analysis and visualization of the complex
networks including the connecting nodes and molecular in-
teractions, as well as the identification of the key hub genes
from bilobetin-targeted genes [36].

2.5 Gene Expression Profiling Interactive Analysis
(GEPIA)

The interactive bioinformatics tool GEPIA (http://gepi
a.cancer-pku.cn/) [37] was applied to compare the gene ex-
pression levels of target genes between normal samples and
LIHC tumor samples and to analyze the survival outcomes
of LIHC patients. In this study, to compare the expression
levels of target genes in the normal and tumor samples from
the database, the matched normal data included the TCGA
normal data and GTEx data. ANOVA method was applied
with the default parameters (logoFC = 1; p-value = 0.01).
The analysis of the survival outcomes of LIHC patients was
calculated using the overall survival times, and the hazard
ratio was calculated based on the Cox PH Model. A p-value
less than 0.05 was defined as statistically significant.

2.6 Tumor IMmune Estimation Resource (TIMER)

TIMER is a resource with multiple modules allow-
ing for a comprehensive and systematic examination of im-
mune cell infiltration levels in clinical samples for different
cancer types [38—40]. In this study, we applied the gene
module to investigate the correlation between the expres-
sion levels of identified key hub genes and the immune
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Fig. 1. Predicted drug targets of bilobetin and the protein-protein interaction (PPI) network of targets. (A) The pie chart shows
the bioactivity categories of bilobetin-targeted proteins and the percentages of each category. (B) The constructed PPI network of all
target proteins of bilobetin.
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Fig. 2. The gene ontology (GO) enrichment analysis results. GO analysis results display the roles of bilobetin-targeted genes in

biological processes (orange), molecular function (green), and cellular components (blue).

cell infiltration levels in LIHC. The correlation module was
applied to analyze and generate the scatterplots of the co-
expression levels between the identified key genes and the
immune checkpoint-associated genes in LIHC. The scat-
terplots were generated and presented based on the purity-
corrected partial Spearman’s Rho value, and p < 0.05 was
defined as statistical significance.

2.7 Molecular Docking and Interaction Analysis of the
Protein-Ligand Complex

Molecular docking was performed using Cavity-
detection guided Blind Docking (CB-DOCK), the open-
source program AutoDock Vina v.1.2.0. (http:/www.vina.

scripps.edu/) [41], for testing the binding affinity and sim-
ulation of the binding mechanism. The crystal structures
of proteins encoded by the identified genes used for dock-
ing were obtained from the PDB database, which were
well-prepared for the docking program, including VEGFA
(PDB ID: 5T89); SRC (PDB ID: 2H8H); MMP9 (PDB ID:
4H2E); CDK1 (PDB ID: 5SHQO). Pymol software was used
for the visualization and presentation of protein-ligand in-
teraction. PDBsum [42] and Discovery Studio Visualizer
v21.1.0.20298 (BIOVIA Dassault Systemes, San Diego,
CA, USA) were used for the 2D interaction analysis and
presentation.
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Table 1. The results of molecular docking between bilobetin and gene-coded proteins.

Gene PDBID Cavities Volume Center X Center Y Center Z Size X Size Y Size Z Score
VEGFA 5T89 5 54 —62.038 32.762 55.268 24 24 24 -8.8
SRC 2H8H 4 697 17.699 25.222 57.424 24 24 24 -10.6
MMP9 4H2E 2 563 -5.979 0.783 21.686 24 24 24 -11.0
CDK1 5HQO 1 1438 28.971 —65.752 187.146 24 24 24 -10.0

2.8 Pharmacokinetics and Drug-Likeness

The pharmacokinetics, drug-likeness, and medicinal
chemistry of bilobetin were evaluated using the Swis-
sADME bioinformatics tool [43].

2.9 The mRNA Expression Levels of Immune Checkpoints

The mRNA expression levels of immune checkpoint
genes PDCD1, CD274, CD47, and CTLA4 were analyzed
using UALCAN web-based tool. The required gene expres-
sion level in LIHC was analyzed to compare the normal and
primary tumor groups using Student’s 7-test, and p < 0.05
was considered statistically significant [20,21].

2.10 Immunohistochemical Staining (IHC)

The Human Protein Atlas (https://www.proteinatlas.o
rg/, version 23.0) [44,45] was applied for the generation
of a representative IHC-staining panel to demonstrate the
pathologic effects associated with different protein expres-
sion levels of key genes VEGFA, SRC, MMP9, and CDK1.
This database was also used to validate the association be-
tween the expression levels (low and high) of four key genes
and the survival outcomes of LIHC patients.

2.11 Statistical Analysis

Student’s #-test (considering unequal variance) was
used to compare mRNA expression levels of key genes in
normal samples and LIHC tumor samples, and p < 0.05 was
defined as statistical significant between groups. Kaplan
Meier-plotter was adopted for analyzing and generating the
survival curve. A log-rank test was applied to measure the
significance of survival impact. A log-rank p < 0.05 was
defined as the cut-off value for statistical significance.

3. Results

3.1 Drug Targets of Bilobetin in Prediction and
Protein-Protein Network Construction of Target Genes

To investigate the drug targets of bilobetin, we ap-
plied one of the computer-aided drug discovery tools,
SwissTargetPrediction, which can predict drug targets of
a small molecule based on the datasets generated from
well-designed experimental binding assays and the online
database. Homo sapiens was defined as a species for
the identification of target proteins. The obtained results
showed that among the predicted targets, 26% were ki-
nases, 23% were enzymes, 10% belonged to family A of G
protein-coupled receptors, 6% were proteases, whereas 5%
were oxidoreductases and 5% were lyases (Fig. 1 A). Other
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targets include cytochrome P450, hydrolases, isomerases,
nuclear receptors, cytosolic proteins, phosphatases, and se-
creted proteins (2% for each class category), electrochemi-
cal transporters, erasers, ligand-gated ion channel proteins,
other ion channel proteins, phosphodiesterases, primary ac-
tive transporters, and transcription factors (1% for each
class category) (Fig. 1A).

To further examine the properties of the bilobetin-
targeted proteins and their interaction partners, we applied
the bioinformatic analysis tool, STRING, to construct a PPI
network of these targets (Fig. 1B). The constructed network
contained 98 nodes and 386 edges, with an average node
degree of 7.88 and an average local clustering coefficient
value of 0.54. The PPI enrichment p-value was less than
1.0 x 10716, These results showed that the input query pro-
teins had a significant interaction in the constructed network
among themselves, rather than from the random connection
based on the same size and degree distribution of proteins
in the database. The PPI analysis results have demonstrated
the input query targets belong to a biologically connected
group among themselves. Based on this result, we further
performed the subsequent analysis by focusing on the bio-
logical functions and related signaling pathways of the tar-
gets.

3.2 KEGG Pathway Analysis and GO Enrichment Analysis
of Target Genes

To determine the biological and functional enrich-
ment of target genes of bilobetin, we performed GO en-
richment analysis. The GO enrichment analysis results
for biological processes revealed that the target genes play
important roles in protein autophosphorylation, apoptotic
process, mitogen-activated protein (MAP) kinase activity,
metabolic processes of chemotherapy drugs such as dox-
orubicin and daunorubicin, vascular endothelial growth fac-
tor receptor, and metabolic regulation of reactive oxygen
species (Fig. 2). For the cellular component, the results
showed these genes were mostly involved in the cytosol,
cyclin-dependent protein kinase holoenzyme complex, cy-
toplasm, plasma membrane, glutamatergic synapse, neuron
projection, perinuclear region of cytoplasm, axon, and oth-
ers (Fig. 2). The results of the molecular function analysis
identified that the key roles of these genes were enriched
for protein kinase activity, protein serine/threonine kinase
activity, ATP binding, bile acid binding, oxidoreductase ac-
tivity, tyrosine kinase activity, and others (Fig. 2).

To better understand the major roles of these targeted
genes in signaling pathways and diseases, we further per-
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Fig. 3. The Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis of bilobetin-targeted

genes. The top 20 signaling pathways, functional information, and related diseases are presented in the bubble plot. The size of the

bubbles represents the gene count, and the color of the bubbles represents the values of —log10 (p-value).
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Fig. 4. Identification of the top 20 hub genes using Cytoscape
based on the results of protein-protein interaction (PPI) net-
work of bilobetin-targeted genes. The PPI network contains 20
nodes and 113 edges. The average node degree is 11.3, and the
average local clustering coefficient is 0.735. The PPI enrichment
p-value is less than 6.1 x 107°, indicating there is a significant
interaction among the input proteins.

formed a KEGG analysis and the top 20 enriched signal-
ing pathways are shown (Fig. 3). The results showed that
these genes played critical roles in chemical carcinogenesis-
reactive oxygen species, pathways in cancer, acute myeloid
leukemia, bladder cancer, and proteoglycan in cancer. The
enriched signaling pathways of target genes were the RAS
signaling pathway, PI3K-AKT signaling pathway, VEGF
signaling pathway, and EGFR tyrosine kinase inhibitor re-
sistance.

3.3 Identification of the Hub Genes from
Bilobetin-Targeted Genes

To further identify linkage genes from bilobetin-
targeted genes, we analyzed hub genes based on the previ-
ously constructed protein-protein interaction (PPI) results
using the software Cytoscape. The top 20 hub genes were
MET, MMP2, PARPI, CDKI, PTPNI, GSK3B, CDKG,
SRC, VEGFA, PTGS2, MCLI1, KIT, MPO, AKTI, MAPT,
PIK3RI, KDR, PTK2, ESR2, and MMP9, and were identi-
fied to have a complex interaction (Fig. 4).

3.4 Validation of the Functional Enrichment and Signaling
Pathways of Hub Genes

To further test whether the top 20 hub genes repre-
sent the main functions of target genes, the examination
of functional enrichment and signaling pathways of these
hub genes was carried out. The results of GO functional
enrichment analysis revealed that, for biological processes,
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Fig. 5. The gene ontology (GO) enrichment analysis results of 20 hub genes. The top 20 functionality enrichment items for each
category were presented, including biological processes (orange), molecular functions (green), and cellular components (blue).

20 hub genes were highly enriched in the following path-
ways including negative regulation of the apoptotic process,
positive regulation of cell migration, protein autophos-
phorylation, positive regulation of phosphatidylinositol 3-
kinase signaling pathway, negative regulation of the intrin-
sic apoptotic pathway, vascular endothelial growth factor
receptor pathway, positive regulation of protein localiza-
tion to nucleus, cellular response to reactive oxygen species,
transmembrane receptor protein tyrosine kinase pathway,
and peptidyl-tyrosine phosphorylation (Fig. 5). Regarding
the cellular component, these hub genes were found to have
greater enrichment in the mitochondrion, cytoplasm, the
extrinsic component of cytoplasmic membrane, nucleus,
macromolecular complex, sorting endosome, extracellular
region, plasma membrane, cell-cell junction, cytosol, ezc.
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(Fig. 5). The results of the molecular function demonstrated
that the hub genes were highly enriched in the function
of enzyme binding, protein tyrosine kinase activity, trans-
membrane receptor protein tyrosine kinase, protein kinase
activity, ATP binding, protein kinase binding, insulin recep-
tor binding, protein binding, protein phosphatase 2A bind-
ing, protein homodimerization activity, and other molecular
function processes (Fig. 5).

Most importantly, the subsequent analysis of KEGG
signaling pathways uncovered that 20 hub genes were
highly enriched in and contributed to the important signal-
ing pathways in cancer biology, such as the VEGF signaling
pathway, pathways and proteoglycans in cancer, microR-
NAs in cancer, EGFR tyrosine kinase inhibitor resistance,
PI3K-AKT signaling pathway, chemical carcinogenesis-
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Fig. 6. The Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway enrichment analysis of 20 hub genes. The top
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reactive oxygen species, ErbB signaling pathway, small cell
lung cancer, breast cancer, bladder cancer, and RAS sig-
naling pathway. The top 25 signaling pathways and related
diseases are shown (Fig. 6).

3.5 Examining the mRNA Expression Levels of Hub Genes
in LIHC Tumor and Control Samples

Due to the important roles of bilobetin-targeted hub
genes in cancer, we extended our study by examining the
mRNA expression levels of these hub genes in normal and
liver tumor samples using a clinical database. Among the
20 hub genes, we identified 6 genes that showed signifi-
cant differences in mRNA expression levels between the
normal/non-tumor (n = 160) and LIHC tumor samples (n
=369). The expression level of VEGFA was significantly
decreased in LIHC tumor samples compared with normal
samples, whereas the expression levels of SRC, MMP9Y,
PARPI, CDKI, and PTK2 were significantly increased in
LIHC tumor samples compared with the normal samples

(Fig. 7).

3.6 Exploring the Association between the Clinical
Prognosis Outcomes of LIHC Patients and the Expression
Levels of Hub Genes

To further explore the clinical prognosis values of hub
genes, we examined the association between the clinical
outcomes of LIHC patients and the expression levels of 20
hub genes using the bioinformatics tool GEPIA. The re-
sults showed that, among 20 hub genes, the expression lev-
els of eight genes (VEGFA, SRC, MMP9, GSK3B, CDK1,
KIT, MAPT, PTPNI) were significantly associated with the
clinical survival outcomes of LIHC patients. The expres-
sion levels of these eight genes were significantly and neg-
atively associated with the survival outcomes of LIHC pa-
tients (Fig. 8).

Given the mRNA expression levels of four hub genes
(VEGFA, SRC, MMP9, and CDKI) and their association
with the survival outcomes of LIHC patients, we then fo-
cused on these four key hub genes in the following study.
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Fig. 7. Analysis of mRNA expression levels of hub genes between non-tumor control and liver hepatocellular carcinoma (LIHC)
tumor samples. Among the 20 hub genes, VEGFA, SRC, MMP9, PARP1, CDK1, and PTK?2 showed significantly different expression
levels between non-tumor and tumor samples. n = 160 (non-tumor samples) and n = 369 (tumor samples). ANOVA was applied for
statistical analysis, and *p < 0.05 was defined as statistically significant.

3.7 Examination of the Proteomic Expression Levels of
Four Key Hub Genes in Normal Liver Tissues and
Primary LIHC Tumor Samples

To analyze the proteomic expression levels of four
genes, including VEGFA, SRC, MMP9, and CDK 1, we used
the Clinical Proteomic Tumor Analysis Consortium (CP-
TAC) database to compare their proteomic expression lev-
els between normal samples and primary LIHC tumor sam-
ples. Our results showed that the proteomic expression lev-
els of VEGFA, MMP9, and CDK1 have significantly dif-
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ferent. However, there was no statistically significant dif-
ference in the proteomic expression levels of SRC between
normal and LIHC tumor samples (Fig. 9).

To validate the significance of the four key hub genes
(VEGFA, SRC, MMP9, and CDKI) in LIHC, the protein
expression staining results and the prognosis values of the
four key genes in the overall survival of HCC patients
were collected from the Human Protein Atlas for analy-
sis. The prognosis values were consistent with the results
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Fig. 8. Association of the mRNA expression levels of 20 hub genes with the overall survival outcomes of LIHC patients analyzed

by comparing high and low gene expression groups. Among 20 hub genes, the gene expression levels of VEGFA, SRC, MMP9, GSK3B,
CDK1, KIT, MAPT, and PTPN1 were significantly associated with the clinical outcomes in terms of overall survival times (months) of
LIHC patients. The hazard ratio was calculated based on the Cox PH Model according to the default parameters, as well as the 95%

confidence interval (CI).

shown in Fig. 8, indicating that high expression of these
four genes predicted poor overall survival of HCC patients
(Supplementary Fig. 1). In addition, immunohistochem-
ical (IHC) staining showed low and high expression levels
of the proteins encoded by the four key genes in clinical
LIHC samples (Supplementary Fig. 1).
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3.8 Evaluation of the Correlation of Immune Cell
Infiltration with the Expression of Four Key Genes

Due to the critical roles of tumor-infiltrating immune
cells in the survival outcomes of LIHC patients, it is impor-
tant to examine the correlation of the expression levels of
the four key hub genes (VEGFA, SRC, MMP9, and CDK1)
with the tumor-infiltrating levels of immune cells, as well
as the expression of immune checkpoint-associated genes.

&% IMR Press


https://www.imrpress.com

ns
%k | °
4 5 3
—_—
3 —_— 2 - °
°
° ° ° # XY ® .
2 — ° %% o 14 s ° o
" ° o ¢*° o 0% o Y 73
3 94 %o 2D =] ° % -
s - e ] i
g s 7 0 Tt
| o0 o° ° ( oo o
N PO | ® q N Pl o, 8o
""#’ o. e 1 .l' .r.O'.o:
1 - * Wee ot ) "o; : ”0:
°
o ° .' o ©
2 - 0: o8
-2 °
-3 -3
Normal Primary tumor Normal Primary tumor
(n=165) (n=165) (n=165) (n=165)
CPTAC samples CPTAC samples
* *
4 - ° °
° . o 2
3 -
8 " ) o
0 ——
5 o, 4 & % 0
E sfd E
[ L 8o o° @ [J
e e e i
N o % o o ® N ]

L3
-1 oo’ %

Primary tumor
(n=165)

CPTAC samples

Primary tumor
(n=165)

CPTAC samples

Fig. 9. Analysis of the proteomic expression levels of four genes between the normal samples and primary LIHC tumor samples.
(A) VEGFA; (B) SRC; (C) MMP9; (D) CDK1. VEGFA, MMP9, and CDK1 showed significantly different proteomic expression levels
between normal (n = 165) and primary tumor samples (n = 165). *p < 0.05 was defined as statistically significant. Not significant (ns)

was detected for the expression of SRC protein. Z-values represent the standard deviations from the median across normal or LIHC

samples. The log2 spectral count ratio values of CPTAC samples were first normalized within each sample and then normalized across

samples.

Firstly, we examined the correlation between the ex-
pression levels of the four key hub genes and the tumor-
infiltrating levels of several immune cells, including B cells,
CD8™ T cells, CD4™ T cells, macrophages, neutrophils,
and dendritic cells in LIHC. The results indicated that the
expression levels of genes VEGFA, SRC, MMP9, and CDK 1
were significantly correlated with the tumor-infiltrating lev-
els of different types of immune cells in LIHC (Fig. 10).

To determine the significance of the immune check-
point markers (PDCDI, CD274, CTLA4, and CD47) in
HCC, the mRNA and proteomic expression levels in clinic
LIHC primary tumor (n = 371) and non-tumor control sam-
ples (n = 50) were analyzed using the data from the TCGA
database. The results demonstrated that checkpoint mark-
ers PDCD1, CTLA4, and CD47 showed significantly higher
mRNA expression levels in LIHC primary tumors com-

&% IMR Press

pared with the non-tumor samples. In contrast, CD274
showed a decreased trend (p = 4.95 x 10~1) in mRNA
expression levels in LIHC primary tumor samples com-
pared with non-tumor control samples (Fig. 11). The CP-
TAC database was applied to analyze the proteomic expres-
sion levels of immune checkpoints. The results revealed
that both proteins encoded by CD274 and CD47 showed
significantly lower expression levels in LIHC primary tu-
mors (n=165) compared with non-tumor samples (n = 165)
(Fig. 12). However, the expression levels of proteins en-
coded by PDCD1 and CTLA4 were not attainable using this
database.

Then, we evaluated the co-expression levels of four
identified genes VEGFA, SRC, MMP9, and CDK1 with the
genes of well-known immune checkpoints that play an im-
portant role in immunotherapy, including CD274, PDCD,
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levels of tumor-infiltrating immune cells in LIHC. The expres-

antly correlated with the tumor-infiltrating immune cell levels of B

cells, CD8F T cells, CD4™ T cells, macrophages, neutrophils, and dendritic cells in liver cancer. p-value < 0.05 indicates statistical

significance.

CTLA4, and CD47. The results showed VEGFA, CDKI,
MMPY, and SRC had statistically significant co-expression
levels with genes CD274, PDCDI, and CD47, respec-
tively. VEGFA, CDK1, and MMP9 showed significant co-
expression levels with CTLA4. However, there was no
significant co-expression level between SRC and CTLA4
(Fig. 13).

3.9 Molecular Docking for the Interaction of Bilobetin
with four Key Hub Genes

To investigate the potential molecular mechanisms
of bilobetin-targeted genes VEGFA, CDKI, MMP9, and
SRC, we applied a computer-aided approach to perform the
molecular docking between bilobetin and proteins encoded
by four key hub genes, respectively. The results demon-
strated there was an optimistic binding affinity between
bilobetin and proteins VEGFA (8.8 kcal/mol), CDK1 (-
10.0 kcal/mol), MMP9 (-11.0 kcal/mol), and SRC (-10.6
kcal/mol), respectively. The detailed docking information
is listed in a table (Table 1).

The formation of hydrogen bonds between bilobetin
and proteins VEGFA, CDK1, MMP9, and SRC were tested
and displayed with the labeled distances (Fig. 14). In the

12

bilobetin-VEGFA binding complex, bilobetin formed hy-
drogen bonds with residues GLU-30, LEU-32, GLN-37,
and ARG-56 of the VEGFA protein. In bilobetin-SRC bind-
ing complex, residues GLY-279, GLY-276, and SER-345 of
the SRC protein contributed to the formation of hydrogen
bonds. Residues ALA-189, ALA-191, GLU-227, GLN-
108, and PHE-107 of the MMP9 protein were involved in
the formation of hydrogen bonds in the bilobetin-MMP9
binding complex. Residue TYR-15 of the CDK1 protein
formed a hydrogen bond with the bilobetin molecule dur-
ing the interaction (Fig. 14).

In addition to the hydrogen bonds, the hydrophobic-
ity interaction between bilobetin and proteins also con-
tributed to the binding affinity and stability of the com-
plexes (Fig. 15).

In addition, other interactions between bilobetin and
target proteins include van der Waals, Pi-sigma, Pi-Pi
stack, Pi-Pi t-shaped, Pi-alkyl, Pi-cation, Pi-anion, Pi-
sigma, amide-Pi stack, alkyl, and covalent bonds, which
contributed to the stability of the complexes (Fig. 16).

To further evaluate the drug-likeness of bilobetin, we
performed ADME analysis using SWISSADME bioinfor-
matic tool, a commonly used tool in drug discovery. The
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Fig. 11. The expression level of immune checkpoint biomarkers in LIHC tumor and non-tumor control samples. The mRNA
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and (D) CTLA4 (p=2.89 x 10~'2) in LTHC primary tumor samples compared with non-tumor control samples. *p-value < 0.05 indicates

statistical significance.

results suggested that the bilobetin meets the requirements
of the drug-likeness according to the filter applied by the
Lipinski filter (Pfizer) (Table 2).

4. Discussion

Liver cancer ranks at the top of cancer-associated
deaths with no effective therapeutic strategies. Early di-
agnostic biomarkers and the discovery of effective treat-
ments for LIHC are urgently needed. Bioinformatic anal-
ysis empowers the understanding of the pathogenesis of
cancers and the discovery of disease-related biomarkers
[46,47]. Computer-aided drug discovery is a favorable
strategy for drug development and mechanistic investiga-
tion [48]. In this study, we comprehensively integrated
these two powerful research approaches to investigate and
explore potential therapeutic agents for liver cancer. Our
results have demonstrated that bilobetin is a potent thera-
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peutic target for HCC/LIHC via interaction with four key
hub targets, including VEGFA, SRC, MMP9, and CDK1,
which are associated with immune cell tumor infiltration
and co-expression of immune checkpoints.

Among the molecular targets of bilobetin, 16 genes
were identified to play essential roles in the signaling
pathway of reactive oxygen species (ROS) (p = 2.09 x
10~8, Fig. 3), including CBRI, PTPNI, SRC, AKRICI,
AKRIC3, AKRIAI, AKRIC2, AHR, PIK3RI1, AKRIC4,
PTK2, VEGFA, CYPIB1, NOX4, AKTI, and MET. Among
the genes, 7 out of 16 genes (PTPN1, SRC, AKTI, PIK3R1,
MET, PTK2, VEGFA) were further identified as hub genes
that contribute to the ROS signaling pathway (p = 7.60
x 107%). Among the bilobetin-targeted genes, five genes
BCL2A1,PARPI1,AKTI, PIK3R1,and MCLI were involved
in the apoptosis signaling pathway (p = 0.066148), and four
including PARP1, AKTI, PIK3R1, and MCLI were further
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Fig. 12. The expression of proteins encoded by genes CD274 and CD47 in the CPTAC database. The protein expression level results
revealed that both (A) CD274 and (B) CD47 proteins showed significantly lower expression levels in LIHC primary tumors (n = 165)
compared with non-tumor control samples (n = 165). *p-value < 0.05 indicates statistical significance.

Table 2. Evaluation of the pharmacokinetics, drug-likeness, and medicinal chemistry of bilobetin.

Parameters Physicochemical properties
Number of rotatable bonds 4
Number of H-bond acceptors 10
Number of H-bond donors 5
Molar Refractivity 151.44
TPSA 170.8
Log Po/w calculation methods and lipophilicity

iLOGP 3.39
XLOGP3 5.36
WLOGP 5.44
MLOGP 0.44
Silicos-IT 5.16
Average value 3.96
Pharmacokinetics

GI absorption according to the white of boiled egg Low
BBB permeant according to the yolk of boiled egg No
P-gp substrate No
CYP1A2 inhibitor No
CYP2C19 inhibitor No
CYP2C9 inhibitor Yes
CYP2D6 inhibitor No
CYP3A4 inhibitor No
log Kp (skin permeation, cm/s) —5.86
Medicinal Chemistry

PAINS #alerts 0
Synthetic Accessibility 435
Druglikeness

Lipinski Filter Yes
Bioavailability Score 0.55

Note: TPSA, topological polar surface area; CYP, cytochrome P450; GI, gastrointesti-
nal; P-gp, P-glycoprotein substrate; PAINS, pan-assay interference structures.
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Fig. 13. The co-expression levels of four key hub genes VEGFA, SRC, MMPY9, and CDKI with the immune checkpoint genes
CD274, PDCD1, CTLA4, and CD47. With the exception of the gene SRC which did not indicate significant correlation with CTLA4, all
other genes VEGFA, MMP9, and CDK1 showed statistically significant co-expression levels with genes CD274, PDCD1, CTLA4, and
CD47, respectively. SRC showed a significant co-expression level with genes CD274, PDCDI1, and CD47. p-value < 0.05 indicates

statistical significance.

identified as hub genes that participate in the signaling path-
way of cell apoptosis (p = 0.003554). These results suggest
that the regulation of cellular production of ROS and cell
apoptosis might also be the acting mechanism of bilobetin.

VEGFA protein plays a critical role in the growth
of tumor-associated blood vessels and vascular permeabil-
ity, accelerating tumor cell invasion [49-51]. Studies also
found that the circulating levels of VEGFA can serve as
a prognostic biomarker for the prediction of survival out-
comes of LIHC patients [52,53]. In addition, VEGFA
derived from hepatocytes can promote the development

&% IMR Press

of liver diseases, such as non-alcoholic fatty liver dis-
ease which becomes a leading cause of HCC [54]. Cur-
rently, the investigation and development of VEGFA in-
hibitors as therapeutic options against cancers including
LIHC are gaining much more attention [55,56]. In this
study, we found VEGFA is one of the bilobetin-targeted
key hub genes. Surprisingly, our results have revealed that
the mRNA expression levels of VEGFA were significantly
lower in LIHC tumors compared with the normal samples.
However, when we examined the proteomic data, we found
the proteomic level of VEGFA was significantly increased
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Fig. 14. The formation of hydrogen bonds in the binding complex of bilobetin and proteins encoded by target genes. The key
residues that contributed to the formation of hydrogen bonds and the distance between bilobetin and residues were measured and labeled.
Left: the overall structure of proteins used for molecular docking. Right: the detailed interaction between bilobetin and its target proteins.
(A) VEGFA; (B) SRC; (C) MMP9; (D) CDK1.
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Fig. 15. The 2D interaction results showed hydrophobic interactions between bilobetin and four target proteins. (A) VEGFA; (B)

SRC; (C) MMP9; (D) CDK1.

in LIHC tumors compared with normal samples. Consis-
tent with other studies [53,57,58], we also found there is
a significant association between the expression levels of
VEGFA and the clinical survival outcomes of LIHC pa-
tients. Therefore, targeting VEGFA using bilobetin as a po-
tential therapeutic strategy for HCC treatment can be further
investigated.

&% IMR Press

SRC plays a significant role in cancer development
[59-62]. In our study, we have demonstrated that SRC
is one of the identified bilobetin-targeted hub genes. The
mRNA expression levels of SRC were significantly differ-
ent from LIHC tumor samples compared with normal sam-
ples, which were significantly associated with survival out-
comes of LIHC patients. The expression levels of SRC also
showed a significant association with tumor-related im-
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bilobetin and its target proteins that contribute to the formation of the protein-ligand complexes. (A) VEGFA; (B) SRC; (C) MMP9; (D)

CDKI.

mune cell infiltration and the expression of immune check-
points. However, the proteomic expression levels of SRC
do not show statistical significance between normal and
tumor samples, which requires further investigation. The
phosphorylation of SRC proteins also plays a pivotal role
in liver disease [63]. Therefore, the mRNA expression lev-
els and phosphorylated status of SRC proteins are required
to evaluate their role in LIHC.

Consistent with our previous analysis results (un-
published), MMP9 was identified as an important gene
in LIHC, as there is a significant association between its

18

mRNA and protein expression levels with the survival out-
comes of LIHC patients, as well as tumor-infiltrating levels
of immune cells. In this study, we have demonstrated that
the bioactive compound bilobetin has the best binding affin-
ity (—11.0 kcal/mol) with MMP9 compared with VEGFA
(-8.8 kcal/mol), SRC (-10.6 kcal/mol), and CDK1 (-10.0
kcal/mol). Therefore, our study provides an optimistic in-
sight for further evaluating bilobetin as a potential therapeu-
tic agent for LIHC treatment by regulating the expression
of MMP9, which plays a key role in cancer development
[64,65].
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CDKI1 is another key hub gene identified from 20
bilobetin-targeted hub genes. In line with other research
findings [66—68], our results also revealed that both the
mRNA and proteomic levels of gene CDK/ showed signif-
icantly higher expression levels in LIHC tumors compared
with normal samples. In addition, the expression of CDK/
was significantly associated with the survival outcome of
LIHC patients and tumor-associated immune cell infiltra-
tion, as well as the expression levels of immune checkpoint-
related biomarkers. The molecular docking results also
showed that bilobetin can be used as a compound template
for designing new drugs for LIHC treatment.

Drug development is a long process, and comprehen-
sive or integrated research approaches such as bioinfor-
matic analysis and computer-aided methods could bring
some advantages to promote the process. Overall, our
study shows that bilobetin can target multiple targets that
influence liver cancer development and progression, which
holds great value in the improvement of treatment efficacy
and reduction in the side effect.

5. Conclusions

In this study, we explored the potential of bilobetin as
a LIHC therapeutic agent based on comprehensive bioin-
formatic analysis and computer-aided drug discovery ap-
proaches. Although one of the most important drug discov-
ery processes, further steps such as modification, optimiza-
tion, examination of toxicity or side effects, and in vitro and
in vivo experiments are necessary and should be carefully
evaluated. The functionality, delivery method, and treat-
ment efficacy should also be further studied.
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