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Abstract

In the present era of global warming and dramatically increased environmental pollution posing a threat to animal life, the understand-
ing and manipulation of organisms’ resources of stress tolerance is apparently a question of survival. Heat stress and other forms of
stressful factors induce a highly organized response of organisms at the cellular level where heat shock proteins (Hsps) and in particular
Hsp70 family of chaperones are among the major players in the protection from the environmental challenge. The present review article
summarizes the peculiarities of the Hsp70 family of proteins protective functions being a result of many millions of years of adaptive
evolution. It discusses the molecular structure and specific details of hsp70 gene regulation in various organisms, living in diverse cli-
matic zones, with a special emphasis on the protective role of Hsp70 in adverse conditions of the environment. The review discusses the
molecular mechanisms underlying Hsp70-specific properties that emerged in the course of adaptation to harsh environmental conditions.
This review also includes the data on the anti-inflammatory role of Hsp70 and the involvement of endogenous and recombinant Hsp70
(recHsp70) in proteostatic machinery in various pathologies including neurodegenerative ones such as Alzheimer’s and Parkinson’s dis-
eases in rodent model organisms and humans in vivo and in vitro. Specifically, the role of Hsp70 as an indicator of disease type and
severity and the use of recHsp70 in several pathologies are discussed. The review discusses different roles exhibited by Hsp70 in various
diseases including the dual and sometimes antagonistic role of this chaperone in various forms of cancer and viral infection including
the SARS-Cov-2 case. Since Hsp70 apparently plays an important role in many diseases and pathologies and has significant therapeutic
potential there is a dire need to develop cheap recombinant Hsp70 production and further investigate the interaction of externally supplied
and endogenous Hsp70 in chaperonotherapy.
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1. Introduction
Ritossa’s description of morphological changes in the

structure of Drosophila polytene chromosomes (formation
of puffs) after heat shock (HS) opened a new page in the
study of inducible genes and the entire eukaryotic genome
[1]. Interestingly, this pioneering work was not immedi-
ately appreciated and was first regarded as a kind of amus-
ing mishap, characteristic only for Drosophila. It was not
until the mid-seventies, when the molecular consequences
of HS were discovered [2,3], that an avalanche of studies
began on this system, which appeared to be present in the
genomes of all organisms studied [4–9]. Its simplicity and
high reproducibility have made the HS gene system very
popular for studying the subtle mechanisms of eukaryotic
gene regulation and genome function in general [10–18].

A comprehensive study of the HS gene system carried
out on different objects from bacteria and flies to humans
has shown the presence of different groups of HS genes and
demonstrated their role in cell and organism functioning in
general. Excellent reviews are describing the structure and

function of different classes of HS genes [19–23].
In particular, the role of different classes of Hsp and

especially Hsp70 in the maintenance of cellular proteosta-
sis, both under normal physiological conditions and after
stress, has been demonstrated in different laboratories [24–
28]. It was also shown that the Hsp70 protein plays the
central role in the folding and assembly of newly synthe-
sized proteins, refolding of misfolded and aggregated pro-
teins, membrane translocation of organelle and secretory
proteins, and control of the activity of various regulatory
proteins [29]. On the other hand, field biologists, as is of-
ten the case, did not immediately pay attention to the hsp
gene system, and started to study these genes in an ecolog-
ical aspect later [30–35].

It was logical to assume that if Hsps are really so im-
portant for the normal functioning of the cell and the organ-
ism as a whole under normal and stressful conditions, the
hsp gene systems in organisms living in arid climatic zones
or areas with rapid temperature fluctuations should charac-
teristically differ from similar systems of forms from tem-
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perate climate zones. In fact, it turned out to be so. Several
examples have shown that thermophilic species are capa-
ble of synthesizing Hsps at higher temperatures compared
to phylogenetically similar species from temperate zones
[7,30,36,37].

In recent decades, molecular ecology has accumulated
numerous facts and observations indicating the important
role of various Hsps and especially the main stress protein
Hsp70 for the adaptation of organisms to adverse condi-
tions, as well as describing how the structure of hsp genes
and correspondent proteins evolved for their optimal func-
tioning under various conditions, including extreme ones
[7,38,39]. Heat shock genes play an important and some-
times even pivotal role in adaptation to changing environ-
mental conditions not only in eukaryotes, but also in bacte-
ria, especially in pathogens and symbionts [8].

Although we are aware of the role of other Hsp groups
in adaptation to various stress conditions [40–44], in this re-
view we will pay special attention to the role of the major
stress protein (Hsp70) in adaptation to adverse conditions.
Besides, herein we consider the examples of the use of re-
combinant Hsp70 for the treatment of various diseases and
pathologies in both model animals and humans available in
the literature.

2. The Role of hsp70 Genes in Adaptation
2.1 Peculiarities of Regulation of HS Gene Expression

It was established that the rapid activation of all groups
of hsp genes under stress at the transcriptional level is pro-
vided by the same protein factor (Heat Shock Factor-HSF1).
All hsp genes contain heat shock elements (HSE) consist-
ing of several inverted repeats of the consensus nGAAn se-
quence in the proximal part of the promoter region [45,46].
In the absence of stress, HSF1 monomers interact with
Hsp70 and Hsp90 to form an inactive complex. During heat
shock, an increase in the number of denatured, unfolded
proteins in the cell causes decay of the Hsps and HSF1 com-
plex, and Hsps bind to the damaged proteins. It should be
mentioned that activation of HSF1 involves several steps,
including extensive posttranslational modification, translo-
cation into the nucleus, trimerization, and binding to heat
shock elements (HSE) at promoter sites, inducing transcrip-
tion of all HS genes [47–49].

To date, it has been shown that the regulation of Hsps
expression in particular is more complex and may differ in
different tissues and organs [49–51]. The search for tissue-
specific regulators of HS gene induction is important for
understanding the role of Hsps in adaptation as well as in the
treatment of many diseases, especially neurodegenerative
ones.

2.2 Adaptation Mechanisms at the Genome Level
An important feature of genes belonging to the hsp70

family is their multi-copy nature. Indeed, in the vast ma-
jority of the studied animal species, hsp70 genes are rep-

resented by several copies. Thus, in Drosophila, there are
5 to 6 copies of genes of this family induced under the ac-
tion of HS [52,53]. Thirteen genes of the hsp70 family were
found in the human genome [54,55], and several of them are
expressed constitutively, sometimes only in certain tissues,
while other members are induced under various stress influ-
ences [54,56]. It is also important to note the unusually high
homology between genes encoding hsp70 in different or-
ganisms. Thus, the homology between Drosophila and hu-
man hsp70 genes reaches 72%, and between human and E.
coli hsp70 genes – 50% [57]. Interestingly, in Drosophila
the basic structure of hsp70 genes is a pair of genes in an
inverted position, and in thermophilic Drosophila species,
the number of hsp70 genes tends to be higher than in species
from temperate zones [7,52,58]. Another important and ob-
viously adaptive feature of hsp70 genes is their cluster or-
ganization. It turned out that in thermophilic species these
clusters have a more compact structure, which apparently
provides their cumulative effect under stress. It was also
shown that the high homology of the hsp70 gene copies in-
cluded in such a cluster is maintained by gene conversion
[7,59,60].

Characteristic features have been described for hsp70
genes at the chromatin level as well. Thus, back in the
1980s, it was shown that the regulatory regions of the
Drosophila hsp70 genes are represented by “naked” DNA,
that is, devoid of nucleosomal structure [61–63]. Charac-
teristically, the promoters of hsp genes under normal tem-
perature are associated with a suspended, positioned RNA
polymerase II (RNAPII) [64]. Such promoter arrangement
is obviously necessary for rapid and efficient turn-on of all
hsp70 genes under stress. Interestingly, naked DNA re-
gions in hsp70 genes are hot spots for the insertion ofmobile
elements both in the case of P-mutagenesis and spontaneous
transposition of mobile elements, which apparently ensures
rapid evolution of these regulatory regions and hsp70 genes
in general [65,66]. At this end, in an in vitro system, it has
been shown that hsp70 gene promoters of the camel, whose
cells are significantly more heat tolerant compared to hu-
man cells [32,67], have higher “strength” at elevated tem-
peratures compared to orthologous human hsp70 promoters
[68].

2.3. Peculiarities of hsp70 Genes Expression in Species
from Contrasting Ecological Niches

Studies of hsp70 gene expression in different organ-
isms from temperature-contrasting climatic zones have al-
lowed to describe characteristic features of this system
functioning under normal physiological conditions and
stress [7,34,37,39,69–73]. In this regard, we should recall
the pioneering work of Ulmasov et al. [71] who showed
that the level of Hsp70 in the body of desert, temperature-
resistant lizards changes characteristically depending on the
ambient temperature during the day. Adaptive changes in
the level of Hsp70 expression depending on the season were
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also shown in other studies [74,75], indicating the ecolog-
ical importance of Hsps synthesis in natural populations.
It should be emphasized that constitutive expression of in-
ducible Hsp70 genes in different species from arid zones or
regions with sharply changing temperatures during the day
is probably the main feature characteristic for such species.
This phenomenon has been described for such different
groups of animals as lizards, ants, flies, tidal zone dwellers,
Baikal amphipods, etc. [7,32–34,37,39,69–73].

The constitutive expression of Hsp70 and other chap-
erones in the cells of thermoresistant species apparently al-
lows such forms to maintain proteostasis and function nor-
mally under high temperatures without switching on addi-
tional adaptogenic systems. An alternative system of reg-
ulation of hsp70 genes has usually been observed in tem-
perate forms, that are rarely exposed to sharp temperature
fluctuations. In such species, of which Drosophila is a typ-
ical example, under normal temperature conditions Hsp70
synthesis is at a low, difficult-to-detect level, but when tem-
perature or other stress influences are increased, rapid and
intense activation of all hsp genes and, in particular, of the
hsp70 gene battery is observed [76]. Rapid and intense in-
duction of Hsp70 in Drosophila species apparently deter-
mines their ability to acclimatize. Drosophila species in-
habiting habitats with higher temperatures are character-
ized by a larger number of hsp70 genes, a compact orga-
nization of their clusters, “stronger” promoters, and, con-
sequently, more powerful induction of Hsp70 with increas-
ing temperature, compared to species inhabiting temperate
habitats [58,77,78]. It should be noted that a low, basal
level of Hsp70 observed in Drosophila species is still, ap-
parently, necessary for the normal functioning of flies un-
der non-extreme physiological conditions. Thus, it has been
shown thatD. melanogaster flies with deletion of all copies
of hsp70 genes have impaired survival after severe HS, as
well as a tendency to develop various neurodegenerative
processes [79]. It has also been demonstrated that males of
this strain with deleted hsp70 genes have completely im-
paired memory and learning ability; moreover, low irra-
diation resulted in reduced viability in flies lacking hsp70
genes [80,81]. It should be noted, that the observed pat-
terns of Hsp70 synthesis of the “Drosophila type” charac-
terized by the low constitutive synthesis of Hsp70 under
normal physiological conditions and the “Lizard and Ant
type”, when a pronounced constitutive synthesis of Hsp70
is observed in the cells of arid zone animals, by no means
exhaust the spectrum of eukaryotic genome response to ex-
treme environmental conditions. Several examples from
different animal groups were described that do not fit into
this simple scheme [82–85]. For example, it was shown that
selected D. melanogaster flies capable of living and repro-
ducing at 31 °C are characterized by lower Hsp70 induction
during HS compared to other strains of this species [86,87].
Cold-living (e.g., Antarctic) species that dwelled for mil-
lions of years under stable low-temperature conditions and

completely lost the ability to induce hsp genes when tem-
perature rises have also been described [83]. Such forms
are characterized by a loss of canonical HSEs within hsps
promoters [88] (Fig. 1A).

It should be noted that the hsp70 genes system present
in all eukaryotic organisms is a complex, well-tuned adap-
tive mechanism that underwent millions of years of evolu-
tion, and any experimental manipulation with this balanced
system can lead to unpredictable consequences. For exam-
ple, transgenic Drosophila strains with the experimentally
increased number of hsp70 copies have reduced viability
and other developmental disorders [89].

It is of note that heat shock genes play essential roles in
adaptation to extreme environmental conditions in bacteria
as well, particularly in pathogens and symbionts. In bacte-
ria, Hsp70 proteins contribute to their survival in a hostile
environment. It is noteworthy that the adhesion of bacteria
to host cells is mediated by both host and bacterial Hsp70
(DnaK). After infecting the host, it is DnaK that initiates
the processes of bacterial survival and induces the host’s
immune response. Any mutation in the DnaK gene reduces
the viability of bacteria in the host [9].

2.4 Adaptation at a Protein Level

Convergent evolution resulted in more similar amino
acid sequences in inducible Hsp70 in different heat-
tolerant, phylogenetically distant species compared to evo-
lutionarily close forms living in milder climates [90,91].
Probably, in this case, natural selection acted at the amino
acid level, selecting variants of Hsp70 capable of providing
maximum protection under extreme temperatures and other
forms of stress. To test this assumption, we introduced into
the genome ofD.melanogasterwith deleted all hsp70 genes
a copy of the orthologous gene isolated from a Stratiomyi-
dae (Diptera) species whose larvae live in hot, sulfurous
springs of the Kuril Islands and can withstand temperatures
up to 42–45 °C [70]. Our experiments showed that the lar-
vae of such a transgenic strain containing a single hsp70
gene isolated from the genome of this highly thermostable
species can withstand higher temperatures compared to the
D. melanogaster larvae containing one copy of its own en-
dogenous hsp70 gene [92]. Characteristically, experiments
using in vitro refolding luciferase assay demonstrated that
Stratiomyidae Hsp70 exhibited higher refolding capacity
in comparison with D. melanogaster Hsp70 and even hu-
man paralog [91]. Moreover, using differential scanning
calorimetry we showed that the ATP-binding domain of
Stratiomyidae singularior Hsp70 is stable at temperature 4
degrees higher than that of Drosophila Hsp70 [91]. It is of
note, that two isoforms of inducible Hsp70 were detected in
exceptionally thermoresistant arid zone lizards, and the syn-
thesis of each of these forms occurred at different elevated
temperatures [71]. Thus, many researchers have shown us-
ing various objects the protective, chaperone role of Hsp70
under various extreme conditions, as well as the participa-
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Fig. 1. Peculiarities of heat shock response regulation in organisms that dwell in temperature contrasting habitats. (A) Cold-
living (obligate cryophiles) Antarctic forms dwelling in stable low-temperature conditions lost the ability to induce hsp genes when
the temperature rises due to loss of HSE sequences within hsp genes promoters. (B) Species living in a temperate climate zone with
rare sharp temperature fluctuations normally synthesize low levels of Hsps, that are dramatically induced after HS. (C) Extremophiles,
thermoresistant species living in hot climates and constitutively synthesize high levels of Hsp70, which increases slightly after HS. HSF*
- in some species from the group of obligate cryophiles, the ability to activate HSF is lost due to mutations in the hsf gene.

tion of Hsp70 in the maintenance of cellular proteostasis,
both under normal and stressful conditions.

2.5 The Interaction of Hsp70 with Cellular Membranes in
the Course of Adaptation

Generally speaking, Hsp70 plays an exceptionally im-
portant role in cell membrane function [93]. As early as
1986, Hightower suggested that Hsp70 might associate di-
rectly with plasma membrane lipids [94,95]. It was later

demonstrated, that Hsp70 plays an important role in whole
organism protection under stress through the maintenance
of barrier functions of endothelium and epithelium [96]. It
is known that with elevated body temperature a general in-
toxication of the body usually occurred associated with the
release of toxins and bacteria (e.g., endotoxins, lipopolysac-
charides) from the gut, as well as an increase in circulating
cytokines in response to the toxins. This is associated with
an increase in the permeability of the intestinal epithelium
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during intense exercise and heat stress [97–99]. Increased
expression of Hsp70 has been shown to prevent heat shock-
induced breakdown of the epithelial barrier by stabilizing
tight junctions between epithelial cells and improving its re-
covery from HS and other forms of stress [100–102]. The
role of Hsp70 in resistance to heat-induced damage in hu-
mans was demonstrated in a study of Kuennen et al. [103],
which showed that inhibition of the HS response by Hsp70
inhibitor quercetin during 7 days of heat acclimatization re-
sulted in a significant increase in gastrointestinal permeabil-
ity and endotoxin leakage after acute heat stress.

In addition to protecting the intestinal epithelium
from stressors, Hsp70 plays an important role in main-
taining the integrity of the vascular epithelium [104,105].
More recently Hsp70 has been shown to interact selec-
tively with negatively charged phospholipids, particularly
phosphatidylserine (PS) [106–110] inside liposomes, after
which Hsp70 is incorporated into the lipid bilayer, form-
ing high molecular weight oligomers [107] that have ionic
conduction channel properties [111,112].

Besides, phosphatidylserine in membranes, Hsp70 in-
teracts with several other negatively charged phospholipids,
most notably bis(monoacylglycero)phosphate (BMP), the
main phospholipid of lysosome membranes [113,114]. The
binding of Hsp70 in lysosomalmembranes to the negatively
charged phospholipid BMP imparts stability to this com-
partment by inhibiting lysosomal membrane permeabiliza-
tion and preventing the release of lysosomal proteases and
cathepsins into the cytosol in response to stressful condi-
tions, thereby preventing cells and organ death [113,115].

There is extensive evidence that Hsp70 stabilizes bi-
ological membranes [116–118]. Thus, the temporal asso-
ciation of Hsps with membranes can restore bilayer fluid-
ity and thus maintain membrane functionality under stress
[116]. The accumulated data show that Hsp70 is preferen-
tially embedded in cholesterol-rich microdomains (“rafts”)
that serve as major platforms for the assembly and sorting
of signal transduction complexes in the membranes (Fig. 2)
[119]. It has been also demonstrated that Hsp70 can play a
role in maintaining the stability of lipid raft-associated sig-
nal transduction complexes after stress [120]. Moreover,
after various stresses and in some forms of cancer, free
Hsp70 accumulated in the cell can be incorporated into the
plasma membrane and be further released into the extracel-
lular space both in free form and in the form of lipid vesicles
of exosomes [121], lysosomal endosomes [122] or the con-
text of cholesterol-rich microdomain-rafts (Fig. 2) [123].

It has been also shown, that extracellular Hsp70
(eHsp70) interacts with several receptors on the cell sur-
face and may be internalized by target cells and initiate var-
ious signaling cascades. Thus, several receptors such as
TLR2/4, CD91, CD40, and SR appear to be responsible for
eHsp70 phagocytosis [124,125].

The unique protective characteristics described for
Hsp70 in numerous in vivo and in vitro studies served as a

basis for the investigation of the involvement of this protein
in various diseases and its possible therapeutic potential.

3. Role of Hsp70 in Various Pathologies, and
Use in Medicine
3.1 Hsp70 as a Biomarker of Pathological Processes and
Diseases

Studies of the role of Hsps, and Hsp70 in particular,
under normal physiological conditions and after the stress
has demonstrated the crucial role of this system in pro-
teostasis at different steps of protein synthesis and degra-
dation [5,7,24,126,127]. In substrate degradation, Hsp70
explores the ubiquitin-proteasome system as well as vari-
ous autophagy pathways [27]. Naturally, it was interesting
to find out how the Hsp70 family members function in the
case of various pathologies accompanied by disturbances
in cellular protein synthesis and degradation, and whether
the levels of Hsp70 and other chaperones in various tissues
can be used as an indicator of disease and physical condi-
tion in humans. Indeed, it was shown that during normal
aging, the level of Hsp70 is significantly reduced in ani-
mals and humans [128–130]. Hsp70 levels decrease in hu-
mans during aging in most organs, including neurons, lead-
ing to the accumulation of damaged and unfolded proteins.
This contributes to proteotoxicity, which may lead to the
development of age-related diseases due to neurodegener-
ation. Aging also leads to the attenuation or alteration of
many signaling pathways, as well as the expression of sev-
eral transcription factors, including major heat shock fac-
tor (HSF1) [129–131]. Characteristically, aging decreases
the level of Hsp70 induction after stress [132]. A decrease
in the expression level of Hsp70 regardless of age is ob-
served in such human diseases as pulmonary fibrosis, vari-
ous types of “myopathies”, cholesterol sphingolipids, sph-
ingolipidoses, diabetes, obesity, etc. [133–137]. In these
diseases, reduced levels of both HSF1 and various mem-
bers of the Hsp70 family can be observed in adipose tis-
sue, liver, muscle, neurons, and vascular beds of patients.
Interestingly, different baseline, constitutive levels of vari-
ous chaperones, and particularly Hsp70, detected in patients
often determine the severity of the disease course and the
outcome of various diseases, including atherosclerosis and
COVID-19 [138,139]. Therefore, the level of endogenous
Hsp70 in cells is used, not only as a biomarker of various
diseases but also to monitor the results of therapy for var-
ious human diseases [139,140]. In particular, Hsp70 lev-
els have been used as a biomarker of prostate diseases and
bronchopulmonary dysplasia (BPD) for targeted therapies
[135,141]. Thus, it is known that Hsp70 levels are associ-
ated with a state of oxidative injury in the development of
BPD [135]. Significant changes in Hsp70 levels in neuronal
tissues have been reported in normal aging as well as in
patients with neurodegenerative diseases accompanied by
the formation of protein aggregates, including Alzheimer
disease (AD), Parkinsonism, and amyotrophic lateral scle-
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Fig. 2. Intracellular Hsp70 functions as a molecular chaperone, preventing aggregation and restoring native conformation of
partially unfolded proteins with the participation of ATP and several co-chaperones. Extracellular Hsp70 may exist in two different
forms, free (1) and membrane-bound (2–5). (1) Free protein releases from cells after necrosis under the action of various damaging
factors, or due to transmembrane transport by a non-classical mechanism that does not require a signal sequence, involving the ABC
transporter. (2, 3) Membrane-bound Hsp70 comes to the surface of the cell by interaction with phosphatidylserine as a part of the inner
lipid layer of the membrane and subsequent transfers together with the phosphatidylserine molecule into the outer layer and lipid rafts. (4,
5) a result of secretion of Hsp70 as a part of membrane vesicles (ectosomes and exosomes), Free, unbound to membrane structures Hsp70
and exogenous recHsp70 predominantly play an anti-inflammatory role, while membrane-bound Hsp70 may play a pro-inflammatory
role. By binding to the membranes of lysosomes, Hsp70 prevents their permeabilization and release of lysosomal secretion into the cell.

rosis (ALS) [142–144]. Determination of the Hsp70 lev-
els and some other chaperones can serve as an indicator of
the development of pathology in the case of AD. However,
changes in Hsp70 levels in various pathologies may bemul-
tidirectional for members of the Hsp70 family in different

brain tissues of the patients. Thus, in AD, HSPA8 levels are
increased in brain cells, while HSPA1A and HSPA2 levels
are decreased [145]. This may be explained by the fact that
members of the Hsp70 family are not equally expressed in
different human tissues under normal conditions [54].
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It is known that a significant increase in Hsp70 levels
is often observed on the surface of cancer cells of differ-
ent origin [143,146], which may hinder anti-cancer therapy.
Thus, the presence of Hsp70 on the surface of cancer cells
and its interaction with lysosome membranes have been en-
visioned as potential therapeutic targets [146,147]. Gener-
ally speaking, Hsp70 membrane association is a key com-
ponent in the extracellular export of these proteins [148].
The secreted Hsp70 can additionally act as an effective neu-
roprotector, increasing the survival of neurons in various
proteinopathies, as has been demonstrated in Alzheimer’s
and Parkinson’s disease models. In this regard, recHsp70
and inducers of endogenous Hsp70 synthesis may be con-
sidered as candidate therapeutics with immune-modulating
and neuroprotective properties. Since various members of
the Hsp70 family, are predominantly expressed in differ-
ent tissues and organs [54], it should be taken into account
when using Hsp70 as an indicator of pathology and when
performing therapies aimed at normalization or increase of
Hsp70 levels in a particular tissue in various diseases. The
changes in the levels of various Hsp70 family members in
various diseases and pathologies demonstrated by many re-
searchers served as a basis for conducting experiments on
correction of Hsp70 levels in model animal and human cells
both by induction or suppression of endogenous Hsp70 syn-
thesis and by introduction of exogenous recHsp70 by vari-
ous means.

3.2 Experimental Modulation of Endogenous Hsp70
Levels for Therapy of Various Diseases

A variety of experimental approaches has been used
to normalize the level of endogenous Hsp70 impaired in
various pathologies, including aging and chronic diseases.
In some cases, researchers activated the synthesis of all
Hsps groups, i.e., increased the heat shock response (HSR)
in general, for example, by increasing the temperature of
the body and proved, for example, the role of HS-induced
Hsp70 for muscle regeneration in a mouse model [149].
Sometimes, simultaneous change of the expression level of
all members of the Hsp70 family and other chaperones has
been achieved by regulation of the main heat shock tran-
scription factor (HSF1) synthesis [150]. In several other
cases, the investigators have succeeded in selectively in-
creasing the synthesis of only Hsp70. Such an approach
has been recently applied to suppress a cytokine storm in
COVID-19 patients [151]. Sometimes researchers used
a combined approach, inducing HSR and administering
recHsp70, for example, to treat diseases such as diabetes
mellitus [137]. It is noteworthy to mention in this regard
the results of Lydia Kitchen, who used photobiomodula-
tion therapy (irradiation by 1060–1080 nm light), a nonin-
vasive method of modulating Hsp70 and nitric oxide (NO)
levels to treat infection in the case of COVID-19 and other
coronaviruses [152], and the application of selective Hsp70
induction in the treatment of ultra-rare neuromuscular dis-

order GNE myopathy [134]. Along these lines, a specific
low molecular weight inducer of Hsp70 (“KD-23”) exhib-
ited a therapeutic effect in a cellular model of craniocerebral
injury [153]. Similarly, selective induction of endogenous
Hsp70 with dioscin or geranylgeranylacetone (GGA) has
been successfully applied in various lung injuries including
fibrosis, and to restore blood flow after ischemia [154,155].

A separate group of naturally occurring substances ca-
pable of increasing the level of Hsp70 and other chaperones
in the cell is represented by the so-called “adaptogens”, i.e.,
natural substances such as ginseng, Eleutherococcus, radi-
ola rosea, etc. These substances are usually of plant origin,
and their use is often accompanied by induction of Hsp70
in various human tissues and organs [156–159]. Such sub-
stances have long been successfully used in China and other
countries to heal wounds, as well as in several chronic and
aging-related human diseases. The successful use of induc-
ers of the entire HSR system as well as experimental se-
lective modulation of the level of endogenous Hsp70 in the
treatment of various diseases showed the promise of this
major stress protein as a therapeutic agent and provided the
basis for the production and use of recHsp70 in medicine.

3.3 The Use of Recombinant Hsp70 in Model Experiments
and Clinical Application

Various laboratories have developed various methods
for the expression and isolation of recHsp70. RecHsp70
has been isolated from a variety of animal and plant objects,
produced in bacteria, and expressed in various cell cultures,
including human cells, as well as in the milk of transgenic
animals [139,160–163]. The use of recHsp70 has shown its
efficacy in many models of human diseases with a variety
of administration methods, from intranasal and intravenous
to intracranial [161,164,165].

Thus, preventive intravenous administration of human
recHsp70 in a rat model of sepsis normalized lipopolysac-
charide (LPS)-induced blood pressure abnormalities and
biochemical blood parameters and significantly reduced an-
imal mortality [166]. Similar results were obtained with in-
travenous administration of a single dose of recHsp70 in an
LPS-induced mouse peritonitis model [167].

In a mouse model of aging, we were able to show
that intranasal subchronic administration of recombinant
human Hsp70 significantly extends animal life and had a
profound rejuvenation effect in neuronal cells of the cor-
tex and hippocampus. Interestingly, an increase in lifes-
panwhenHsp70was sub-chronically injectedwas observed
only in males [164]. In the mouse aging model used, as
well as in two validated AD models, it was demonstrated
that subchronic intranasal administration of recHsp70 im-
proved memory and learning ability and reduced the level
of such markers of aging as lipofuscin and amyloid level
[164,168].

The method of intranasal administration of human
recHsp70 used also gave encouraging results in a model
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of photothrombotic stroke in mice [169]. Similarly, in a
mouse model of diabetes, researchers were able to increase
insulin sensitivity with intranasal injections of cheap Hsp70
isolated from alfalfa [161]. Kirkegaard et al. [162] first
applied recHsp70 and its inducer to treat various forms of
lysosome storage diseases, using both various animal mod-
els and cell cultures of patients, with various disorders of
lysosome biogenesis (aggregation).

Administration of recHsp70 in different ways led to
positive therapeutic effects when used in vitro and animal
models for such different diseases and pathologies as dia-
betes, prostatitis, and various forms of lung damage, includ-
ing various forms of fibrosis [135,137,141,170]. RecHsp70
administration also resulted in a reduction of cholesterol
levels in human cells and model animals [171]. In this con-
text, the exploration of the lentiviral constructs to express
Hsp70 in different tissues in the case of lung injury should
be mentioned [172]. It’s of note, however, that in vari-
ous forms of fibrosis, viral infections including COVID-19
cases, as well as in different forms of cancer, the adminis-
tration of recombinant Hsp70 or its experimental induction
may have different, sometimes multidirectional effects de-
pending on the disease, dose of the chaperone and time of
administration [140,146,147]. Thus, on the one hand, the
increased content of endogenous Hsp70 on the cell mem-
brane observed inmany forms of cancer can hinder success-
ful anti-cancer therapy, on the other hand, administration of
recHsp70 in Margulis’ laboratory and several other groups
had a significant therapeutic effect both in vitro when used
on various cancer cells and in vivo in pilot experiments
[173–176], where injections of recombinant human Hsp70
were made directly into tumors of volunteers [176]. In their
study of melanoma cells, this group showed that injection
of recombinant Hsp70 triggers extracellular transport of its
endogenous homolog in soluble form and as EVs (extracel-
lular vesicles), that penetrate neighboring cells, resulting in
a dramatic reduction in the growth rate of cancer cells [177].
In another study on carcinoma cases, the patients were in-
jected with dendritic cells containing hsp70mRNA induced
by electroporation, and a positive effect was also observed
in several patients [178].

Although large-scale studies on the role of Hsps and
especially Hsp70 in various diseases, including cancer, as
well as in normal aging, are currently underway in various
laboratories, there are only a relatively small number of re-
searchers taking practical steps to apply recombinant Hsp70
in the clinic. This is due, firstly, to the high cost and low
availability of the recombinant human Hsp70 preparation
and, most importantly, to the insufficient data and analysis
of the consequences of Hsp70 application in patients, given
the variety of interactions of Hsp70 with different proteins
and cellular signaling systems.

3.4 Molecular Mechanisms Underlying Protective Effects
of Hsp70 in Different Diseases

Intensive research on the role of endogenous and re-
combinant Hsp70 in aging, as well as in a variety of diseases
and pathologies in model animals and humans resulted in
the description of a variety of factors and signaling path-
ways with which Hsp70 interacts in carrying out its protec-
tive functions. Numerous excellent reviews are describing
the functions of Hsp70 under normal conditions and after
stress [5,24,126,141,144,177]. Therefore, in this section,
we will only briefly discuss the known properties of Hsp70
that can be used in the therapy of some human diseases.

It should be noted that generally speaking, Hsp70 has
two main functions in the body. First, members of this fam-
ily together with Hsp90 and co-chaperones (e.g., Hsp70-
Hsp90 Organizing Protein (HOP)) provide proteostasis in
cells under normal conditions and stress [7,24,126,127].
Secondly, it was shown that Hsp70 can excrete from many
types of cells into the intercellular medium and interact with
several receptors on the surface of cells responsible for in-
nate immunity (specially TLR2/4 receptors). Initially, re-
sults indicated that extracellular Hsp70 (eHsp70) causes the
activation of macrophages and neutrophils and the produc-
tion of pro-inflammatory cytokines. Based on these data, it
has been suggested that Hsp70 represents a “danger signal”,
activating the immune system and thus playing a regula-
tory “cytokine” role therefore Hsp70 is often called “chap-
erokine” [179].

However, later it was shown that these pro-
inflammatory effects are often caused by the action
of residual amounts of LPS, with which recombinant
Hsp70 preparations used in these works obtained in E.
coli were contaminated. Subsequently, it was shown that
free extracellular Hsp70 obtained in eukaryotic expression
systems has rather an anti-inflammatory effect. In inflam-
matory processes occurring during various diseases, both
the induction of endogenous Hsp70 and the administration
of LPS-free recHsp70 reduce the levels of proinflamma-
tory cytokines (TNF-a, etc.), diminish reactive oxygen
species (ROS) and NO content, and restore cellular redox
status [130,140,151,155,180]. It was further shown that
different forms of exogenous Hsp70, in particular, free and
membrane-bound ones, can have the opposite effect on the
activity of the immune system cells (see below).

The ability of Hsp70 to bind to a variety of recep-
tors and compete with other ligands plays a major role in
several cases. An example of such interactions is the anti-
inflammatory role of recHsp70 described in several works
in LPS-induced sepsis, where recombinant Hsp70 competes
with LPS for binding to TLR-4, which leads to restoration
of basic blood parameters and increased animal survival
[166,167].

Interestingly, in our experiments administration of
recHsp70 significantly reduced LPS-induced TLR4 expres-
sion in human macrophage cells (THP1) [181].
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Fig. 3. In viral infection (SARS-CoV-2), extracellular HSP70, by binding to TLRs and probably to ACE2 receptors, blocks them
and prevents the penetration of the virus inside the cell. Hsp70 also blocks NF-κB activation and activates the synthesis of anti-
inflammatory cytokines. On the other hand, several RNA viruses may explore the intracellular chaperone complex Hsp70/Hsp90 for
their purposes to replicate and assemble viral particles in the host cells.

The ability to eliminate damaged proteins and prevent
the formation of aggregates of different nature is obviously
the most important protective function of Hsp70 described
for such diseases as AD, Parkinsonism, ALS, andmany oth-
ers. It was shown that recHsp70 can compensate for the
insufficient level of endogenous Hsp70 often observed in
these pathologies [143,144]. Thus, in various models of
AD, the intranasal administration of recHsp70 reduces β-
amyloid levels and the number of amyloid plaques [168].
To this end, it has been described in detail how human
Hsp70 and its co-chaperones DNAJB1 and Hsp110 inter-
act to dissolve preformed fibrils of Parkinson’s a-synuclein
in vitro [182].

It is also worth mentioning an important and well-
described role of Hsp70, which manifests itself as an anti-
apoptotic agent at the early stages of this process [183,184].
This explains its crucial role in such diseases as cancer, pul-
monary fibrosis, ischemia, neurodegeneration, etc. Thus,
an investigation of the role of Hsp70 in lung dysfunc-
tion of model animals as well as in LPS-treated human
alveolar epithelial cells showed that Hsp70 interacted with

KANK2 (ankyrin-repeat domain-containing protein), lead-
ing to reversed cell viability and reduced level of apoptosis-
inducing factor (AIF) and, hence, apoptosis [172].

On the other hand, as we pointed out earlier, in some
forms of cancer these anti-apoptotic properties of Hsp70
may interfere with anticancer therapy, forcing the use of
Hsp70 inhibitors in these cases [185,186].

Hsp70 plays an important role in various viral dis-
eases, including COVID-19. Here, as well as in the case
of cancer cells Hsp70 can play a dual role being “a dou-
ble agent”. On the one hand, endogenous Hsp70 binding
to TLR4 receptors may interfere with virus penetration into
the cell. In addition, Hsp70 can prevent cytokine storm,
which is the main cause of death in COVID patients, by
causing degradation of the p65 subunit of the nuclear factor
kappa-light-chain-enhancer of activated B cells (NF-κB)
subunit which is needed for cytokine storm [138]. On the
other hand, some RNAi viruses use the host cell chaperone
system Hsp70-Hsp90 at different stages of their cycle dur-
ing viral infection [177,187] (Fig. 3).
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As numerous studies demonstrated Hsp70 family
members are highly effective vaccine adjuvants [188–190].
Thus, for example, the increase in the effectiveness of vac-
cination with laser irradiation of the skin in the area of in-
fluenza vaccine administration is associated with the induc-
tion of endogenous Hsp70, which has the properties of a
vaccine adjuvant [191].

One of the most important protective functions of
Hsp70 inmany diseases is due to its role as an immunomod-
ulator [192]. In particular, in our experiments exploring a
mouse AD model, we showed that chronic Hsp70 adminis-
tration changes the expression of several genes in the hip-
pocampus of model animals. Most importantly using RNA-
Seq, we identified a lot of differentially expressed genes in
the hippocampus of old Tg mice compared with those of
non-transgenic mice of the same age. Specifically, we ob-
served Hsp70-induced upregulation of multiple genes par-
ticipating in antigen processing and presentation especially
the members of major histocompatibility complex (class I
and II) in the brains of old 5XFAD Tg animals, suggest-
ing that Hsp70 executes its beneficial role via activation of
adaptive immunity [193].

In a model of infectious lung inflammation, it was
shown that intraperitoneal injection of recHsp70 reduced
the number of programmed death-1 (PD-1) positive T-
lymphocytes in peripheral blood by several times and im-
proved other important lung characteristics such as lung co-
efficient (Fig. 4) [181].

In a study of melanoma cells (B16), the addition of
recHsp70 caused active synthesis and release of the endoge-
nous analog from the cells in soluble and EVs forms, and
both forms actively penetrated neighboring cells, leading to
a sharp increase in Natural Killer (NK) cell toxicity towards
melanoma cells [174]. This immunomodulatory effect of
Hsp70 was due to the enhanced CD-8 positive response and
massive anti-tumor cytokine accumulation.

In addition, numerous signaling systems and specific
factors with which Hsp70 interacts in various diseases have
been described in recent years. Thus, the interaction of
Hsp70 with the androgen receptor (AR) and the important
role of this chaperone in the pathogenesis of prostate cancer
has been shown [141].

Another interesting example of the regulatory role of
Hsp70 is the demonstrated ability of recHsp70 to lower
cholesterol levels in primary human macrophage foam
cells. Thus, RNA-seq analysis showed that the addition
of Hsp70 led to the reprogramming of cell expression,
including up-regulation of key targets of liver X recep-
tors (LXR),master-regulators of whole-body cholesterol re-
moval [171].Valeria Calvaresi’s group using native andmu-
tant forms of recHsp70 described the details of Hsp70 bind-
ing to lysosomal membranes, which protects a whole series
of lysosomal storage diseases [194].

It should also be noted that members of the Hsp70
family actively interact with other adaptive systems of the

Fig. 4. Protective effect of Hsp70 in mouse the pneumonia
model. RecHsp70 preparations decreased level of T lymphocytes
with inhibitory PD-1 receptors in peripheral blood (A); and pul-
monary coefficient (B) in the case of influenza-induced pneumo-
nia in mice. # p< 0.005 versus intact; ** p< 0.01 versus control.

body. In particular, they interact with the system of genes
responsible for the synthesis and metabolism of hydrogen
sulfide (H2S) in the organism. Interestingly, the investi-
gation of model animals has shown that inhalation of hy-
drogen sulfide mixtures has a protective effect during is-
chemia/reperfusion injury by induction of Hsp70 through
P13/AKT/Nrf2 pathway [195].

Along these lines, in our experiments on a small sam-
ple of Covid patients [181], we have recently demonstrated
that hot helium inhalation inducing Hsp70 followed by in-
halation of hydrogen sulfide donor has a pronounced thera-
peutic effect preventing lung fibrosis in the patients. More-
over, in our in vitro and in vivo experiments we showed that
different hydrogen sulfide donors as well as recHsp70 sig-
nificantly reduced the level of proinflammatory cytokines,
ROS, and other consequences of LPS-induced inflamma-
tion [181]. The contradictory and difficult-to-explain re-
sults sometimes obtained when analyzing the action of en-
dogenous and recHsp70 may be related to the fact that dif-
ferent members of this family are preferentially synthesized
in different organs and tissues and to the numerous tissue-
specific posttranslational modifications to which members
of the Hsp70 family are often subjected [180,196].
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4. Conclusions
The discovery of the HS-inducible genes by Ferruccio

Ritossa back in the early 1960s opened a new page in the
study of the molecular mechanisms controlling the expres-
sion of the eukaryotic genome. While the main efforts of
scientists were aimed at studying the structure and molec-
ular regulation of hsp genes, the role of these genes and,
in particular, the role of the main stress protein Hsp70 in
adaptation to extreme environmental conditions attracted
the attention of ecologists and molecular biologists much
later. In the course of such studies, it was shown in a wide
spectrum of model organisms and in nature that hsp genes,
and hsp70 in particular, play an important role in adapta-
tion to extreme or rapidly changing environmental condi-
tions. During adaptive evolution, the hsp70 gene system in
various eukaryotic organisms has undergone characteristic
changes both at the level of structure, organization, and ex-
pression pattern of these genes in the genome and at the
level of the structure of the Hsp70 family proteins them-
selves. Recent studies on the role of endogenous Hsp70 as
well as recombinant Hsp70 in various diseases have demon-
strated protective, anti-inflammatory functions of this pro-
tein to maintain proteostasis in the cells in various patholo-
gies, including neurodegeneration and aging. The dual and
sometimes antagonistic role of Hsp70 in cancer cells, fibro-
sis, and in infection with various viruses, including SARS,
is discussed. The data accumulated in recent years repre-
sent a basis for the use of recHSP70 or its inducers in the
therapy of many diseases.
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