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Abstract

Maintaining a balance between the supply and demand of oxygen is vital for proper organ function. Most types of acute kidney injury
(AKI) are characterized by hypoxia, a state where the supply of oxygen cannot match the demand for normal cellular activities. Hypoxia
results from hypo perfusion and impaired microcirculation in the kidney. It inhibits mitochondrial oxidative phosphorylation, resulting
in a decrease in production of adenosine triphosphate (ATP), which is essential to power tubular transport activities, especially reab-
sorption of Na+, and other vital cellular activities. To ameliorate AKI, the majority of studies have focused on increasing renal oxygen
delivery by restoring renal blood flow and altering intra-renal hemodynamics. However, to date these approaches remain inadequate. In
addition to augmenting oxygen supply, increasing renal blood flow also increases glomerular filtration rate, leading to increased solute
deliver and workload for the renal tubules, causing an increase in oxygen consumption. The relationship between Na+ reabsorption and
oxygen expenditure in the kidney is linear. Experimental models have demonstrated that inhibition of Na+ reabsorption can alleviate
AKI. Since the proximal tubules reabsorb approximately 65% of filtered Na+, consuming the largest portion of oxygen, many studies
focus on examining the effects of inhibiting Na+ reabsorption in this segment. Potential therapeutics that have been examined include
acetazolamide, dopamine and its analog, inhibitors of the renin-angiotensin II system, atrial natriuretic peptide, and empagliflozin. The
effectiveness of inhibition of Na+ reabsorption in the thick ascending limb of the Loop of Henle by furosemide has been also examined.
While these approaches produced impressive results in animal models, their clinical benefits remain mixed. This review summarizes
the progress in this area and argues that the combination of increasing oxygen supply with decreasing oxygen consumption or different
approaches to reducing oxygen demand will be more efficacious.
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1. Introduction

Acute kidney injury (AKI) is defined by a sudden de-
crease in glomerular filtration rate (GFR), occurring within
hours to weeks, along with the retention of nitrogenous
waste products and renal parenchymal damage. Exam-
ples of AKI include acute tubular necrosis, acute intersti-
tial nephritis, and glomerulonephritis. Based on the Kid-
ney Disease: Improving Global Outcomes criteria, AKI is
diagnosed by an absolute increase in serum creatinine lev-
els of at least 0.3 mg/dL (26.5 µmol/L) within 48 hours,
or a 50% increase in serum creatinine from baseline within
7 days, or a urine volume of less than 0.5 mL/kg/h for at
least 6 hours [1]. Acute kidney injury occurs in a variety of
settings, including major surgeries, transplantation, hemor-
rhage, burns, sepsis, lower limb ischemia/reperfusion, and
the administration of nephrotoxic medications [2–6]. Con-
versely, chronic kidney disease (CKD) is the gradual loss
of nephrons in both number and function. Chronic kidney
disease is diagnosed by a persistent abnormality in kidney
structure or function such as GFR <60 mL/min/1.73 m2 or
albuminuria ≥30 mg per 24 hours for more than 3 months.
Arteriolosclerosis, glomerulosclerosis and tubulointerstitial
fibrosis are the common pathologic themes of CKD. Impor-
tant risk factors for developing CKD include hypertension,

diabetes, polycystic kidney disease, and sickle cell disease
[7–9]. Chronic kidney disease can eventually result in end-
stage kidney disease. Traditionally, AKI and CKD were
considered as separate entities. However, newer paradigms
recognize continuity between these two diseases, with AKI
resulting in CKD and CKD being a recognized risk factor
for AKI [7,9].

Acute kidney injury is associated with poor outcomes.
Acute kidney injury is independently associated with both
short and long-termmorbidity and mortality [6,10–13]. For
example, a recent study of 1286 COVID-19 patients in Bel-
gium demonstrated that all stages of AKI were associated
with increased ICU mortality rates with 9.3% at stage 1,
40.1% at stage 2 and 47.0% at stage 3 compared to 3.6%
with no AKI [14]. Furthermore, the incidence of AKI is
steadily rising due to an aging population, increased preva-
lence of CKD, and improved recognition by physicians
[15]. In addition to the high human cost, AKI imposes a
heavy financial burden on society. In the United States,
the in-hospital costs for AKI ranged from $5.4 to $24.0 bil-
lion annually [16]. In Queensland, Australia, a study found
that the mean total hospital cost in patients with AKI was
more than triple that of patients without AKI ($93,042 vs
$30,778) [17].
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In order to achieve clearance, the human kidney fil-
ters approximately 180 liters of blood each day. This fil-
trate is composed of both harmful metabolites and essen-
tial elements for life, such as NaCl, amino acids, and glu-
cose. Approximately 99% of water and ions, and 100%
of amino acids and glucose are reabsorbed by the renal
tubules through the transcellular and paracellular pathways.
The Na+,K+-ATPase is fundamental for the absorptions.
In the transcellular pathway, it keeps the intracellular Na+
electrochemical potential lower than the extracellular one,
which allows Na+ and Na+-coupled reabsorption [18–
21]. In the paracellular pathway, the Na+,K+-ATPase-
dependent ion transport generates the transepithelial volt-
age favoring certain ion absorption [21]. In aerobic states
ATP is generated by mitochondria predominantly through
oxidative phosphorylation. To meet the demand of mito-
chondria for oxygen, the kidney has the largest blood sup-
ply (approximately 25% of cardiac output) only next to the
heart under a resting state [22]. There is an almost perfect
linear relationship between Na+ reabsorption and oxygen
consumption by the kidney [23]. In addition to supporting
aerobic metabolism, oxygen is also needed to generate re-
active oxygen species which, at a low level, signal many
fundamental cellular activities [24].

Despite diverse etiologies, the majority of AKI sub
types share common pathophysiologicmechanisms, includ-
ing microvascular dysfunction and inflammation [3]. Mi-
crovascular dysfunction leads to hypoxia. Hypoxia is a state
where oxygen supply cannot meet oxygen demand, which
has a profound impact on kidney function (Fig. 1). Arti-
ficially induced hypoxia by increasing oxygen consump-
tion with triiodothyronine without other compounding fac-
tors induces kidney injury in rats [25]. Similarly, treating
rats with normobaric hyperoxia per se helps renal recovery
from warm ischemia-induced injury [26]. Hypoxia com-
promises mitochondrial aerobic metabolism by diminish-
ing nicotinamide adenine dinucleotide hydrogen (NADH)
supply and electron transport [27]. Hypoxia leads to the ac-
cumulation of non-esterified fatty acids, which contributes
to activation of pro-inflammatory pathways and produces
reactive oxygen species, resulting in apoptosis and necrosis
[28,29]. Furthermore, inflammation directly inhibits mito-
chondrial respiration. As a result, the ability of mitochon-
dria to generate ATP is compromised and the cellular ATP
levels are reduced in AKI [30]. Therefore, AKI has been
broadly characterized as a state of tubular ATP depletion
[31].

To make matters worse, the efficiency of the kidney
in using oxygen to reabsorb Na+ is reduced in AKI. Red-
fors et al. [32] measured renal blood flow, oxygen extrac-
tion, Na+ filtration and excretion in 12 patients with AKI
and 37 patients without AKI in a cardiothoracic intensive
care unit. They found that renal blood flow was reduced by
40% and renal Na+ reabsorption was reduced by 59% in
subjects with AKI. However, renal oxygen extraction was

Fig. 1. A common mechanism for acute kidney injury.

increased by 68% in patients with AKI compared to those
without AKI. This resulted in an approximately 2.4-fold in-
crease in the amount of oxygen required to absorb the same
amount of Na+ [32]. Similar results were also found for
sepsis-induced AKI in humans, rats, and mice [30,33,34].
A potential reason for this decrease in efficiency is the
loss of epithelial polarization and tight junction integrity,
which cause back leak and make Na+ transport less effi-
cient [32,34–36]. This has been observed in the mouse kid-
ney after ischemia/reperfusion- and endotoxemia-induced
injury [37,38]. Inhibition of nitric oxide synthase more than
doubles renal oxygen extraction/Na+ reabsorption in dogs
and rats [39,40]. It is also possible that AKI damages en-
dothelial cells and inhibits endothelial nitric oxide synthase,
leading to inefficient use of oxygen for Na+ reabsorption
[32,34–36]. Regardless of the cause, if more ATP is con-
sumed for reabsorption of Na+, less ATP will be left for
maintenance of cell integrity, resulting in cellular injury.

To restore the balance between oxygen supply and de-
mand, many studies have examined increasing oxygen sup-
ply. Examples include fluid resuscitation, vasoconstrictors
and removing the underlying cause of AKI (e.g., antibi-
otics and nephrotoxic medications). These approaches have
been reviewed previously [41–43]. While these approaches
unarguably improve patient outcomes, they are clearly in-
sufficient. In most tissues, increasing blood flow will in-
crease tissue oxygenation, however, the kidney is an excep-
tion to this rule. The variation in plasma Na+ concentra-
tions is minimal in both healthy and disease states. There-
fore, the delivery of Na+ into tubules is directly correlated
to GFR. An increase of renal blood flow increases GFR, re-
sulting in increased Na+ delivery and subsequent Na+ re-
absorption and oxygen consumption [35,36]. For example,
infusion of a vasodilator atrial natriuretic peptide (ANP) to
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Table 1. List of the clinical results in treatments of AKI.

Medications Mechanisms Inducers of AKI
Timing therapy Patient #

Results References
Prevention Treatment Control Medications

A. Proximal tubules

1. Inhibition of NHE3

Acetazolamide Reducing production of H+ Contrast X 46 received HCO3
− 50 received acetazolamide Scr decreased [62]

Contrast X 96 received HCO3
− 96 received acetazolamide Scr decreased [64]

eGFR increased

Cisplatin X 20 received mannitol 15 received acetazolamide AKI risk decreased from 30%
to 8.9%

[63]

Coronary artery bypass
surgery

X 65 received placebo 65 received acetazolamide ineffective [65]

ICU setting X 868 AKI 26.8% vs vancomycin
16% and gentamicin 20%

[66]

Dopamine Inhibiting NHE3 translation
and surface expression and
promoting NHE3 degradation

Operation for cardiac
diseases

X 40 received furosemide,
bumetanide or ethacrynic
acid

60 received furosemide,
mannitol and dopamine

Dialysis decreased from 90%
to 6.7%

[82]

Cardiac surgery X 40 received saline 42 received dopamine ineffective [84]

Fenoldopam Dopamine receptor agonist Post operation X 87 received furosemide 39 received furosemide and
fenoldopam

Tend to increase urine output
(p = 0.06)

[68]

Fenoldopam Dopamine receptor agonist X Total patient # [67]

Post operation 958 Reduced onset and incidence
of AKI

917 ineffective

Contrast-induced 501 Reduced onset and incidence
of AKI

714 ineffective

ICU setting 417 Reduced onset and incidence
of AKI

155 ineffective

Human atrial natriuretic
peptide (hANP)

Possibly modulating dopamine
system

ICU setting X 30 received placebo 29 received hANP Improved creatinine clear-
ance

[83]

hANP ischemic or nephrotoxic
insults

X 114 received placebo 108 received hANP Increased morbidity and mor-
tality

[85]

ARBs and ACEIs Inhibiting the stimulatory ef-
fect of angiotensin II on NHE3

Major operation X 18,871 received no
ARBs or ACEIs

268 received ARBs and
1137 received ACEIs

Reduced incidence of AKI [72]3
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Table 1. Continued.

Medications Mechanisms Inducers of AKI
Timing therapy Patient #

Results References
Prevention Treatment Control Medications

ARBs and ACEIs ICU setting X 3179 received no ARBs
or ACEIs

3179 received ARBs or
ACEIs

Reduced all-cause mortality [73]

ARBs and ACEIs Multiple inducers X 40,000 received no
ARBs or ACEIs

30,801 received ARBs or
ACEIs

Reduced all-cause mortality
and recurrent AKI

[74]

ARBs and ACEIs COVID-19 X X 279 received no ARBs or
ACEIs

164 received ARBs or
ACEIs

Reduced all-cause mortality [69]

ARBs and ACEIs COVID-19 X 220 received no ARBs or
ACEIs

80 received ARBs or
ACEIs

Ineffective [70]

ARBs and ACEIs COVID-19 X 100 received no ARBs or
ACEIs

30 received ARBs or
ACEIs

Increased mortality and risk
of AKI

[71]

Spironolactone Inhibiting aldosterone-
dependent Na+ reabsorption

Cardiac surgery X 118 received placebo 115 received spironolac-
tone

Ineffective [75]

Clonidine Inhibiting sympathetic nerve-
mediated activation of NHE3

Non-cardiac surgery X 3452 received placebo 3453 received clonidine Ineffective [76]

Dexmedetomidine Inhibiting sympathetic nerve-
mediated activation of NHE3

Aortic surgery X 54 received placebo 54 received dexmedetomi-
dine

Reduced incidence of AKI [78]

Dexmedetomidine Laparoscopic prostatic
surgery

X 44 received placebo 45 received dexmedetomi-
dine

Ineffective [77]

Dexmedetomidine Sepsis X 719 received placebo 719 received dexmedetomi-
dine

Improved renal recovery rate
and decreased in-hospital
mortality

[79]

2. Sglt2 inhibitors

Empagliflozin Inhibiting Sglt2 Decompensated heart
failure with and without
diabetes

X 9 received placebo 10 received empagliflozin Reduced tubular injury [80]

Empagliflozin Decompensated heart
failure with and without
diabetes

X 30 received standard
medical care

10 received standard medi-
cal care plus empagliflozin

Increased urine output [86]

Dapagliflozin Inhibiting Sglt2 COVID-19 X 606 received placebo 613 received dapagliflozin Ineffective [81]

B. Thick ascending limb
of the Loop of Henle

Furosemide Inhibiting NKCC2 Cardiac surgery X 283 received placebo 283 received furosemide Ineffective [87]
Scr, serum creatinine concentrations; NHE3, Na+-H+ exchanger 3; ARBs, angiotensin receptor blockers; ACEIs, angiotensin converting enzyme inhibitors; AKI, acute kidney injury;
Sglt2, Na+-dependent glucose transporter 2; NKCC2, Na+- K+-2Cl− cotransporter.
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postoperative patients with normal renal function increases
GFR by 15%, Na+ reabsorption by 9%, and oxygen con-
sumption by 25% [44]. Although direct evidence is lack-
ing, since approaches that increase renal blood flow inher-
ently raise oxygen demand, it is unlikely that these treat-
ments alone will be able to restore the supply-demand bal-
ance [35,36].

Reducing oxygen demand is another way to main-
tain the supply-demand balance of oxygen when supply is
low. Western painted turtles (Chrysemys picta) can sur-
vive under water with little oxygen for as long as 30 hours.
They tolerate anoxia in part by reducing Na+ channels and
metabolism in the hepatocytes and brain (channel arrest),
therefore, reducing oxygen consumption [45,46]. A simi-
lar defensive mechanism may occur in AKI. In one study,
mitochondrial oxygen consumption in the proximal tubules
is reduced 4 hours after septic AKI despite increased mi-
tochondrial content and biogenesis [30]. This reduction in
oxygen consumption is most likely due to reduced demand
for ATP synthesis [30]. The Na+-H+ exchanger 3 (NHE3)
reabsorbs approximate 65% of Na+ in the proximal tubules
[47]. TheNHE3-dependent pathway is one of the large oxy-
gen consumers in the renal cortex, if not the largest. Acute
kidney injury induced by ischemia/reperfusion, injection of
lipopolysaccharides or mercury chloride decreases mRNA
and protein levels of NHE3 in murine models [48–51]. In
human AKI, there is a loss of the brush border in the prox-
imal tubules where NHE3 is localized [52]. This down-
regulation of NHE3 has been interpreted as a defense mech-
anism against AKI [53]. The hypoxia-inducible factor
(HIF) pathway, a key mediator of cellular adaptation in low
oxygen tension states, may be another defense mechanism.
Epithelial Na+ channels (ENaC) in the distal nephron par-
ticipates in Na+ reabsorption. HIF-1α activation by hy-
poxia reduces expression of the γ-subunit of ENaC in mice
and activity of ENaC in cultured principal cells [54]. De-
spite marked reduction in renal reabsorption and function,
structural injury such as necrosis appears to be relatively
mild in AKI [30,55–57]. These observations have led to the
hypothesis that early organ dysfunction is a defense mech-
anism that preserves energy to reduce cell injury and death
[53].

How can reducing tubular cell injury and death help
preserve and/or delay deterioration of GFR? The renal tubu-
lar cells are the primary site of injury in AKI. When the
tubular cells undergo necrosis or apoptosis, they detach
from the supporting basement membrane and obstruct the
tubular lumen, causing back leakage of fluid with resultant
decreased clearance. Even a sub-lethal injury can disrupt
tight junctions, causing a loss of epithelial integrity and
back leakage of fluid. The fluid back leakage further di-
minishes already impaired glomerular filtration induced by
hypoperfusion of the kidney, eventually contributing to the
filtration failure [58–61]. Therefore, reducing oxygen de-
mand through inhibition of Na+ transport in the renal ep-

ithelial cells may prevent injury and maintain clearance.
The present review summarizes progress in balanc-

ing supply and demand to prevent or treat AKI in patients
(Table 1, Ref. [62–87]) and animal models. Acute kid-
ney injury is also associated with oxidative stress, which in
turn increases oxygen consumption resulting in kidney tis-
sue hypoxia [88,89]. While various antioxidants have been
shown to improve renal oxygenation and ameliorate AKI,
reviewing the effect of antioxidants is beyond the scope of
this article [90–93].

2. Approaches to Reduce Oxygen Demand in
the Proximal Tubules
2.1 NHE3 Inhibition
2.1.1 Chemical Inhibitors

Inhibition of NHE3 with the NHE3 inhibitor #4167
protects against acute rejection of renal grafts in a rat model,
an effect associated with preservation of the renal ATP
levels [94]. Inhibitors of NHE3, 5-(N-ethyl-N-isopropyl)
amiloride and S3226 protect against ischemia/reperfusion-
induced AKI in rodents [95,96]. Hypoxia induces intracel-
lular acidosis. Activation of Na+-H+ exchanger 3 in the
proximal tubules is critical to restore physiologic pH by
extruding H+, but also increases intracellular Na+ levels,
which lead to increased intracellular Ca2+ concentrations
through the reverse mode of the Na+/Ca2+ exchanger. This
increase in intracellular Ca2+ above the normal physiolog-
ical levels (Ca2+ overload) contributes to AKI [97,98]. In-
hibition of NHE3 by S3226 induces acidosis [95]. Whether
inhibition of NHE3 reduces the intracellular Ca2+ concen-
trations in the proximal tubules remains unknown, however
multiple studies have demonstrated that inhibition of NHE1
reduces Na+-dependent Ca2+ overload in the heart [99].
Therefore, prevention of Ca2+ overload could be another
mechanism by which NHE3 inhibitors in alleviate AKI.

2.1.2 Acetazolamide
Acetazolamide is an inhibitor of carbonic anhydrase.

It is used clinically to treat glaucoma, epilepsy, high alti-
tude sickness, and congestive heart failure [100]. It is also
a diuretic, because inhibition of carbonic anhydrase indi-
rectly leads to inhibition of NHE3 due to reduced produc-
tion of H+ [101]. In animal models under healthy condi-
tions, acetazolamide reduces cellular demand for oxygen
by inhibiting Na+ reabsorption and increases oxygen de-
livery by stimulating blood flow (likely as a result of CO2

retention) [102–105]. Acetazolamide has been shown to
attenuate lower limb ischemia/reperfusion-induced AKI in
mice [106]. However, the results for acetazolamide on re-
nal artery-clamp-induced AKI are inconsistent. An et al.
[107] pre-treated mice with 60 mg/kg/day in drinking wa-
ter for 48 hours before they clamped the renal artery uni-
laterally for 30 minutes then released clamps for 48 hours.
They found that acetazolamide reduced AKI by restoring
renal blood flow, an effect that was associated with in-
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creased endothelial nitric oxide synthase (eNOS) activity,
nitric oxide (NO) production, hypoxia inducible factor 1
subunit alpha (HIF-1α) expression, and decreased vascu-
lar permeability [107]. Conversely, Nensen et al. [108]
intravenously injected 50 mg/kg of acetazolamide into rats
45 minutes prior to clamping the renal pedicle for 45 min-
utes unilaterally and then allowed reperfusion for 2 hours.
Rats were kept under general anesthesia throughout the ex-
periment. Under this condition, they found that acetazo-
lamide impaired renal oxygenation, increased oxygen con-
sumption, and decreased GFR compared to vehicle-treated
rats [108]. In small human trials, there is some evidence to
suggest that acetazolamide ameliorates contrast-, cisplatin-
, cardiopulmonary bypass- and rhabdomyolysis-induced
AKI (Table 1) [62–64,109,110]. However, other clinical
studies have demonstrated no beneficial effect or even in-
duction of AKI with acetazolamide (Table 1) [65,66,111].
Acetazolamide-induced AKI was attributed to intra-tubular
obstruction by acetazolamide-induced crystalluria in some
of these populations [111].

2.1.3 Dopamine

Dopamine inhibits NHE3 activity by inhibiting NHE3
translation [112], promoting ubiquitin-dependent NHE3
degradation [113], decreasing NHE3 exocytosis and cell
membrane recycling [114,115]. Dopamine has been shown
to increase renal oxygenation in post-cardiac surgery pa-
tients. This effect was associated with profound pre-
and post-glomerular vasodilation [116]. Fenoldopam is a
dopamine receptor agonist, which has been used clinically
to treat hypertension in part because of its inhibition of
NHE3 [117]. Fenoldopam was effective in reducing the
onset of postoperative AKI in adult patients, when used
prophylactically (Table 1) [67,68,118]. However, other
studies have failed to demonstrate a beneficial effect for
fenoldopam (Table 1). Furthermore, its potential benefit to
prevent AKI after cardiac surgery in pediatrics remains un-
certain [119].

2.1.4 Natriuretic Peptides

Atrial natriuretic peptide is a peptide hormone that is
produced by the walls of the heart in response to an increase
in blood volume and pressure. It reduces blood volume and
pressure in part through inhibition of NHE3 in the proxi-
mal tubules [120,121]. Its analogs brain-type and c-type na-
triuretic peptides have similar functions [122]. How ANP
inhibits NHE3 remains incompletely understood, but evi-
dence indicates that it may be mediated in part by modulat-
ing the renal dopaminergic system [123]. It appears that
while infusion of ANP raises oxygen supply by increas-
ing renal blood flow, it also increases GFR and the sub-
sequent burden for tubular Na reabsorption [44]. However,
one small study in high risk surgery patients demonstrated a
potential protective effect for ANP on kidney function (Ta-
ble 1) [122]. Atrial natriuretic peptide is degraded by the

endopeptidase neprilysin. Strategies that inhibit neprilysin
offer an alternative means by which to raise the ANP levels.
The challenge of this approach is that neprilysin also de-
grades endothelin, bradykinin, vasopressin and angiotensin
II, which are critical for many physiologic activities. To
circumvent this potential complication, Novartis Pharma-
ceuticals manufactures a drug named LCZ696, a mixture of
the neprilysin inhibitor sacubitril and the angiotensin II re-
ceptor 1 blocker valsartan and markets it as Entresto®. En-
tresto protected the kidney from ischemic AKI in a porcine
model of partial nephrectomy [124]. Multiple clinical trials
have shown that Entresto does not increase the risk of AKI
in patients with heart failure [122,125]. However, whether
Entresto has protective and/or therapeutic benefits against
AKI in patients remains unknown.

2.1.5 Angiotensin II inhibitors
It has been well described that angiotensin II stim-

ulates NHE3, which contributes to angiotensin II-induced
hypertension [126–128]. Angiotensin II increases the lev-
els of NHE3 mRNA and protein [129], stimulates cellular
trafficking and exocytotic membrane insertion [130,131],
counteracts inhibitory phosphorylation by cAMP/PKA
[132], and increases transport activity [133]. Not surpris-
ingly, angiotensin II increases oxygen consumption by re-
nal mitochondria [134]. While angiotensin receptor block-
ers (ARBs) have repeatedly shown benefits in animal mod-
els of AKI [135–138] and CKD in humans [139–141],
the results from clinical trials of AKI with ARBs and an-
giotensin converting enzyme inhibitors (ACEIs) have had
mixed results (Table 1). One potential adverse impact of
ACEIs and ARBs in the setting of AKI is that they could
worsen renal hypoperfusion. In the cases where ACEIs
and ARBs have shown potential benefit, namely hyper-
tensive COVID-19 and sepsis, it remains unclear whether
the effect was mainly due to control of blood pressure
or reducing oxygen consumption in the proximal tubules
[69,142,143]. Conversely, other studies have shown ei-
ther no difference or increased risk of AKI and mortality
in the hospitalized COVID-19 patients treated with ACEIs
or ARBs [70,71,144,145].

The results from trials examining patients undergo-
ing major surgeries are also mixed. One study showed that
ARBs and ACEIs were associated with a reduced risk of
AKI after major surgery [72]. However, Zhou et al. [146]
reported no significant association between perioperative
use of renin-angiotensin system inhibitors and postoper-
ative AKI in patients undergoing cardiac surgery. Other
studies generally agree that ACEIs or ARBs increase sur-
vival, but also increase acute kidney disease, which is de-
fined as persistent AKI from 7–90 days [73,74,147].

2.1.6 Aldosterone Inhibitors
Aldosterone binds to the mineralocorticoid receptors

to increase sodium reabsorption and potassium secretion
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in the distal nephron. The expression of mineralocorti-
coid receptors has been detected in other tissues as well,
where its activation may be pathophysiologic. Angiotensin
II stimulates the biosynthesis and release of aldosterone
from the adrenal cortex zona glomerulosa [148,149]. Al-
dosterone stimulates NHE3 and Na+,K+-ATPase activities
in cultured human renal proximal tubule cells [150,151].
Whether aldosterone has a similar effect on NHE3 and
Na+,K+-ATPase in the native proximal tubules remains un-
known, but aldosterone appears to inhibit NHE3 in the mi-
croperfused medullary thick ascending limb [152]. Inhibi-
tion of angiotensin II (as reviewed above) should inhibit the
effect of aldosterone. Blockade of aldosterone from binding
its mineralocorticoid receptors with receptor antagonists,
for example spironolactone, have been shown to prophy-
lactically and therapeutically attenuate AKI in rats and pigs
[138,153–155]. However, the benefits of spironolactone
seen in these animal models have not been reproduced clin-
ically. A clinical trial with 115 patients on spironolactone
and 118 patients on placebo demonstrated that spironolac-
tone was not protective against AKI after cardiac surgery
and there may be even a trend towards harm [75]. In-
deed, a survey of the MEDLINE and EMBASE databases
found that spironolactone had the highest odd ratio of induc-
ing AKI among the reported medicine-induced AKI cases
[156].

2.1.7 Angiotensin 1-7

Angiotensin 1-7 is generated mainly by angiotensin-
converting enzyme 2 and exerts its actions via activation
of its receptor Mas. Its functions frequently oppose an-
giotensin II [157]. Angiotensin 1-7 has been shown to in-
hibit NHE3 activity in the proximal tubules of normoten-
sive and hypertensive rats [158,159]. Angiotensin 1-7 also
inhibits NHE3 activity by modulating the renal dopamine
system [160]. Angiotensin 1-7 decreases oxygen consump-
tion in the thick ascending limb of the loop ofHenle and pre-
sumably in the proximal tubules as well [161]. Angiotensin
1-7 alleviates AKI in a variety of animal models [162–165].
However, whether it has a similar effect in humans remains
unknown.

2.1.8 Adenosine Receptors

Adenosine is present at low concentrations in the ex-
tracellular space, but its levels are greatly increased in
conditions of metabolic stress, such as hypoxia as a re-
sult of enzymatic cleavage of the nucleotide adenosine 5′-
monophosphate (AMP) by 5′-nucleotidase. Four types of
adenosine receptors have been identified along the nephron.
They are A1, A2A, A2B and A3. Although the exact molecu-
lar mechanisms are unclear, activation of A1 andA3 inhibits
NHE3, whereas activation of A2A inhibits the action of A1

[166,167]. Inhibition of A1 receptors by its knockout or
its selective antagonist 1,3-dipropyl-8-cyclopentylxanthine
worsens sepsis- and ischemia/reperfusion-induced AKI

[168,169]. On the contrary, activation of A1 receptor by
its selective agonist 2-chlorocyclopentyladenosine, inhibits
ischemia/reperfusion-induced AKI in mice [168].

2.1.9 Sympatholytics

The kidney is densely innervated by sympathetic
nerves. Activation of these nerves increases renal vascular
resistance and reduces renal blood flow by releasing nore-
pinephrine and renin [170,171]. Moreover, activation of
these nerves increases NHE3 and Na+,K+-ATPase activ-
ity [172–174]. Acute kidney injury is frequently accom-
panied by activation of the sympathetic nerves. Inhibi-
tion of the sympathetic nervous system has been repeat-
edly demonstrated to alleviate AKI in various animal mod-
els [170,171]. However, the clinical benefit of this ap-
proach is inconsistent. The sympatholytic effect of cloni-
dine and dexmedetomidine is mediated by stimulating the
pre-synaptic α2 adrenoceptors, thereby decreasing nore-
pinephrine release from both central and peripheral sympa-
thetic nerve terminals. A multi-center clinical trial of 6905
non-cardiac surgery patients with 3453 patients on cloni-
dine and 3452 patients on placebo found that periopera-
tive clonidine administered did not reduce the risk of AKI
[76]. Similarly, dexmedetomidine has not shown a bene-
fit for preventing AKI in patients undergoing laparoscopic
prostatic surgery (Table 1) [77]. On the other hand, a single
center trial with 54 patients on dexmedetomidine and 54 pa-
tients on placebo showed a beneficial effect for dexmedeto-
midine in patients undergoing aortic surgery [78]. A re-
cent updated systematic review and meta-analysis of 16
studies involving 2148 patients revealed that dexmedeto-
midine administration may prevent AKI and postoperative
delirium after cardiac surgery. This meta-analysis also sug-
gests that dexmedetomidine may reduce the length of stay
in the intensive care unit [175]. Likewise, dexmedetomi-
dine administration was associated with improvements in
renal function recovery and in-hospital survival in critically
ill patients with septic AKI [79]. Whether the way of ad-
ministration and types of AKI causes the different clinical
outcomes of the sympatholytics on AKI remains unclear.

It is important to emphasize that the renoprotective ef-
fects of fenoldopam, ANP, activation of adenosine receptor
A1, inhibition of angiotensin II system and sympatholytics
are not entirely mediated by inhibition of NHE3. The well-
known hemodynamic effects of these approaches also con-
tribute significantly to their reno-protection [67,118,122,
157,176,177].

2.2 Na+-Dependent Glucose Transporter 2 (Sglt2)
Inhibitors

Na+-dependent glucose transporter 2 has a high ca-
pacity and is responsible for reabsorption of almost all fil-
tered glucose. By reducing glucose re-absorption from the
proximal tubules, Sglt2 inhibitors are a class of anti-diabetic
medications, which include empagliflozin, canagliflozin
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and dapagliflozin [178]. Hyperglycemia increases the bur-
den of reabsorption of glucose and energy expenditure in
the proximal tubules and induces hypoxia in the diabetic
rat cortex. Inhibition of Sglt2 normalizes oxygen tension
in the renal cortex of the diabetic rats [179,180]. How-
ever, a lack of effect of dapagliflozin on renal microvascular
oxygen tension in diabetic rats was recently reported [181].
Multiple systemic reviews of clinical studies and trials have
revealed that diabetic patients who took Sglt2 inhibitors
had lower odds of AKI compared to those who did not
[178,182–186]. However, this beneficial effect of Sglt2 in-
hibitors onAKI risk has not been universally observed [178,
187,188]. The potential nephro-protective mechanisms of
Sglt2 inhibitors include lowering blood glucose and body
weight, inhibiting inflammation, improving cardiovascu-
lar function, increasing tubuloglomerular feedback, and in-
creasing tubular oxygenation [178,182–185,189]. The ef-
fects of Sglt2 inhibitors on AKI in non-diabetic patients
have not been widely reported. Empagliflozin significantly
reduced AKI parameters in patients with acute decompen-
sated heart failure [80]. Dapagliflozin had no significant
effect on the risk of AKI in the hospitalized COVID-19 pa-
tients (Table 1) [81]. In these two studies, both diabetic and
non-diabetic patients were included. In contrast, the bene-
ficial effects of Sglt2 inhibitors on AKI in non-diabetic an-
imals has been repeatedly demonstrated. Na+-dependent
glucose transporter 2 inhibitors protect the kidney against
sepsis-, ischemia/reperfusion-, contrast-, and myocardial
infarction-induced AKI in rodents [179,190–193]. How-
ever, knockout of Sglt2 offers no protection against re-
nal artery clamping-induced AKI, implying that the reno-
protective effects of Sglt2 inhibitors may not be mediated
through Sglt2 in rodents [194]. Na+-dependent glucose
transporter 2 is co-localized with NHE3 [195]. Studies have
shown that empagliflozin inhibits NHE3 in the kidney and
NHE1 in the heart [196,197]. The cardioprotective effect
of empagliflozin against ischemia is thought to be due to its
inhibition of NHE1 [197]. Therefore, it is possible that the
reno-protective effect of Sglt2 inhibitors against AKI may
also involve inhibition of NHE3.

3. Approaches to Reduce Oxygen Demand in
the Thick Ascending Limb of the Loop of
Henle

Na+-K+-2Cl− cotransporter (NKCC2) is located in
the apical membrane of the epithelial cells in the thick as-
cending limb of the loop of Henle. It facilitates approxi-
mately 20–25% of the reuptake of filtered NaCl. There-
fore, oxygen consumption by this segment of nephron is
second only to the proximal tubule. Furosemide, a diuretic
that inhibits NKCC2, was shown to improve renal oxygena-
tion in patients [44,198] and reduces ischemia/reperfusion-
induced AKI in animal models [199,200]. However,
furosemide has had disappointing results in clinical stud-
ies (Table 1). A meta- analysis of 2084 patients in 9 stud-

ies found that furosemide combined with intravenous flu-
ids had no significant impact on the incidence of contrast-
induced AKI in patients after coronary intervention, but
could reduce major adverse cardiovascular events and mor-
tality [201]. Combination of infusing furosemide with
dopamine or ANP in patients with AKI after cardiac surgery
decreased the need for dialysis and improved dialysis-free
survival rates in two studies [82,83]. However, a sys-
temic review and meta-analysis of randomized clinical tri-
als found that the quantity and quality of evidence for us-
ing furosemide to treat AKI in adult post-operative patients
were very low with no firm evidence for benefit or harm
[202]. Abraham et al. [203] also found that furosemide in-
fusion in early-onset AKI did not reduce the progression to
a higher stage of AKI in critically ill children.

4. Na+,K+-ATPase
Na+,K+-ATPase is localized to the basolateral mem-

brane of the entire renal tubules, from the proximal tubules
to the inner medullary collecting ducts. The basolaterally
located Na+,K+-ATPase is the only pathway to pump out
intracellular Na+ that enters the renal epithelial cells from
the apical NHE3, Sglt2, NKCC2 and other Na+-dependent
transporters. Inhibition of the apical Na+ entry will re-
duce the availability of Na+ to Na+,K+-ATPase, thus re-
ducing the activity of the enzyme and oxygen expendi-
ture, whereas stimulation of apical Na+ entry does the op-
posite. Dopamine inhibits Na+,K+-ATPase activity [204,
205]. Dopamine stimulates cAMP-dependent inhibitory
phosphorylation α-subunit of the enzyme [206]. The re-
nal dopaminergic system and ANP acted synergistically
to produce a potent inhibition of Na+,K+-ATPase [123].
Dopamine and hypoxia induces endocytosis of Na+,K+-
ATPase through protein kinase C-dependent phosphory-
lation of the α-subunit [207]. Angiotensin II stimulates
Na+,K+-ATPase activity [208], whereas angiotensin 1-7
does the opposite [209]. However, it remains unknown
whether these hormones directly regulate Na+,K+-ATPase
or indirectly regulate the pump by affecting Na+ entry from
the apical membrane [210].

4.1 Improving the Na+,K+-ATPase Efficiency
Chen et al. [211] recently reported the development of

the third generation of a synchronization modulation elec-
tric field device. This device consists of three phases: syn-
chronization, modulation and maintenance. In the synchro-
nization phase, the device uses electric field to synchronize
the Na+,K+-ATPase molecules by using ATPs to actively
transport Na+ and K+. At the same time, the device applies
electric energy to theNa+,K+-ATPasemolecules so that the
pumps could synthesize one ATP at the end of each pump-
ing cycle. Thus, ATP consumption is markedly reduced.
In the modulation phase, the Na+,K+-ATPase transporting
rates are gradually modulated (increased or decreased) to
the desired values, and the transporting rates are sustained
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at the target value throughout the maintenance phase. Ap-
plication of this technique to a renal ischemia-reperfusion
injury mouse model preserved Na+,K+-ATPase activity,
thereby reducing kidney injury, as reflected by 40% lower
plasma creatinine in the treated group as compared to the
untreated control group. In a mouse kidney transplantation
model, renal graft functionwas improved bymore than 50%
with the application of this technique based on GFR mea-
surement compared with the untreated group.

4.2 Endothelin Inhibition
Endothelin-1 is an endogenous 21 amino acid pep-

tide that has powerful vasoactive properties. In the kid-
ney, endothelin-1 is produced by endothelial, epithelial and
mesangial cells. Endothelin-1 acts through binding to its
type A and type B endothelin receptors to modulate renal
blood flow, GFR, reabsorption of sodium and water, and
acid-base balance [212–214]. Ischemia/reperfusion of the
kidney increases endothelin concentration in the renal cor-
tex and decreases renal blood flow [215,216]. Endothe-
lin receptor antagonists such as ambrisentan and bosen-
tan attenuated ischemia/reperfusion-induced experimental
AKI [217,218]. However, the reno-protective effect is
due to an increase in oxygen supply from increased renal
blood flow rather than a reduction of oxygen consumption
[216–219], because endothelin-1 actually inhibits Na+,K+-
ATPase [220,221] and NKCC2 [222]. The clinical benefits
of endothelin receptor antagonists on AKI have not been
reported.

5. Perspectives
The pathophysiology of AKI is complex, involving

hypoperfusion, impaired microcirculation, hypoxia, ox-
idative stress, abnormal coagulation, and inflammation.
There is no single approach that can address all aspects
of this complicated pathophysiology. Further, addressing
one aspect may exacerbate other aspects, even within the
concept of reducing oxygen demand. For example, al-
though furosemide reduces oxygen consumption by inhibit-
ing NKCC2 in the thick ascending limb of the Loop of
Henle, it also activates the renin-angiotensin-aldosterone
system. Combining different treatments that increase oxy-
gen supply and decrease oxygen consumption or differ-
ent approaches to reduce oxygen consumption may be a
better approach. A good example is the synergistic ef-
fect observed with using fenoldopam in combination with
furosemide in treatment of AKI in critically ill surgical pa-
tients [68].
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