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Abstract

Background: As a potent mediator of hypothermic neuroprotection, the cold-inducible protein RBM3 is characterized with one RNA-
recognition motifs (RRM) and one arginine-glycine-rich (RGG) domain. Itis known that these conserved domains are required for nuclear
localization in some RNA-binding proteins. However, little is known about the actual role of RRM and RGG domains in subcellular
localization of RBM3. Methods: To clarify it, various mutants of human Rbm3 gene were constructed. Plasmids were transfected into
cells and the localization of RBM3 protein and its varias mutants in cells and role in neuroprotection. Results: In human neuroblastoma
SH-SYS5Y cells, either a truncation of RRM domain (aa 1-86) or RGG domain (aa 87—157) led to an obvious cytoplasmic distribution,
compared to a predominant nuclear localization of whole RBM3 protein (aa 1-157). In contrast, mutants in several potential phosphory-
lated sites of RBM3, including Ser102, Tyr129, Ser147, and Tyr155, did not alter the nuclear localization of RBM3. Similarly, mutants
in two Di-RGG motif sites also did not affect the subcellular distribution of RBM3. Lastly, the role of Di-RGG motif in RGG domains
was further investigated. The mutant of double arginines in either Di-RGG motif-1 (Arg87/90) or -2 (Arg99/105) exhibited a higher
cytoplasmic localization, indicating that both Di-RGG motifs are required for nucleic localization of RBM3. Conclusions: Our data
suggest that RRM and RGG domains are both required for the nuclear localization of RBM3, with two Di-RGG domain being crucial
for nucleocytoplasmic shuttling of RBM3.
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1. Introduction karyotic genes, especially in higher vertebrate. RRM motifs
function in post-transcriptional gene expression processes
by interacting with nucleic acids or other proteins [14—17].
The RGG domain is also an RNA-binding motif found in
many RBPs [18]. Since RGG motifs were first described,
they have been identified in many other proteins, often oc-
curring as multiple repeats [19]. Proteins containing RGG
motif are involved in mRNA processing [20]. The accumu-
lated data showed RBM3 is predominantly localized in nu-
cleus [21], but sometimes it can translocate to cytoplasm,
indicating that RBM3 is a nuclear-cytoplasmic shuttling
protein. However, the actual role of RRM and RRG do-
mains in RBM3 subcellular localization remains largely un-

Mild hypothermia (32-35 °C) has been frequently
used as an effective treatment for various nerve injuries
[1]. During hypothermia, a subgroup of proteins including
RNA-binding motif protein 3 (RBM3), is substantially in-
duced, while the global protein synthesis is decreased [2,3].
Mild hypothermia is a clinically recognized treatment that
is commonly used to relieve nerve damage caused by is-
chemia and hypoxia. Many studies have shown that RBM3,
a cold stress protein, mediates the neuroprotective effects of
mild hypothermia largely [4-8]. Thus, it is speculated that
RBM3 induction may represent a new strategy for therapy

of neural injuries in place of mild hypothermia [9].

RNA-binding protein (RBP) plays an important role
in the cell cycle. It is involved in RNA post-transcriptional
regulation and translation processes [10,11]. RBM3 is
such a kind of RNA-binding protein consisting of one
RRM (RNA recognition motif) domains at N-terminus and
two arginine/glycine-rich (RGG) domains at C-terminus
[12,13]. The RRM motif, also known as RBM (RNA-
binding motif) or RNP (ribonucleoprotein domain), is a
well-defined RNA-binding domain mainly presented in eu-

known.

In addition to RRM and RGG domains, prediction
of RBM3 molecules with the softwares KinasePhos and
Uniprot show that RBM3 contains various potential post-
translational modification (PTM) sites, including phos-
phorylation sites on Ser102(S), Tyrl129(Y), Serl47(S),
Tyr155(Y) amino acids and arginine methylation sites on
Arg87 and 90 in Di-RGG1 motif, and Arg99 and 105 in Di-
RGG2 motif. It would be interesting to determine whether
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Fig. 1. RBM3 domain deletion and RGG domain arginine mutant. (A) Mutant pattern diagram, wild type RBM3 (a), RBM3 with
RRM domain only (b), RBM3 with RGG domain only (c), RBM3 with the first Di-RGG motif mutation (d), RBM3 with mutation in the
second Di-RGG motif (e) The mutation position is marked as “v”. (B) Schematic structure of RBM3 with RGG domain sequence: the
Di-RGG motif is indicated by double underline, and the alanine mutated arginine in the R-A mutant is indicated by red italic bold.

these potential PTM sites affect the nuclear-cytoplasmic
shuttling of RBM3.

Using traditional gene mutagenesis technique, we
constructed various mutants of RBM3, including trunca-
tion, point mutation or deletion. With these mutants of
RBM3, we attempted to determine the effects of different
domains and potential PTM sites on RBM3 subcellular lo-
calization. In addition, we would examine the influence
of these mutants on the protective effect of RBM3 using
staurosporine-insulted SH-SY5Y as a cell model.

2. Materials and Methods
2.1 Materials

Antibody against RBM3 (ab134946) was purchased
from Abcam (Cambridge, MA, USA), and the antibodies
against cleaved PARP (#9541), mCherry (#43590), and -
actin (#4970) were purchased from Cell Signaling Tech-
nologies (Beverly, MA, USA). Antibodies against Lam-
inB1 (66095) and Myc-tag (16286) were purchased from
Proteintech Group Inc. (Boston, MA, USA). Staurosporine
(STS) (STS, AM-2282) was purchased from MedChemEx-
press (New, NJ, USA).

2.2 Cell Culture and Drug Treatment

Human neuroblastoma cell line SH-SY5Y cells
were maintained in Dulbecco’s modified Eagle’s medium
(DMEM) supplemented with 10% fetal bovine serum
(FBS), 100 U/mL penicillin, and 100 pg/mL streptomycin

in a humidified atmosphere containing 5% CO; at 37 °C.
For immunoblotting of cleaved poly ADP-ribose poly-
merase (PARP), cells were harvested 24 h after addition of
0.5 uM STS.

2.3 Plasmids and Transient Transfection

RBM3 transcript from SH-SYS5Y cells was amplified
using RT-PCR, sequenced, and then subcloned into the
pXJ40-Myc or pmCherry vector. RRM or RGG-truncated
constructs were generated using PCR with RBM3 as tem-
plates and inserted into pXJ40-Myc or pmCherry vector.
Di-RGGmutl (R87/90A) Di-/RGGmut2 (R99/105A) point
mutations were generated using a PCR-based site-directed
mutagenesis. Cells cultured in six-well plate were trans-
fected with plasmids using Lipofectamine 2000 (Invitro-
gen, Carlsbad, CA, USA) according to the manufacturer’s
instructions.

2.4 Cell Viability Assay

Cell viability was determined with Cell Counting Kit-
8 (CCK-8) assay following the manufacturer’s procedures.
In brief, cells transfected with different plasmids were
seeded into 96-well plates and incubated with fresh medium
containing STS or dimethyl sulfoxide (DMSO) for 24 hours
at 37 °C. The CCK-8 was then added to the medium and the
absorbance was measured at a wavelength of 450 nm by a
SepctraMax Plus Absorbance Microplate Reader (Molecu-
lar Devices, San Jose, CA, USA).
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Fig. 2. The effect of RBM3 domain deletion on subcellular localization. (A,C) Subcellular localization of RBM3, RRM mutants and
RGG mutants were determined by Western blots with myc tag antibody or cherry tag antibody. LaminB1 and GAPDH were used as

nuclear loading control and cytosolic loading control, respectively. (B,D) Blots density was quantified and normalized to LaminB1 or
GAPDH, respectively. (E) Distribution of myc-RBM3 fusion protein, RRM mutants (myc-RRM) and RGG mutants (myc-RGQG) in cells.
(F) Distribution of Cherry alone, Cherry-RBM3 fusion protein, RRM mutants (Cherry-RRM) and RGG mutants (Cherry-RGG) in cells.

Scale bar, 20 pm.

2.5 Cellular Fluorescence

Cells were seed onto cell slides in a six-well plate and
cultured for 24 h, the RBM3 mutant plasmids were trans-
fected into the cells for 2 d, and images were collected using
a fluorescent inverted microscope (Carl Zeiss, White Plains,
NY, USA).

2.6 Western Blot

After rinsing twice with cold phosphate buffer saline
(PBS), cells were collected in cold lysis buffer by centrifug-
ing at 15,000 g for 15min. Protein concentration was de-

&% IMR Press

termined using Bradford assay. 40 ug of protein sample
was resolved by electrophoresis on 8—15% sodium dodecyl
sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
and transferred to Polyvinylidene difluoride (PVDF) mem-
brane (Millipore, Billerica, CA, USA). The membrane was
blocked with 5% skim milk and then incubated with differ-
ent primary antibodies overnight. After washing with PBS
for 30min, the membrane was further incubated with HRP-
conjugated secondary antibodies for 1 h and visualized
with enhanced chemiluminescence (ECL) kits (Wanleibio
Biotechnology Co, Shenyang, China) by a luminescence
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Fig. 3. The effect of RBM3 domain deletion on neuroprotection. (A) Cleavage of PARP (cl.PARP) in SH-SYS5Y cells transfected
with plasmids (pXJ40-myc (Veh), pXJ40-myc-RBM3 (RBM3), pXJ40-myc-RRM (RRM) and pXJ40-myc-RGG (RGG)) were detected
by western blot with anti-PARP after treatment with STS (0.5 pM) for 24 h. [-actin was used as a loading control. (B) Quantitative
analysis of the cleavage of PARP (cl.PARP) levels in the cells. (C) Cell viability was detected with CCK-8 assay. Values were expressed

as mean £ SD obtained from three different experiments performed in triplicate. ***p < 0.001, compared to cells RBM3 overexpressing

cell treated with STS (RBM3 + STS).

imager, Amersham Imager 600 (GE Healthcare, Chicago,
IL, USA). Finally, it was quantified and analyzed by Im-
agelJ (National Institutes of Health, Bethesda, MD, USA).

2.7 Statistical Analysis

All the experiments were performed at least three
times. Data were examined by Student’s ¢ test and ex-
pressed as mean = standard deviation (SD). p value < 0.05
was considered statistically significant.

3. Results

3.1 Both RRM and RGG Domains are Required for
Nuclear Localization of RBM3

To determine the influence of RGG and RRM domains
on the nuclear localization of RBM3, truncations encoding
RRM (AA1-86) and RGG (AA87-157) were cloned into
pXJ40-myc, respectively (Fig. 1A). After transfection, the
cytoplasmic protein and the nuclear protein were separated.
As shown in Fig. 2A,B, RRM protein is almost completely
localized in the cytoplasm (96.95%), compared with full-
length RBM3 (14.46%). However, RGG could not be de-

tected by Western blot due to its small molecular weight (9
kD). Hence, we cloned RGG DNA to pmCherry, and the
Western blot showed RGG protein is largely localized in
the cytoplasm (77.75%), compared with full-length RBM3
(Fig. 2C,D). Immunofuorescence double labelling showed
that RRM and RGG protein are also largely localized in the
cytoplasm (Fig. 2E,F). These data suggest that both RRM
and RGG domains are required for RBM3 nuclear localiza-
tion.

3.2 Both RRM and RGG Domains are Required to Prevent
STS-Induced Apoptosis

It has been reported that RBM3 can inhibit STS-
induced apoptosis in neural cells [21]. To determine the
role of RGG and RRM domains in neuroprotective effects
of RBM3, SH-S5Y neural cells were transfected with dif-
ferent RBM3 mutant plasmids mentioned above. West-
ern blot showed that STS-induced PARP cleavage was
significantly increased after overexpression of RRM and
RGG mutant plasmids compared with wild-type RBM3
(Fig. 3A,B). Consistently, CCK-8 assays obtained same re-
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Fig. 4. The effect of mutation of Di-RGG motif in RBM3 on localization. (A) Subcellular localization of RBM3, Di-RGG mut 1
(mutl) and Di-RGG mut 2 (mut2) were determined by Western blots with myc tag antibody. LaminB1 and GAPDH were used as nuclear

loading control and cytosolic loading control, respectively. (B) Blots density was quantified and normalized to LaminB1 or GAPDH,
respectively. (C) Distribution of myc-RBM3 fusion protein, Di-RGG mut 1 (myc-mutl) and Di-RGG mut 2 (myc-mut2) in cells. (D)
Distribution of Cherry alone, Cherry-RBM3 fusion protein, Di-RGG mut 1 (Cherry-mutl) and Di-RGG mut 2 (Cherry mut2) in cells.

Scale bar, 20 pm.

sults (Fig. 3C). Together, the results indicate that both RGG
and RRM domains are required for exerting the neuropro-
tective process of RBM3.

3.3 The Di-RGG Motif'is Indispensable for RBM3 Nuclear
Localization

To determine the influence of the two Di-RGG motifs
on the nuclear localization of RBM3, mutations (two Arg
were replaced by two Ala) encoding R87/90A of mutl and
R99/105A of mut2 were cloned into pXJ40-myc, respec-
tively (Fig. 1B). After transfection, the cytoplasmic pro-
tein and the nuclear protein were separated. As shown
in Fig. 4A, the signals for Di-RGG mutl and Di-RGG
mut2 detected in the cytoplasm were increased by 22.8%
and 20.3%, respectively, compared to wild type RBM3
(Fig. 4B). Immunofuorescence double labelling showed
that Di-RGG motif mutations proteins are also largely lo-
calized in the cytoplasm (Fig. 4C,D). These data suggest
that two Di-RGG are required for RBM3 nuclear localiza-
tion.
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3.4 Neuroprotection of STS by RBM3 does not Require the
Di-RGG Motif

Next, we determine the potential role of Di-RGG mo-
tif in RBM3-conferred neuroprotective effcts unclear. The
Di-RGG motif mutant plasmids Di-RGG mut1 and Di-RGG
mut2 were transiently transfected into cells. After STS
insult, the cleaved PARP was detected by Western blot
(Fig. 5A). It was found that compared with the wild-type,
the two Di-RGG motif mutants had no significant differ-
ence in the levels of cleaved PARP (Fig. 5B). Similarly, the
same results were observed in CCK-8 detection (Fig. 5C).
Therefore, the role of arginine in the Di-RGG motif may be
limited to nuclear localization and has no contribution for
neuroprotective effect of RBM3.

3.5 Mutants at the Potential Phosphorylation Site of
RBM3 did not Alter the Nuclear Localization of RBM3
Protein phosphorylation is the most important way of
PTM [22,23]. Being a molecular switch, protein phos-
phorylation regulates the biological activity of various pro-
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Fig. 5. The effect of mutation of Di-RGG motif in RBM3 on neuroprotection. (A) Cleavage of PARP (cl.PARP) in SH-SYSY cells
transfected with plasmids (pXJ40-myc (Veh), pXJ40-myc-RBM3 (RBM3), pXJ40-myc-Di-RGG mut1 (mutl) and pXJ40-myc- Di-RGG
mut2 (mut2)) were detected by western blot with anti-PARP after treatment with STS (0.5 uM) for 24 h. -actin was used as a loading
control. (B) Quantitative analysis of the cleavage of PARP (cl.PARP) levels in the cells. (C) Cell viability was detected with CCK-8
assay. Values were expressed as mean + SD obtained from three different experiments performed in triplicate. n.s. not significant and
**%p < 0.001, compared to cells RBM3 overexpressing cell treated with STS (RBM3 + STS).

tein [24]. Uniprot analysis shows RBM3 has four poten-
tial phosphorylation sites (Ser102, Tyr129, Ser147, and
Tyr155), but their role in RBM3 subcellular localization
is to be investigated. In the way, we constructed plasmids
with four phosphorylation sites mutated respectively. After
transfection, the cytoplasmic protein and the nuclear pro-
tein were separated. Unfortunately, no obvious change in
RBM3 subcellar localization could be observed between
wild type RBM3 and the four mutants of RBM3 (Fig. 6A—
D). In conclusion, these mutants in phosphorylation site
may does not contribute in RBM3 subcellular localization.

4. Discussion

RBM3 was first identified as a gene linked to X-
chromosome linked gene tlocated at region Xpl11.23 on
the short arm. RBM3 was found to be up-regulated even
when the total protein decreased during hibernation, and up-
regulation of RBM3 was also found under conditions such
as ischemia and radiation [25]. Up-regulation of RBM3 in
extreme cases is to some extent a protective measure for
cells. In Diego Peretti’s research [6], it was found that
RBM3 can affect the repair of nerve cell synapses, and once
RBM3 is missing or RBM3 cannot function normally, it
will accelerate the damage of related pathological models
and accelerate the occurrence of diseases. Numerous ex-

periments have shown that RBM3 is important for cellu-
lar stress, but the subcellular localization of RBM3 remains
unclear [1,6,13,26-28]. Smart et al. [29] discovered two
distinct RBM3 spliceosomes, “Arg-" and “Arg+”, in their
research. In a follow-up study, it was found that the “Arg-”
isoform of RBM3 exhibited higher dendritic localization in
primary cortical neurons, compared to the “Arg+” isoform.
Sietal. [30] found that RBM3 can localize in the cytoplasm
and inhibit oxygen-glucose deprivation-induced apoptosis
by regulating the formation of stress granules. Our experi-
mental results show that the two domains of RBM3 protein,
RRM and RGG, both play a decisive role in the localization
of RBM3 protein to the nucleus.

The RRM is widely presented in eukaryotes and com-
posed of two a-helices and four (5-sheets. Bhatter et al.
[31] found that deletion of RRM domains compromised the
ability of Sbpl to induce growth defects in yeast by pre-
venting localization of Sbpl to RNA granules upon glu-
cose starvation. Eulalio et al. [32] showed that the RRM
in GW182 protein contributes to miRNA-mediated gene si-
lencing through protein-RNA interaction. In addition, the
RRM domain can also stabilize the structure of the protein
[33]. Our experimental results confirmed that the RRM do-
main in RBM3 plays a decisive role in the localization of
RBM3 in the nucleus. RBM3 without the RRM domain
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will be localized in the cytoplasm, and the deletion of the
RRM domain also affects the function of the RBM3 protein.

The arginine/glycine-rich region, known as the RGG
domain/motif, is an RNA-binding motif found in many
RBPs [34]. RGG motifs have been shown to have multi-
ple biological functions, including regulating protein local-
ization in cells, mRNA translation, synaptic plasticity, and
repair of DNA damage [19]. In order to study the biologi-
cal function of RGG motifs, Palaniraja ez al. [19] divided
RGG motifs into four types, including Tri-RGG, Di-RGG,
Tri-RG and Di-RG. For two adjacent RGG sequences sep-
arated by 0—4 amino acid residues, Palaniraja et al. [19]
propose the term Di-RGG. Studies have found that arginine
methylation in the RGG domain can affect the transfer of
protein CIRP to stress granules (SGs) [35]. In our exper-
iments, we found that the RGG domain is also important
for the localization of RBM3, which is similar to the RRM
domain. In studies of the neuroprotective function of the
RBM3 domain, RGG is more important than RRM. By mu-
tating the arginine within the RGG domain, we found that
the arginine within RGG1 and RGQG2 is also necessary for
the cellular localization of RBM3, but not for the neuropro-
tective function of RBM3.
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5. Conclusions

In summary, our results showed that both RGG do-
main and the RRM domain are important for the RBM3 nu-
clear translocation, but only RRM domain are involved in
its neuroprotective effect. Since there is no currently rec-
ognized nuclear localization signal in the RBM3 molecule,
it is important to investigate the molecular mechanism un-
derlying the nuclear translocation of RBM3 in the future.
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