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Abstract

Background: Obesity results from a chronic imbalance between energy intake and energy expenditure. Total energy expenditure for all
physiological functions combined can be measured approximately by calorimeters. These devices assess energy expenditure frequently
(e.g., in 60-second epochs), resulting in massive complex data that are nonlinear functions of time. To reduce the prevalence of obesity,
researchers often design targeted therapeutic interventions to increase daily energy expenditure. Methods: We analyzed previously
collected data on the effects of oral interferon tau supplementation on energy expenditure, as assessed with indirect calorimeters, in an
animal model for obesity and type 2 diabetes (Zucker diabetic fatty rats). In our statistical analyses, we compared parametric polynomial
mixed effects models and more flexible semiparametric models involving spline regression. Results: We found no effect of interferon tau
dose (0 vs. 4 µg/kg body weight/day) on energy expenditure. The B-spline semiparametric model of untransformed energy expenditure
with a quadratic term for time performed best in terms of the Akaike information criterion value. Conclusions: To analyze the effects
of interventions on energy expenditure assessed with devices that collect data at frequent intervals, we recommend first summarizing the
high dimensional data into epochs of 30 to 60 minutes to reduce noise. We also recommend flexible modeling approaches to account for
the nonlinear patterns in such high dimensional functional data. We provide freely available R codes in GitHub.
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1. Introduction
As sedentary lifestyles spread globally, obesity has be-

come an increasing public health concern [1]. Sedentary
lifestyles are growing rapidly with developing technology
[2]. Obesity results from a chronic imbalance between food
intake and energy expenditure, genetic predisposition, con-
sumption of high fat diets, and inflammation [3]. Addition-
ally, obesity contributes to adverse health outcomes such
as insulin resistance, type 2 diabetes, obstructive sleep ap-
nea, osteoarthritis, stroke, hypertension, and cancer [4]. As
obesity becomes more prevalent, researchers seek to better
understand the causal pathways leading to it. Energy ex-
penditure is a key factor on these pathways and refers to
the amount of energy used by the body for all physiologi-
cal functions, such as movement, respiration, and digestion
[5–7]. Energy expenditure has three components: resting
metabolism, the thermic effect of feeding, and the thermic
effect of physical activity [5,7]. Resting metabolism makes
up 60% to 70% of an individual’s daily energy expenditure
[5]. The thermic effect of feeding, including digestion, ac-
counts for up to 10% of daily energy expenditure [5]. Fi-
nally, the thermic effect of physical activity comprises 20%
to 30% of daily energy expenditure [5].

Measuring energy expenditure accurately requires
sensitive and sophisticated instruments. One commonly
used instrument is the open circuit calorimeter, such as
the computer-controlledOxymaxmetabolic chamber for re-
search animals (Columbus Instruments, Ohio, USA). This
instrument measures energy expenditure in epochs of 60
seconds to five minutes during an observation period. The
instrument calculates an animal’s energy expenditure from
its volumetric carbon dioxide production (VCO2) and volu-
metric oxygen consumption (VO2). The device also records
the animal’s total heat production (heat), and respiratory
quotient (RQ). The resulting data are repeatedmeasures that
appear as curves or complex high dimensional non-linear
functions of time (Fig. 1). Researchers often are confused
about the most appropriate method for analyzing these data.
A common approach is to compute a summary measure,
such as the overall mean energy expenditure for the whole
observation period or categorizing individuals on their in-
tensity of activity [8–11]. These approaches are limited be-
cause they do not capture variation in energy expenditure
or its pattern over time.

Because energy expenditure affects the development
of obesity [12–14], some researchers have sought to ma-
nipulate energy expenditure and its physiological effects
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Fig. 1. Plots of the heat production (kcal/kg BW/h) against time (in minutes and hours) over a 24 hour period for the 10-week-
old ZDF rats. (a) shows the animal-specific trajectories of untransformed heat production in minutes. (b) shows the animal-specific
trajectories of untransformed heat production in minutes by treatment group. (c) shows the animal-specific trajectories of untransformed
heat production in hours. (d) shows the animal-specific trajectories of untransformed heat production in hours by treatment group. The
blue lines in (a,c) are based on smoothing of the lines. In (b,d), C refers to the control group, L refers to the low dose group, and H refers
to the high dose group.

as a way to prevent or reduce obesity. Interferon tau, an
anti-inflammatory cytokine, is one proposed intervention
for achieving this aim [15,16]. In a previous study, we eval-
uated the impact of interferon tau on obesity-related out-
comes in Zucker diabetic fatty (ZDF) rats [11]. The ZDF
animal model has deficiencies in its leptin receptors and
therefore researchers often use it for obesity and type 2 di-
abetes studies. The objective of this study is to provide an
introduction to more flexible approaches to assessing in-
tervention effects on high dimensional data frequently col-
lected in biomedical studies such as the device-based mea-
sures of energy expenditure.

2. Materials and Methods
We obtained 18 male 23-day-old ZDF rats from

Charles River Laboratories and fed them a Purina 5008 diet
throughout the study. The Purina 5008 diet consisted of

23.5% crude protein, 6.0% fat, 34.9% starch, 2.6% sucrose,
0.5% glucose plus fructose, 6.8% minerals, and 3.8% fiber,
yielding 17,364 kJ gross energy/kg [11]. We kept the study
animals in a temperature- and humidity-controlled facility
on a 12-h light: 12-h dark cycle. The Texas A&M Univer-
sity Animal Use and Care Committee approved the study
(#2010-251).

At 28 days of age, we randomly assigned the rats to
receive drinking water (distilled and deionized H2O) with
0 (control), 4 (low dose), or 8 µg (high dose) of interferon
tau/kg body weight per day (6 rats per condition). The rats
had free access to food and drinking water during the 8-
week study. To maintain assigned interferon tau dosages,
we adjusted concentrations of interferon tau in the drink-
ing water daily based on the volume of water the animals
consumed. We changed their drinking water every other
day. When the rats were 10 weeks old (week 6 of the inter-
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Fig. 2. Boxplots of the residuals for heat production (kcal/kg BW/h) over time (hours) for 10-week-old ZDF rats. (a) LMEM with
a linear term for time. (b) LMEMwith a quadratic term. (c) LMEMwith a cubic term for time. (d) TPBF SMEMwith a linear smoothing
spline. (e) TPBF SMEM with a quadratic smoothing spline. (f) TPBF SMEM with a cubic smoothing spline. (g) B-spline SMEM with a
linear smoothing spline. (h) B spline SMEM with a quadratic smoothing spline. (i) B-spline SMEM with a cubic smoothing spline. The
quadratic and cubic terms for time in the LMEMs fit the nonlinear trends in the data better than the LMEM with a linear term for time.

feron tau treatment), we placed each in anOxymax chamber
for 24 hours to assess energy expenditure. Approximately
every five minutes, the instrument measured several indi-
cators of energy expenditure: volumetric O2 consumption
(VO2; L/h/kg body weight [BW]), volumetric CO2 produc-
tion (VCO2; L/h/kg BW), respiratory quotient (RQ; CO2

production/O2 consumption) and heat production (kcal/h)
(Heat). We focused our analyses on heat production. Our
original report has further details on the experiment [11].

3. Models Considered

3.1 Linear Mixed Effects Models

Linear mixed effects models (LMEMs) can be used
to analyze repeated measures data [17]. These models ex-
tend classical linear regression to correlated data. They pro-
vide powerful techniques for analyzing correlated data with
complex variance structures, handling missing data, and in-
corporating nonlinear trends with log or higher order poly-
nomial transformations. LMEMs take the following form:

Yij = Xijβ + Zijbi + ϵij , (1)
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Fig. 3. Predicted values of mean heat production (kcal/kg BW/h) against observed mean heat production(kcal/kg BW/h) in 10-
week-old ZDF rats. (a) LMEM with a linear term for time. (b) LMEM with a quadratic term. (c) LMEM with a cubic term for time.
(d) TPBF SMEM with a linear smoothing spline. (e) TPBF SMEM with a quadratic smoothing spline. (f) TPBF SMEM with a cubic
smoothing spline. (g) B-spline SMEMwith a linear smoothing spline. (h) B spline SMEMwith a quadratic smoothing spline. (i) B-spline
SMEM with a cubic smoothing spline. The quadratic and cubic terms for time in the LMEMs fit the nonlinear trends in the data better
than the LMEM with a linear term for time.

where Yij is the jth response for the ith subject, β is a p × 1

vector of fixed coefficients,Xij is a 1 × p vector of fixed
variables, bi is a q×1 vector for the random effects, andZij

is a 1×q vector for the random variables. The random error
terms ϵij represent the random variation associated with the

Y th
ij response. These models rely on the assumptions that

ϵij ∼ Normal
(
0, σ2

)
and bi ∼ Normal (0,Λ), where

Λ is the variance-covariance matrix for bi. The mean re-
sponse of Yij is Xijβ, the fixed component of the model,
while Zijbi is the random component of the model, repre-
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Table 1. Results for the LMEMs of heat production (kcal/kg BW/hr) with a linear time term.
Model Outcome Variable β̂ S.E. p AIC

LMEM (raw) Heat

Intercept 2.589 0.058 <0.0001

4420.8
L vs. C –0.141 0.098 0.170
H vs. C 0.005 0.098 0.96

Time (mins) –0.0003 0.00 <0.0001

LMEM (log transformed) log(Heat)

Intercept 0.933 0.027 <0.0001

–1921.06
L vs. C –0.06 0.05 0.21
H vs. C 0.011 0.05 0.81

Time (mins) –0.0001 0.00 <0.0001

LMEM mean(Heat)/hr mean(Heat)

Intercept 2.584 0.063 <0.0001

328.575
L vs. C –0.141 0.097 0.169
H vs. C 0.015 0.097 0.877
Time (hr) –0.015 0.002 <0.0001

LMEM mean{log(Heat)}/hr mean{log(Heat)}

Intercept 0.935 0.029 <0.0001

–398.918
L vs. C –0.061 0.045 0.201
H vs. C 0.015 0.045 0.749
Time (hr) –0.006 0.001 <0.0001

p is the parametric p-value obtained based on Z-score, which is given by Z = β̂
S.E.

.

C, control; L, Low dose; H, High dose; hr, hour; min, minutes

senting individual variation from the overall sample mean
and allowing description of individual-specific trajectories.

In assessing the impact of oral interferon tau supple-
mentation on energy expenditure, we estimated 12 separate
LMEMs resulting from all combinations of energy expen-
diture transformation (raw or log transformed), unit of time
(minutes or hours), and time term (linear, quadratic, or cu-
bic). We intended the log transformations to make the data
approximately normal. We performed all analyses using the
RCrans Software version 4.2.0 (RCore Team, Vienna, Aus-
tria) [18].

3.2 Semiparametric Mixed Effects Models

Penalized spline regression is a flexible semiparamet-
ric approach to estimating mean functions in mixed effects
models [19]. Mean functions represented by splines can be
expressed easily as the best linear unbiased predictors of the
mixed effects model [20]. Semiparametric mixed effects
models (SMEMs) are also specified as in Eqn. 1. How-
ever, the elements of the random components matrices dif-
fer from LMEMs. SMEMs include spline basis functions
as random effects in addition to subject-specific random
effects. Thus, SMEMs can be written as classical mixed
effects models that include nonparametric terms for curve
smoothing.

We used two kinds of semiparametric functions in our
SMEMs: truncated power basis functions (TPBFs) and cu-
bic B-spline functions.

3.2.1 Truncated Power Basis Functions

Truncated power basis functions are simple semipara-
metric functions that approximate curves. We define a trun-

cated power function at a given knot κk as{
(xi − κk)

p
= 0 xi ≤ κk

(xi − κk)
p
> 0 xi ≥ κk

where p is the order of the polynomial function, and k =

1,…,K represents the number of knots [21]. The func-
tions are differentiable up to p − 1 times [20–23]. In mod-
eling mean functions, TPBFs approximate curves based on
polynomial expansions. A mixed effects model based on
truncated power basis is

Yi = Xiβ + β0i +
∑p

k=1
αk (xi − κk)

p
+ + ϵi (2)

where Yi is the ni × 1 vector of responses for the ith sub-
ject, ni represents the total number of responses per subject,
Xiβ is the fixed part of the model, and β0i is the subject
specific random intercept. The term (xi − κk)

p is a pth or-
der truncated power basis of degree p, with κk representing
the kth knot [20]. Eqn. 2 is a polynomial piece-wise re-
gression model with separate slopes, (αk), fit to different
partitions of the predictor variable. Thus, (xi − κk)+ is an
indicator variable indicating the partitionwhere (xi − κk)+
is positive. Knots are the points where adjacent partitions
meet. For effective estimation, the TPBF approach requires
an adequate number of knots or penalization [21].

Our cubic TPBF model of energy expenditure is

Yij = β0 + β1 ∗ timei + β2 ∗ time2i + β3 ∗ time3i
+β4 ∗ lowi + β5 ∗ highi

+
∑k

i=1 µk (timei − κk)
3
+ + b0i + εij

(3)
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Table 2. Results for the LMEMs of heat production (kcal/kg BW/hr) with a quadratic time term.
Model Outcome Variable β̂ S.E. p AIC

LMEM (raw) Heat

Intercept 2.992 0.06 <0.0001

3819.95
L vs. C −0.14 0.098 0.17
H vs. C 0.012 0.098 0.91

Time (mins) –0.0002 0.0001 <0.0001
Time2 –0.000 0.000 <0.0001

LMEM (log transformed) log(Heat)

Intercept 1.110 0.028 <0.0001

–2554.46
L vs. C –0.06 0.05 0.21
H vs. C –0.014 0.05 0.76

Time (mins) –0.0001 0.000 <0.0001
Time2 0.000 0.000 <0.0001

LMEM mean(Heat)/hr mean(Heat)

Intercept 3.052 0.069 <0.0001

174.539
L vs. C –0.141 0.097 0.17
H vs. C 0.016 0.097 0.87
Time (hr) –0.0124 0.008 <0.0001
Time2 0.004 0.0003 <0.0001

LMEM mean{log(Heat)}/hr mean{log(Heat)}

Intercept 1.133 0.031 <0.0001

–548.795
L vs. C –0.061 0.045 0.20
H vs. C 0.015 0.045 0.75
Time (hr) –0.052 0.003 <0.0001
Time2 0.002 0.0001 <0.0001

p is the parametric p-value obtained based on Z-score, which is given by Z = β̂
S.E.

.
Time2 is squared time (mins).
C, control; L, Low dose; H, High dose; hr, hour; min, minutes

β1, β2, β3 are the fixed coefficients for the linear,
quadratic, and cubic terms for time, respectively, and β4 and
β5 represent the low interferon tau and high interferon tau
groups’ contrasts, respectively, with the control group. The
(timei − κk)

3
+ term is the cubic spline basis. We treat the trun-

cated cubic basis splines and the intercept, b0i, as random and
assume µk ∼ Normal

(
0, σ2

u

)
and b0i ∼ Normal

(
0, σ2

b

)
.

When σ2
u = 0, Eqn. 2 reduces to a mixed effects model.

The random effects (timei − κk)
(p)
+ , which we model as nor-

mal random curves with mean zero [23], are not present in
the LMEM in Eqn. 1. The smoothness of the spline regres-
sion rises with increasing degree of the polynomial [23]. The
smoothing parameter, λ =

√
σ2
u

σ2
ε
, controls the smoothness of

the curve, while the mean square error of the model grows with
increasingλ [22,23]. Although easy to construct, models based
on the TPBF can be numerically unstable due to correlations
between the basis functions. When the range for xi in Eqn. 2 is
wide, the basis functions increase rapidly as x rises. To resolve
this issue, the range for xi may be re-scaled to [0, 1]. These
disadvantages make the models prone to computational diffi-
culties [21]. B-splines allow analysts to avoid these problems
[21,24,25].

3.2.2 B-spline Basis Functions

B-splines allow flexible approaches to analyzing data
[21,25]. B-splines are piece-wise polynomial functions of or-
der p connected at their inner knots [19,21,24,26]. While B-
splines are equivalent to TPBFs on any given interval [κ0, κm],
they are more numerically stable [20,21,27]. B-splines are
transformations of TPBFs [20,21]. To illustrate their equiva-

lence, letXT andXB be design matrices for the TPBF and the
B-spline basis functions of the same degree and same knot lo-
cations, respectively. ThenXB = XTLp where Lp is a square
invertible matrix [20].

B-spline basis functions are nonzero over the interval
[k0, km+1]. Next, let κ = (κ0, κ1,…, κm) be a set of m + 1
non-decreasing knots. The domain for B-splines is [κ0, κm],
with k0 = 0 and km = 1, typically representing the two
boundary knots [24]. We define the kth B-spline basis func-
tion of degree p recursively as

{
Bk,0(κ) = 1 κk ≤ κ ≤ κk+1

Bk,0(κ) = 0 otherwise

Bk,p(κ) =
κ− κk

κk+p − κk
Bk,p−1(κ) +

κk+p+1 − κ

κk+p+1 − κk+1
Bk+1,p−1(κ)

In our analyses, we specified the B-spline models as

Yi = Xiβ + β0i + γiB + δB + ϵi (4)

where Yi is the ni × 1 vector of responses for the ith sub-
ject, Xiβ and δB are the fixed effects, and β0i and γi are the
subject-specific random intercepts and random slopes for the
B-spline basis functions, respectively.

3.3 Inference and Model Selection
One assumption of classical regression models is that co-

variates are independent. However, polynomial splines in re-
gression models are not independent because they are piece-
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Table 3. Results for the LMEMs of heat production (kcal/kg BW/hr) with a cubic time term.
Model Outcome Variable β̂ S.E. p AIC

LMEM (raw) Heat

Intercept 2.87 0.063 <0.0001

3814.23

L vs. C –0.14 0.098 0.173
H vs. C 0.014 0.098 0.889

Time (mins) –0.0001 0.0003 <0.0001
Time2 –0.000 0.000 <0.0001
Time3 –0.000 0.000 <0.0001

LMEM (log transformed) log(Heat)

Intercept 1.036 0.029 <0.0001

–2583.84

L vs. C –0.06 0.05 0.21
H vs. C –0.015 0.05 0.74

Time (mins) –0.0003 0.000 <0.0001
Time2 0.000 0.000 <0.0001
Time3 –0.000 0.000 <0.0001

LMEM mean (Heat)/hr mean(Heat)

Intercept 2.872 0.08 <0.0001

176.975

L vs. C –0.141 0.097 0.17
H vs. C 0.016 0.097 0.87
Time (hr) –0.045 0.02 <0.0001
Time2 –0.003 0.0002 <0.0001
Time3 –0.0002 0.000 <0.0001

LMEM mean{log(Heat)}/hr mean{log(Heat)}

Intercept 1.045 0.036 <0.0001

–550.11

L vs. C –0.061 0.045 0.202
H vs. C 0.015 0.045 0.749
Time (hr) –0.014 0.008 0.105
Time2 –0.002 0.0001 0.013
Time3 0.0001 0.000 <0.0001

p is the parametric p-value obtained based on Z-score, which is given by Z = β̂
S.E.

.
Time2 is squared time (mins).
Time3 is cubic time (mins).
C, control; L, Low dose; H, High dose; hr, hour; min, minutes

wise functions used to approximate curves. Therefore, the
standard errors and confidence intervals for parameters in clas-
sical regression models are not applicable in models involving
splines. For inference in spline regression models, nonpara-
metric bootstrap methods can be used [28]. The nonparametric
bootstrap involves resampling the data to estimate variances of
model parameters without any distributional assumptions. To
implement the nonparametric bootstrap, we first resampled the
original data with replacement for each animal at different time
points in the study. Next, we estimated model coefficients with
the resampled data, and then repeated the resampling and esti-
mation process b = 500 times. We computed the 95th percent
bootstrap confidence intervals using the percentile approach
using

[
Qα/2, Q1−α/2

]
, where α = 0.05. The terms Qα/2

and Q1−α/2 represent the quantiles of the bootstrap distribu-
tions for the estimated coefficients.

We also calculated the corresponding p-values for the
estimated coefficients under the null hypothesis of β = 0

as pvalue = 2 ∗min
[
Prob

(
β̂ < 0|H0

)
, P rob

(
β̂ > 0|H0

)]
[28].

We selectedmodels with the smallest Akaike information
criteria (AIC) [29,30] values as the best fitting.

4. Results

Summarizing heat production by minute increased vari-
ability and random noise in the data relative to summarizing
by hour (Fig. 1a–d). Heat production also varied nonlinearly
over time. Other device based measures of energy expenditure
showed similar patterns as heat production. Therefore, we fo-
cus our report on modeling heat production.

4.1 Linear Mixed Effects Models

We estimated twelve separate LMEMs (Tables 1,2,3).
The low and high dose groups did not differ significantly from
the control group in heat production in any model. Models
with a cubic term for time fit the data better than models with
a quadratic term, which fit the data better than models with a
linear term (see also Figs. 2a–c,3a–c). Also, models with log-
transformed heat production fit much better than those with un-
transformed heat production. Furthermore, models of hourly
mean heat production fit better thanmodels of raw heat produc-
tion at the scale of minutes, although the parameter estimates
of paired models (differing only in time units) were very sim-
ilar. Because coefficients for time terms and their standard er-
rors were often close to the lower bound of zero, inference for
these parameters may be inaccurate.
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Table 4. Results for TPBF models of heat production (kcal/kg BW/hr) with linear, quadratic, and cubic splines.
Model Outcome Variable β̂ p* CI* AIC

TPBF (linear spline)

Heat

Intercept 2.883 0.552 (–0.298, 3.247)

3447.53
L vs. C –0.108 0.508 (–0.352, 0.256)
H vs. C 0.088 0.588 (–0.255, 0.317)

Time (mins) –0.002 0.648 (–0.004, 3.189)

mean(Heat)

Intercept 2.706 <0.0001 (2.576, 3.371)

179.369
L vs. C –0.106 0.300 (–0.387, 0.148)
H vs. C 0.045 0.944 (–0.248, 0.318)
Time (hr) –0.017 <0.0001 (–0.004, –0.001)

TPBF (quadratric spline)

Heat

Intercept 2.918 0.560 (–0.346, 3.233)

3505.01
L vs. C –0.051 0.456 (–0.406, 0.257)
H vs. C –0.010 0.608 (–0.237, 0.314)

Time (mins) –0.002 0.648 (–0.003, 0.000)1

Time2 0.000 <0.0001 (0.000, 3.18)

mean(Heat)

Intercept 2.981 <0.0001 (2.404, 3.274)

176.249
L vs. C –0.106 0.344 (–0.393, 0.253)
H vs. C 0.079 0.896 (–0.263, 0.358)
Time (hr) –0.087 <0.0001 (–0.003, –0.001)
Time2 0.003 0.004 (0.000, 0.000)1

TPBF (cubic spline)

Heat

Intercept 1.908 0.520 (–0.322, 3.277)

3601.67

L vs. C –0.250 0.512 (–0.393, 0.274)
H vs. C –0.030 0.600 (–0.242, 0.35)

Time (mins) –0.003 0.584 (–0.005, 0.000)1

Time2 0.000 0.712 (–0.000, 0.000)1,2

Time3 0.000 0.900 (–0.000, 3.218)2

mean(Heat)

Intercept 2.743 0.004 (1.738, 3.454)

186.497

L vs. C –0.115 0.312 (–0.418, 0.165)
H vs. C 0.066 0.988 (–0.275, 0.359)
Time (hr) –0.034 0.008 (–0.006, –0.000)2

Time2 –0.003 0.216 (–0.000, 0.000)1,2

Time3 0.000 0.340 (–0.000, 0.000)1,2

p* is the non-parametric p-value calculated as P = 2∗min
[
P
(
β̂ < 0|H0

)
, P

(
β̂ > 0|H0

)]
under the null hypothesis of β = 0.

CI* is non-parametric 95% confidence interval obtained by the percentile bootstrap 95% confidence interval.
1 0.000 represents small positive values such as 0.000003 that were rounded up to 0.000 when only keeping 3 decimal digits.
2 –0.000 represents negative values such as –0.000003 that were rounded up to 0.000 when only keeping 3 decimal digits.
Time2 is squared time (mins).
Time3 is cubic time (mins).
C, control; L, Low dose; H, High dose; hr, hour; min, minutes

4.2 Semiparametric Mixed Effects Models
4.2.1 Truncated Power Basis Functions

The TPBFmodels fit the data substantially better than the
LMEMs (Table 4; Figs. 2d–f,3d–f). The linear spline TPBF
model fit raw heat production at the scale of minutes best,
while the quadratic spline model fit hourly mean heat produc-
tion best. As in the LMEMs, there were no statistically signifi-
cant treatment effects in any TPBFmodel. Also, TPBFmodels
of hourly mean heat production fit better and had lower AIC
values when compared to the AIC values for the analyses con-
ducted at the minute-levels. For the cubic spline models, the
higher order terms for time (quadratic and cubic) were not sta-
tistically significant. However, both the linear and quadratic
terms for time were statistically significant quadratic spline
models in the paired models that differed only in time scale.

4.2.2 B-spline Basis Functions

The B-spline SMEMs (Table 5; Figs. 2g–i,3g–i) fit the
data better than the TPBF models and LMEMs. As with all of
the other models, there were no statistically significant treat-
ment effects in the B-spline models. Also, B-spline models of
hourly mean heat production fit better and had lower standard
errors of coefficients than models of raw heat production at
the time scale of minutes, although the patterns of coefficients
for paired models were similar. The quadratic B-spline ana-
lyzed at the hourly level performed the best of all models we
estimated for both mean hourly untransformed heat production
and untransformed heat production at the time scale ofminutes.
Time was not statistically significant in the linear spline mod-
els for the analyses performed at the hourly and minute levels.
However, the linear and quadratic terms for time were statis-
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Table 5. Results for B-spline models of heat production (kcal/kg BW/hr) with linear, quadratic and cubicsplines.
Model Outcome Variable β̂ p* CI* AIC

(SMEM) (linear spline)

Heat

Intercept 2.754 0.560 (–0.292, 3.147)

3379.22
L vs. C –0.170 0.596 (–0.325, 0.295)
H vs. C 0.037 0.784 (–0.222, 0.309)

Time (mins) 0.000 0.648 (–0.001, 3.09)

mean(Heat)

Intercept 2.704 <0.0001 (2.604, 3.209)

162.114
L vs. C –0.159 0.268 (–0.359, 0.149)
H vs. C 0.082 0.744 (–0.246, 0.342)
Time (hr) –0.016 0.004 (–0.001, –0.000)2

(SMEM) (quadratric spline)

Heat

Intercept 3.064 0.568 (–0.272, 3.315)

3344.63
L vs. C –0.176 0.620 (–0.344, 0.263)
H vs. C 0.093 0.832 (–0.222, 0.319)

Time (mins) –0.002 0.648 (–0.003, 0.000)1

Time2 0.000 <00001 (0.000, 3.297)1

meag(Heat)

Intercept 2.899 <0.001 (2.722, 3.364)

142.136
L vs. C –0.127 0.316 (–0.367, 0.179)
H vs. C 0.100 0.672 (–0.214, 0.36)
Time (hr) –0.115 <0.0001 (–0.003, –0.001)
Time2 0.004 <0.0001 (0.000, 0.0000)1

(SMEM) (cubic spline)

Heat

Intercept 2.923 0.552 (–0.276, 3.447)

3376.26

L vs. C –0.106 0.636 (–0.327, 0.321)
H vs. C 0.065 0.852 (–0.206, 0.36)

Time (mins) –0.003 0.552 (–0.004, 0.000)
Time2 0.000 0.728 (–0.000, 0.000)1,2

Time3 0.000 0.640 (–0.000, 3.402)2

meag(Heat)

Intercept 2.909 <0.0001 (2.741, 3.427)

164.561

L vs. C –0.121 0.364 (–0.38, 0.174)
H vs. C 0.126 0.620 (–0.224, 0.368)
Time (hr) –0.083 0.028 (–0.004, 0.000)
Time2 0.001 0.472 (–0.000, 0.000)1,2

Time3 0.001 1.000 (–0.000, 0.000)1,2

p* is the non-parametric p-value calculated as P = 2∗min
[
P
(
β̂ < 0|H0

)
, P

(
β̂ > 0|H0

)]
under the null hypothesis of β = 0.

CI* is non-parametric 95% confidence interval obtained by the percentile bootstrap 95% confidence interval.
1 0.000 represents small positive values such as 0.000003 that were rounded up to 0.000 when only keeping 3 decimal digits.
2 –0.000 represents negative values such as –0.000003 that were rounded up to 0.000 when only keeping 3 decimal digits.
Time2 is squared time (mins).
Time3 is cubic time (mins).
(C, control; L, Low dose; H, High dose; hr, hour; min, minutes)

tically significant in the quadratic spline model performed on
a the hour level time scale. The quadratic and cubic terms for
time were not statistically significant in the cubic spline mod-
els.

5. Discussion
Mixed effects models are useful for analyzing repeated

measures data. However, with relatively noisy data such as
device-based heat production data, variance parameters might
not be well estimated. The semiparametric models, especially
those with B-splines, approximated the nonlinear patterns in
the untransformed heat production data better and thus had
substantially higher predictive power than the parametric mod-
els. Another advantage of the semiparametric mixed effects
modeling approach is that it does not require transforming the

outcome variable (e.g., log transformation of heat production
in our LMEMs) to make the data approximately normal and
improve model fit. In analyzing energy expenditure data col-
lected by devices, the first step is to evaluate plots of energy
expenditure against time in minutes. If there appears to be a
considerable amount of random noise in the plots, summariz-
ing the data into longer time periods, such as hours, will reduce
the random variation due to the frequency of data collection.
If the data represent a high dimensional curve over time, rather
than a linear function, we recommend semiparametric mixed
effects models with smoothing splines for analysis.

In this manuscript, we demonstrated the use of semi-
parametric models to analyze noisy high dimensional data fre-
quently collected by devices in epochs of 60-seconds overmul-
tiple days. A common approach to analyzing these data is to
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summarize the data into an overall summary such as overall
heat production observed over a given week. In our previ-
ous analysis of these data [11], we summarized the data to the
hourly level and used parametric linear mixed effects models
to assess the effects of oral supplementation of interferon tau
on device-based measures of energy expenditure. Our anal-
ysis included an interaction term between time and the treat-
ment levels. The overall test for the interaction between treat-
ments and time was not statistically significant at the 5% sig-
nificance level. However, when separate analysis were con-
ducted by each hour of observation to determine the treatment
effects at each hour, we observed that the relationship between
interferon tau treatment and measures of energy expenditure
such as heat production depended on time and that the differ-
ences between the animals on the higher doses of interferon
and the lower doses depended on time. A limitation of the cur-
rent study is the sample size. The use of semiparametric meth-
ods in assessing treatment effects require larger sample sizes.
Our findings have important implications for statistically an-
alyzing data from experimental and clinical studies regarding
effects of nutrition (e.g., dietary intakes of amino acids [31])
on improving metabolic profiles and health in animals and hu-
mans.

6. Conclusions
With the rise in complex data frequently collected from

devices such as the Oxymas instrument, we recommend sum-
marizing the data from units of time in minutes to hourly or
half-hourly measures to reduce the noise associated with the
frequency of data collection. The use of semiparametric re-
gression methods provide more flexible modeling approaches
to analyzing these data compared to parametric methods based
on polynomial mixed effects models.
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