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Abstract

Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread worldwide, caused a global pandemic,
and killed millions of people. The spike protein embedded in the viral membrane is essential for recognizing human receptors and
invading host cells. Many nanobodies have been designed to block the interaction between spike and other proteins. However, the
constantly emerging viral variants limit the effectiveness of these therapeutic nanobodies. Therefore, it is necessary to find a prospective
antibody designing and optimization approach to deal with existing or future viral variants. Methods: We attempted to optimize nanobody
sequences based on the understanding of molecular details by using computational approaches. First, we employed a coarse-grained (CG)
model to learn the energetic mechanism of the spike protein activation. Next, we analyzed the binding modes of several representative
nanobodies with the spike protein and identified the key residues on their interfaces. Then, we performed saturated mutagenesis of these
key residue sites and employed the CG model to calculate the binding energies. Results: Based on analysis of the folding energy of
the angiotensin-converting enzyme 2 (ACE2) -spike complex, we constructed a detailed free energy profile of the activation process of
the spike protein which provided a clear mechanistic explanation. In addition, by analyzing the results of binding free energy changes
following mutations, we determined how the mutations can improve the complementarity with the nanobodies on spike protein. Then
we chose 7KSG nanobody as a template for further optimization and designed four potent nanobodies. Finally, based on the results of
the single-site saturated mutagenesis in complementarity determining regions (CDRs), combinations of mutations were performed. We
designed four novel, potent nanobodies, all exhibiting higher binding affinity to the spike protein than the original ones. Conclusions:
These results provide a molecular basis for the interactions between spike protein and antibodies and promote the development of new
specific neutralizing nanobodies.
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1. Introduction sion and viral entry [7]. Another key structural feature of

The spread of the coronavirus disease 2019 (COVID- the sp.ike prot.ein .is its extensive.glycosylatic?n Which plays
19) pandemic caused by severe acute Tespiratory syn- acruma.l rol.e in viral pathogenesis (gray part. 1n.F1g. 1A)[8].
drome, has resulted in over 608 million infections and The activation of SARS-CoV-2 spike protein is closely re-
more than 6.50 million deaths worldwide as of Septem- lated to the app'roach and binding oftbe AC],EZ r.e ceptor. Xu
ber 16th, 2022 (https://www.who.int/emergencies/diseases e? al. [9] described the process of spike activation and. clu-
/movel-coronavirus-2019). The COVID-19 pandemic has cidated the Cryf)—EM structu'res of three 1'<ey conformational
emerged as a global international health crisis world with states of the sp.1k.e trimer (Fig. 1B). Their results. syggested
far-reaching implications for the global economy, science, that ACEZ. fac111tates.the capture of the pre—e@stmg opent
peace, and security [1]. Therefore, to meet this challenge, conf(.)rmatlon of $ trimers rather than trlgg?r.mg a trimer
tremendous efforts have been devoted to developing thera- f)pt?nlng event. . Undfier the ACOEZ-freej COIld1t.10n, the ma-
peutic approaches against SARS-CoV-2. jority of the splke trimers (94%) are in the tlghtl}.f closoed

The SARS-COV-2 spike protein is the focus of ther- ground prefusion state (S-closed), and only a minority (6%)

i ) . are in the intrinsically transient open state with one RBD
apeutic and vaccine developmental efforts. The spike pro- up representing the fusion-prone state (S-open), forming
tein of SARS-CoV-2 is a large class I trimeric fusion pro-

. ] ] ; ; a dynamic balance between the two states under equilib-
tein, which consists of two SL.1bun1ts,. ST and 82 (Flg' I,A’ rium conditions. The ACE2 would trap the RBD and then
Ref. [.2]) [3-51- Th,e S,l subunit c.:ontams a récep tor-.blndl.ng overcome the energy barrier, break the balance, and shift
domain (RBD) which is responsible for the interaction with the conformational landscape toward the open state. Once

angiotensin-converting enzyme 2 (ACE2) to gain entry into the ACE2 traps the up RBD, the associated ACE2-RBD
the host [6], while the S2 subunit mediates membrane fu- ’
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Fig. 1. The structure and the activation process of SARS-CoV-2 spike protein. (A) The structure of SARS-CoV-2 spike protein. The
dashed line indicates the rotation symmetry axis of the spike trimers. (B) The activation process of SARS-CoV-2 spike protein. Three

conformations of the spike protein of SARS-CoV-2 (trimers in forest green, glass green, and lavender pink), and the position of the ACE2

receptor (yellow). The shallow yellow one represents the initial position of ACE2 when binding to the spike protein. The binding poses

of ACE2 to the spike protein are obtained by using a protein-protein docking method, HDOCK [2]. The red dot indicates the center of
the ACE2. The distance between ACE2 and the spike is defined as the distance between the center of the distant ACE2 (yellow) and the

center of ACE2 in the initial position (shallow yellow).

exhibits combined continuous swing motions on the top-
most surface of the S trimer. After ACE2 binding, there
are 26.2% in S-open state, 73.8% in S-ACE2 state (an open
state when the spike protein binds to the ACE2 receptor, S-
complex state), and 0% in S-closed state. After the spike
protein binds to the receptor, TM protease serine 2 (TM-
PRSS2) [10], a type 2 TM serine protease located on the
host cell membrane, promotes virus entry into the cell by
activating the spike protein. In order to fulfill the function

of the spike protein, the spike protein of SARS-CoV-2 first
binds to the receptor ACE2 through the RBD and then is
proteolytically activated by human proteases. Therefore,
blocking the interaction between RBD and ACE2 plays a
vital role in inhibiting the infection of pathogenic SARS-
CoV-2 in the host cells.

Nanobodies are single-domain antibodies derived
from camelids and sharks. They show a large sequence
identity with the human VH gene family III [11]. Nanobod-
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ies have favorable biomedical properties, including high
thermostability, high solubility, and deep tissue penetration
because of their small size (~15 kDa). Thus, nanobodies
are popular for many biotechnology and medical applica-
tions [12—17]. Recently, the potency of nanobodies against
SARS-CoV-2 infection has been demonstrated in cell-based
assays [ 18—27] and most recently in animal studies [28,29].
The high preclinical efficacy of an ultrapotent nanobody
construct (PiN-21) has been demonstrated to prevent viral
pneumonia at a very low dose (0.2 mg/kg) [28]. Zhou et
al. [27] employed nanobody maturation technology to de-
velop several nanobodies targeting SARSCoV-2 spike pro-
tein. Their crystal structures showed that the nanobodies
successfully block the interaction between RBD and ACE2
[27]. Thus, stable and potent nanobodies that target the
RBD of SARS-CoV-2 are promising therapeutics to help
mitigate the evolving pandemic.

In recent years, numerous efforts have been made in
the development of vaccines, but no completely efficient
treatment has yet been found. Therefore, in this study,
we report a computational approach to optimize and de-
sign potent nanobodies that broadly target all SARS-CoV-
2 variants. First, we employed the coarse-grained (CG)
model to simulate the activation process of SARS-CoV-
2 spike protein. Our results give an adequate explanation
of the activation mechanism of the spike protein based on
energy. Next, fourteen different nanobodies were used to
identify their binding modes to the viral spike protein, and
we identified the critical residues for their binding. Then,
we selected the 7KSG nanobody as a template for fur-
ther optimization. We performed saturated mutagenesis of
these key residue sites and employed a CG model to calcu-
late the binding energies. We found that mutations V27D,
L29E, Y32E, S49D, C50K, S53D, RS7E, A97D, T102E,
Y104E, S105E, N107K, H109K, Y110E, C112D, S113K,
M116D, and Y118D in complementarity determining re-
gions (CDRs) of the nanobody can strengthen the binding
between the spike protein and the nanobody. Based on
the results of single mutants, we employed multiple mu-
tations on nanobodies and designed four potent nanobodies
exhibiting a higher binding affinity than the original one.

2. Materials and Methods
2.1 Modelling the S Trimers

In this work, we used Modeller [30,31] to perform
homology modeling in constructing the binding complexes
of ACE2-SARS-CoV-2 and nanobody-SARS-CoV-2. First,
the structures of the three key states of S trimers were ex-
tracted from the Cryo-EM structure (Protein Data Bank
identification (PDB ID): 7DF3, 7DK3, and 7DF4) resolved
by Xu ef al. [9]. The experiment structures underwent a re-
pair process that includes completing the missing residues,
removing extra ligands, and trimming all structures to the
same length. After repairing, a targeted molecular simula-
tion (TMD) method was conducted to construct the confor-
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mational pathways between different structures and sam-
ple a series of intermediate conformations representing the
transition process. At each TMD step, the initial structure
was aligned to the target structure using the backbone heavy
atoms, then a force was applied to the initial structure to
move them toward the corresponding atom of the target
structure. The system was restrained throughout the sim-
ulation to prevent abnormal translation and rotation. For
these structures, the solvent was treated implicitly. Ex-
tensive MD relaxation by Molaris-XG software (version
9.15, Los Angeles, CA, USA) [32,33] was carried out un-
til reached the convergence. This software is developed by
Dr. Warshel and his team at the University of Southern Cal-
ifornia.

There is no conformational transition of ACE2, only
position and pose changes, so the intermediate conforma-
tions of ACE2 are obtained by an angle-distance interpo-
lation method. The method first calculated 4 parameters
between the initial structure and the target structure in the
Cartesian coordinate system: the center-of-mass distance,
and the differences of their Euler angles. Then, these four
parameters are divided equally depending on the number of
intermediates to be obtained. The intermediate structure is
obtained by moving/rotating the initial structure according
to the values of the four parameters after divination.

2.2 Coarse-Grained (CG) Model and the Total Energy
Calculation

The coarse-grained model was employed to calculate
the free energy of each structure and the relevant binding
energies. The CG model we employed was developed by
Arieh Warshel not only gives a reliable description for pro-
tein stability and functions, but also considers the impor-
tance of electrostatic effects of proteins [34,35]. In CG
model, the side chain is reduced to a simplified united atom
and the backbone atoms of each residue are treated explic-
itly. The total CG energy is defined as follows:
AGRE = AGE + AGLE + AGLE, ae

= 1 AGYY 4+ o AGSE + 3 AGSS + AGESE

side solv side

+ AGﬂs)iodl;1r + AG:‘};Z + AC’Yrc;llaleircl-side + AGrI;lcfliilﬁ-side

(D
Here the terms are the side chain van der Waals energy,
main chain solvation energy, main chain hydrogen bond
energy, side chain electrostatic energy, side chain polar
energy, side chain hydrophobic energy, main chain/side
chain electrostatic energy, and main chain/side chain van
der Waals energy, respectively. The scaling coefficients
cl, c2, and c3 are 0.10, 0.25, and 0.15, respectively, in this
work [34,36].

To evaluate the CG energy, we first calculated the
reliable charges for the protein ionized groups using the
Monte Carlo Proton Transfer algorithm (MCPT) [37,38].
This method allows a proton transfer between pair of ion-
izable residues or within an ionizable residue and bulk sol-
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vent. The transferring is repeated until the electrostatic in-
teraction of the folded protein converges, then the ioniza-
tion states of the protein residues are obtained to evaluate
the CG free energy.

2.3 The Binding Free Energy Change Calculation

The binding free energies for the nanobody-spike pro-
tein are defined as follows.

AG(binding = AGYnamobodyfspike _AGnanobody _AGspike (2)

For the mutated binding free energy change of the
nanobody-spike protein:

AAGhinging = AGhinding pyem — DGhinding -
- AGVnanobody mutant AG’ACE)

- (AGnanobody—spikc wT AG’nanobody wr AGACE)

= (A Gnanubody—spike

mutant

= (AGnanobody—spike mutant AGnanobody—spike WT)
+ (AGnanobody wT AG’nanobody mutatant )
= AG1 + AG2
3

WT: Wild type.

3. Results

3.1 The Activation Process of the SARS-CoV-2 Spike
Protein

Based on the structures of spike trimer in the different
conformational states, Xu et al. [9] revealed the mechanism
of ACE2-induced conformational transitions of S trimer
from the ground prefusion state toward the post-fusion
state. During the S trimer’s activation, the S-protein’s con-
formation transitioned from a “closed” to an “open” state,
with one of its receptor binding domains up, obtaining the
ability to infect host cells. The presence of ACE2 alters
the conformational distribution of the S-protein and pro-
motes its activation, however, these findings lack a struc-
tural/energetic explanation.

In order to understand the energetic mechanism of
spike protein activation, we constructed a series of struc-
tural models of the coupling process of ACE2 approach-
ing and conformational changes of S trimers. First, we ex-
tracted the structures of the three key states of S trimers
from the Cryo-EM structure (PDB ID: 7DF3, 7DK3, and
7DF4) resolved by Xu et al. [9]. After repairing the experi-
mental structures (See methods), we used a targeted molec-
ular simulation (TMD) [39] method to obtain the interme-
diate structures connecting the three states (Fig. 1B) to form
the conformational change trajectory. For the three key
states, we found the optimal binding poses of ACE2 to their
RBD by using a protein-protein docking method, HDOCK
[2]. This method is developed by Huang’s group at the
Huazhong University of Science and Technology. Then,
we identified the center of the ACE2 in the optimal binding
mode as the initial position and pulled ACE2 away along
the S trimers’ rotation symmetry axis (the dashed line in

Fig. 1A). The Y-axis in Fig. 2B represents the distance be-
tween the center of the pulled ACE2 and the center of ACE2
in the initial position (Fig. 1B and Fig. 2). The X-axis rep-
resents the conformational change trajectory of the S trimer
(Fig. 2A). Since the binding position of ACE2 is different
between the three key states, the intermediate conformation
of ACE2 was obtained by an angle-distance interpolation
method (Fig. 1B, See methods). By this modeling, we simu-
lated the complete process that ACE2 gradually approaches
to the S trimer, during the conformation changes of the S
trimer from S-closed to S-open and the S-complex.

We calculated the folding energy of each ACE2-spike
complex and obtained the energy landscape (Fig. 2). The
color indicates the relative folding free energy, with the
point in the upper left corner as the zero point (Fig. 2A).
There are three paths depicted as white lines on the energy
landscape (Fig. 2A). Path 1 indicates that, when ACE2 is far
enough away (100 A) from the S trimer, the conversion of
the spike protein to the activate conformation (S-complex)
requires crossing a larger energy barrier. The result is con-
sistent with the conclusions we obtained from our previ-
ous calculation that the energy barrier is 25.44 kcal/mol of
spike conformational change in the absence of ACE2 [40].
Path 2 demonstrates the energy change resulting from the
approach of ACE2 when the S trimer conformation does not
change. The lower left corner of the energy landscape indi-
cates that ACE2 has a stable interaction with the spike pro-
tein in the S-closed state. In the S-closed state, the surface
of the spike is densely packed with glycan ligands [3,41].
The glycan ligands block the binding pathway of ACE2
near the region (the gray region in Fig. 2A). According to
the energy profile, path 3 is the most reasonable pathway
which the spike protein will take. As ACE2 approaches,
the conformation of spike protein bypasses the high-energy
barrier region to reach the S-open state, where ACE2 can
bind to the spike protein. The spike protein continues to
convert to the activated S-complex state (Supplementary
Movie 1). We extracted the energy profile of the path 3 and
identified three possible energy barriers (Fig. 2B). These
three energy barriers are lower than the barrier in the ab-
sence of ACE2 (25.44 kcal/mol), which confirms the in-
duction role of ACE2 in the activation of the spike protein.
We also calculated the change of energy barriers when in-
troducing the mutations of the Omicron variant to the spike
protein. The result shows that the mutations led to signifi-
cant decreases in all three energy barriers (Fig. 2B). In ad-
dition, we also calculated the change of the energy barrier
for other SARS-CoV-2 variants (Supplementary Fig. 1).
Compared with the wild-type, almost all the energy barriers
are decreased from other SARS-CoV-2 variants. This indi-
cates that the spike protein is more readily activated in the
SARS-CoV-2 variants and may explain the high transmis-
sion of this variant.

Overall, we calculated a 2D energy landscape, iden-
tified a least energy pathway from the S-closed to the S-
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Fig. 2. The energetics of the activation of SARS-CoV-2. (A) The energy landscape of the activation of spike protein coupling with the

distance of ACE2. The gray region indicates the area that is covered by glycan ligands. The Y-axis represents the distance between the

center of the pulled ACE2 and the center of ACE2 in the initial position (see Fig. 1B). The X-axis represents the conformational change

trajectory of the S trimer, from S-closed to S-open and then to S-complex. (B) The energy profile of Path 3 and the comparison of the

energy barrier during the activation process between the wild-type and omicron variant (inset figure).

complex and calculated the changes of the energy barrier
of all the SARS-CoV-2 variants. Our results suggest that
the distance between the ACE2 and the spike protein is
vital for spike protein activation. Compared to the wild
type, the new coronavirus variant has a lower energy bar-
rier, which can explain why the new variants show higher
transmissibility. Moreover, these new variants have higher
viral infectivity, and higher potential for immune evasion.
Therefore, it is necessary to design a vaccine against these
new variants. Stable and potent nanobodies that target the
RBD of SARS-CoV-2 are promising therapeutics to help
neutralize the new variants. The RBD of the spike protein
is a prime target for therapeutic nanobodies. By blocking
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the interaction between the ACE2 and the spike protein,
nanobodies can inhibit the entry of SARS-CoV-2. Thus,
it is important for us to identify key residues of the RBD in
the spike protein for nanobody binding.

3.2 Identify Key Residues of the RBD in the Spike Protein
for Nanobody Binding

The region of the RBD surface in contact with
nanobodies differs between the structures. Therefore, it
is necessary to explore the detailed structural information
of their epitopes and binding modes to the viral spike pro-
tein. To compare the nanobodies-interacting residues on the
SARS-CoV-2 RBD, we obtained the spike protein of the
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Fig. 3. The interaction mode and the binding free energy between the spike protein and nanobodies. (A) The binding sites on

the spike protein of different nanobodies. (B) The binding free energy of nanobodies. (C) The key residues of spike protein binding to
four high-affinity nanobodies. (D) The binding interface of the highest affinity nanobody (PDB ID: 7KSG) and spike protein. The same
residues in the interacting interface of the nanobody-spike complex are highlighted by different colors. Green indicates the same residues
appear in the 7B17, 7KSG, and 7C8W; purple indicates the same residues present in the 7B17, 7KSG, 7C8W, and 7NIT; pink indicates
the identical residues appear in the 7KSG, and 7C8W and 7NIT. Key residues are shown in stick representations.

SARS-CoV-2 at the “S-complex” state (PDB ID: 7DF4),
which contains an “up” conformation of the RBD. Steric ef-
fects play an important role in blocking the ACE2 binding to
spike by nanobodies. When nanobodies bind to the side sits,
the nanobodies cannot generate sufficient steric hindrance
to block the interaction between ACE2 and the spike protein
[42]. Furthermore, the resolved crystal structures of those
nanobodies binding to the side sites only have the structure
“up” conformation of the RBD, and not the whole structure
of the spike protein. When we superimposed them to the
wild type, their binding sites spatially clash with the rest
of the structures of the spike protein. Thus, in this study,
we only considered the binding sites in the top positions of
the RBD. In this study, 14 different nanobodies were used
to identify the nanobody binding sites of the spike protein.
All of them targeted the RBD by aligning the “up” RBD
structure in the spike protein (Fig. 3A). The PDB ID of
all 14 nanobodies are 6ZHD, 6ZXN, 7B17, 7B18, 7C8YV,
7C8W, 7KGK, 7KSG, 7LXS, 7TMDW, 7N9A, 7N9T, 7TPR,
and 7VBN respectively [19,21,29,43—-47].

The results for the binding free energy among these 14

different nanobodies are shown in Fig. 3B. They all show
high binding affinity to the wild SARS-CoV-2. We then se-
lected four nanobodies with the highest affinity (PDB ID:
7B17, 7C8W, 7KSG, and 7NIT) to further analyze their
binding modes. As shown in Fig. 3C, we counted all the
residues of the spike protein at the RBD-nanobodies inter-
faces to find the key residues that drive the binding pro-
cess. As expected, many interacting residues are identi-
cal between different nanobodies. Five identical residues
(Y449, 1452, E484, F490, and L.492) appeared in all the in-
terfaces of these four high-binding nanobodies. In the inter-
section of the three high-binding nanobodies, twelve iden-
tical residues including G446, 1455, F456, G485, F486,
Y489, Q493, S494, Y495, G496, Q498, and N501, ap-
pear in the interfaces of 7B17, 7KSG, and 7C8W, while
only three identical residues (Y351, N450, and T470) are
present in the interfaces of 7KSG, 7C8W, and 7N9T. There
is no identical residue in the interfaces of 7B17, 7KSG, and
7C8W, or the interfaces of 7KSG, 7C8W, and 7N9T, or the
interfaces 7B17, 7C8W, and 7NO9T. In total, there are 20
same residues present in at least three different interfaces of
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N107K, H109K, Y110E, C112D, S113K, M116D, and Y118D in CDR3, 17 mutations were selected for further optimization (circled by

black dashed box).

high-binding nanobodies. These residues are key sites that
contribute to the high nanobody-binding affinity of SARS-
CoV-2. Among them, residues G446, Y449, 1455, F456,
F486, Y489, Q493, G496, Q498, and N501 also are the key
sites within the RBD involved in ACE2 binding [48,49].
Among these 14 different nanobodies, 7KSG has the high-
est binding affinity (AGpinging = —25.07 kcal/mol). The
interface of the 7KSG-spike complex also contains all 20
key residues, which are critical sites for nanobody binding
(Fig. 3D). Therefore, we chose 7KSG as an initial template
for further nanobody optimization. The details of the struc-
ture of 7KSG are shown in Supplementary Fig. 2.

3.3 Mutation Impacts on SARS-CoV-2 Nanobodies

To better understand whether there is any connection
between these 14 nanobodies, we carried out multiple se-
quence alignments (MSA) to further understand the simi-
larity and differences among these nanobodies. The MSA
was performed using the Kalign web server of EMBL-EBI
services [50]. As shown in Fig. 4A, all nanobodies are
very similar to each other. The differences among these 14
nanobodies are mainly concentrated in the CDR1, CDR2,
and CDR3.

The interface between the spike protein (orange re-
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gions in Fig. 4B) and the nanobody (blue region in Fig. 4B)
is a major factor in determining whether the nanobody can
bind well to the RBD of the spike protein. We introduced
mutations into the nanobody to find positions that can im-
prove the complementarity with higher binding affinity. In
saturated mutagenesis of residues in CDRs (G26-134, S49-
T58, and A97-Y118), a total of 779 mutations were con-
sidered in nanobodies (PDB ID: 7KSG). The binding free
energy changes of the spike protein and mutated nanobod-
ies are shown in Fig. 4C. Overall, most mutations on CDRs
lead to mild negative binding free energy changes. Com-
pared with the mutation in CDR1 and CDR2, most muta-
tions in CDR3 lead to the strengthening of the spike protein
and nanobody binding (blue squares in Fig. 4C). Mutations
A97D, T102E, Y104E, S105E, N107K, H109K, Y110E,
C112D, S113K, M116D, and Y118D in CDR3 all give
rise to negative binding free energy changes for nanobod-
ies, which strengthen the bindings. Some disruptive mu-
tations, such as D30C, G10IN, Y108H, D114A, D115C,
and D117A in CDRs, lead to positive binding free en-
ergy changes (red squares in Fig. 4C), indicating weakening
bindings between the spike protein and nanobodies.

Some residues that are directly in contact with or
close to the spike protein, have a larger impact on increas-
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ing the binding energy than those residues that do not di-
rectly contact the spike protein. For example, residues
T102, Y104, and S105 are closer to the spike protein than
residues G101, D114, and D115 (Supplementary Fig. 3).
After single-site mutation, mutations T102E, Y104K, and
S105E, all lead to the strengthening of the spike protein
and nanobody binding, while mutations on G101, D114,
D115 have little or negative effect on the binding affinity
between the spike protein and nanobodies. We found that
most residues in CDRs were mutated to negatively charged
residues in favor of strengthening the binding affinity. Pre-
vious studies have demonstrated that ACE2 has many neg-
atively charged residues, which resulted in a large increase
in Coulomb’s force between the spike protein and ACE2
[51,52]. Therefore, the more negative charges on the epi-
tope of the nanobodies, the higher the attraction with the
spike protein. This is consistent with our results. Our cal-
culations confirmed the concept that the binding energy
change is a practical approach for predicting mutational ef-
fects.

The variants of SARS-CoV-2 with multiple muta-
tions in RBD are the major factor in the development
of resistance against vaccines. In order to design po-
tent nanobodies with broad-spectrum activity neutralizing
SARS-CoV-2 variants, not only did we consider the sin-
gle mutation, but also the multiple mutations in nanobod-
ies. We selected those residues that make the AAGhinging
is less than —2 kcal/mol after a single mutation. If a
residue is mutated to other residues, and the AAGhinding
of many mutated nanobodies is less than 2 kcal/mol,
then we chose the one with the highest binding affinity.
Therefore, mutations V27D, L29E, Y32E in CDR1, mu-
tations S49D, C50K, S53D, and R57E in CDR2, and mu-
tations A97D, T102E, Y104E, S105E, N107K, H109K,
Y110E, C112D, S113K, M116D, and Y118D in CDR3
were selected for multiple mutations. Next, we split these
mutations into three categories based on their locations
in the nanobodies and built four new mutated nanobod-
ies, 7KSG_CDRI (mutations V27D, L29E, and Y32E in
CDR1), 7KSG_CDR2 (mutations S49D, C50K, S53D, and
R57E in CDR2), 7KSG_CDR3 (mutations A97D, T102E,
Y104E, S105E, N107K, H109K, Y110E, C112D, S113K,
M116D, and Y118D in CDR3), and 7KSG_ALL (all 17
mutations in CDRs). As expected, these four nanobod-
ies exhibit higher binding affinity than the original one
(Supplementary Table 1). 7KSG_ALL had the highest
binding affinity (AAGpinding = —40.04 kcal/mol). The spe-
cific mutation combination can facilitate the optimization
of a potent nanobody with a higher binding affinity.

4. Discussion

Nanobodies are composed of the target-binding frag-
ment of monoclonal antibodies. Compared with traditional
antibodies, nanobodies have more advantages. For exam-
ple, they are significantly smaller in size so they are able to

access and lodge onto conventionally inaccessible regions
on therapeutic targets [53]. Also they exhibit favorable bio-
physical properties. In addition, nanobodies can be effi-
ciently produced in prokaryotic expression systems at a low
cost. Thus, the search for potent nanobody therapies on an
industrial-scale is becoming one of the most feasible strate-
gies for combating SARS-CoV-2.

However, in this early-stage trial, the nanobodies op-
timized in this study are mainly against the wild type of
coronavirus. Considering the future variants and escape
mutants, we will systematically analyze all the variants of
coronavirus through computational approaches in our fu-
ture studies in an attempt to work: find the key sites of their
binding interface, computationally design a single-site sat-
urated mutagenesis library in epitopes of the nanobodies,
calculate their binding free energy, and further perform the
combinations of mutations to design novel, potent nanobod-
ies with broad-spectrum activity. In this study, we only cal-
culated the conformational free energy of the spike protein
in the S-complex state for the nanobody design. The lower
the free energy, the more stable the structure. This suggests
that the spike protein and antibody are not easy to dissoci-
ate. In the future, we will expand from only considering
the binding energy of nanobody and spike protein in the S-
complex state to considering its energy barrier changes ac-
cording to the energy landscape. If the energy barrier of the
designed nanobody is lower than that in the activation path
of the spike protein and ACE2, the designed nanobody may
be a potential candidate against SARS-CoV-2. This may be
a promising method to design stable and potent nanobod-
ies in the future. The SARS-CoV-2 spike protein is com-
posed of the S1 and S2 subunits. Compared to S1 subunit,
the S2 subunit contains more conserved residues [54]. Re-
cent studies [55,56] have found that some antibodies are de-
signed to bind the conserved fusion peptide region adjacent
to the S2 subunit and they can broadly target the SARS-
CoV-2 variants. However, because of the steric constraints
of the spike density, it is hard for antibodies to access these
regions [57]. Therefore, it is important to design nanobod-
ies that can target the conserved and functionally essential
sites on coronaviruses. We plan to study these concepts in
the future.

Artificial intelligence technologies have been widely
applied in the development of antibodies, such as recogniz-
ing antigen epitope [58—61], exploring the sequence space
of CDRs [62—-64], optimizing CDR sequences, predicting
antibody structure [65], predicting binding modes [66], and
predicting the binding affinity of antibodies to antigens
[67]. Many attempts in the development of SARS-CoV-
2 antibodies have also been reported [68—71]. Using ex-
panded data sets and new deep learning technologies result-
ing in the potential for the development of better antibodies
[72]. Our work provides a data set for the relationship of
residue substitutions of nanobody CDRs with the binding
affinity to spike protein. The dataset can be used to de-
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velop models predicting the neutralization ability of artifi-
cially designed antibodies. The sequence space of CDRs is
too large to be fully explored. Therefore, based on the as-
sumption that the effect of multiple point mutations is ap-
proximately equal to the cumulative effect of single point
mutations, we designed a combination of mutations to ob-
tain antibodies with stronger affinity. By using artificial
intelligence methods such as reinforcement learning and/or
genetic algorithm, we can try as many mutation combina-
tions as possible at an affordable computational cost. Over-
all, integrating artificial intelligence technologies expands
our abilities to conduct these research studies.

5. Conclusions

In this work, we constructed a series of intermediate
structures of the coupling process of ACE2 approaching and
S trimers to explore the energy basis of the activation of the
spike protein. By utilizing these structures, we have gener-
ated the free energy profile for conformational changes and
found one possible lower energy pathway. To investigate
the key residues in the nanobody-spike interface, we com-
pared 14 nanobody-bound structures and analyzed the bind-
ing modes of 4 nanobodies with the highest binding affinity.
We found that there are 20 conserved residues (Y449, L.452,
E484, F490, L492, G446, L455, F456, G485, F486, Y489,
Q493, S494, Y495, G496, Q498, N501, Y351, N450, and
T470) appearing at the interface of three or four nanobodies.
Some of these residues (G446, Y449, 1455, F456, F486,
Y489, Q493, G496, Q498, and N501) are also the key sites
within the RBD involved in the interface of the ACE2-spike
complex. Next, we selected the one with the best binding
affinity among the 14 nanobodies as a preliminary structure
to optimize and design novel nanobodies. We introduced a
single-site saturated mutagenesis library of CDR position
to explore the effect of various mutations on binding affin-
ity. After calculating the binding free energy changes fol-
lowed by mutations, we found that most residues in CDRs
were mutated to negatively charged residues in favor of
strengthening the binding affinity. Based on the results
of the single-site mutation, we employed a combination of
mutations on CDRs and designed four novel nanobodies.
The optimized nanobodies all exhibit higher binding affin-
ity than the original ones.

In conclusion, studying the mechanism of the activa-
tion process gives us a more comprehensive understanding
of the coronavirus infection and immune evasion. Identify-
ing the key residues in the interface between the nanobody
and the spike protein can provide useful information for un-
derstanding the binding mechanism of the nanobody-spike
complex. Our results suggest that this approach can be a
promising method to develop nanobodies with high binding
affinity and broad-spectrum activity to neutralize SARS-
CoV-2 variants.

&% IMR Press

Availability of Data and Materials

The datasets used during the current study are avail-
able from the corresponding author on reasonable request.

Author Contributions

XZ and KA designed the research study. XZ, KA, JY,
and PX performed the research. XZ and KA analyzed the
data and drafted the manuscript. CB provided help and ad-
vice on conception, acquisition of data and supervision. All
authors contributed to editorial changes in the manuscript.
All authors read and approved the final manuscript. All au-
thors have participated sufficiently in the work and agreed
to be accountable for all aspects of the work.

Ethics Approval and Consent to Participate
Not applicable.

Acknowledgment
Not applicable.

Funding

This research was funded by the National Natu-
ral Science Foundation of Youth Fund Project (grant no.
22103066), the 2021 Basic Research General Project of
Shenzhen, China (grant no. 20210316202830001) and
Warshel Institute for Computational Biology at the Chi-
nese University of Hong Kong, Shenzhen (grant no.
C10120180043).

Conflict of Interest

CB is the founder of Chenzhu Biotechnology Co.,
Ltd.. CB took participated in this research. All authors de-
clare that they have no conflict of interest.

Supplementary Material

Supplementary material associated with this article
can be found, in the online version, at https://doi.org/10.
31083/5.fb12804067.

References

[1] Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus
outbreak of global health concern. Lancet. 2020; 395: 470-473.

[2] Yan Y, Tao H, He J, Huang S. The HDOCK server for in-
tegrated protein-protein docking. Nature Protocols. 2020; 15:
1829-1852.

[3] Casalino L, Gaieb Z, Goldsmith JA, Hjorth CK, Dommer AC,
Harbison AM, et al. Beyond Shielding: The Roles of Glycans in
the SARS-CoV-2 Spike Protein. ACS Central Science. 2020; 6:
1722-1734.

[4] DongY, Dai T, Wei Y, Zhang L, Zheng M, Zhou F. A systematic
review of SARS-CoV-2 vaccine candidates. Signal Transduction
and Targeted Therapy. 2020; 5: 237.

[5] KeZ, OtonJ, QukK, Cortese M, Zila V, McKeane L, et al. Struc-
tures and distributions of SARS-CoV-2 spike proteins on intact
virions. Nature. 2020; 588: 498-502.


https://doi.org/10.31083/j.fbl2804067
https://doi.org/10.31083/j.fbl2804067
https://www.imrpress.com

(6]

(7]

(8]

(9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

(21]

[22]

(23]

10

Wang Q, Zhang Y, Wu L, Niu S, Song C, Zhang Z, et al. Struc-
tural and Functional Basis of SARS-CoV-2 Entry by Using Hu-
man ACE2. Cell. 2020; 181: 894-904.¢9.

Tortorici MA, Walls AC, Lang Y, Wang C, Li Z, Koerhuis D, et
al. Structural basis for human coronavirus attachment to sialic
acid receptors. Nature Structural & Molecular Biology. 2019;
26: 481-489.

Walls AC, Park Y, Tortorici MA, Wall A, McGuire AT, Veesler
D. Structure, Function, and Antigenicity of the SARS-CoV-2
Spike Glycoprotein. Cell. 2020; 181: 281-292.¢6.

Xu C, Wang Y, Liu C, Zhang C, Han W, Hong X, et al. Confor-
mational dynamics of SARS-CoV-2 trimeric spike glycoprotein
in complex with receptor ACE2 revealed by cryo-EM. Science
Advances. 2021; 7: eabe5575.

V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus
biology and replication: implications for SARS-CoV-2. Nature
Reviews Microbiology. 2021; 19: 155-170.

Hosseindokht M, Bakherad H, Zare H. Nanobodies: a tool to
open new horizons in diagnosis and treatment of prostate cancer.
Cancer Cell International. 2021; 21: 580.

Ardekani LS, Gargari SLM, Rasooli I, Bazl MR, Mohammadi
M, Ebrahimizadeh W, ef al. A novel nanobody against urease
activity of Helicobacter pylori. International Journal of Infec-
tious Diseases. 2013; 17: ¢723-¢728.

Bakherad H, Gargari SLM, Sepehrizadeh Z, Aghamollaei H,
Taheri RA, Torshabi M, et al. Identification and in vitro char-
acterization of novel nanobodies against human granulocyte
colony-stimulating factor receptor to provide inhibition of G-
CSF function. Biomedicine & Pharmacotherapy. 2017; 93: 245—
254.

Bakherad H, Mousavi Gargari SL, Rasooli I, Rajabibazl M, Mo-
hammadi M, Ebrahimizadeh W, et al. In vivo neutralization of
botulinum neurotoxins serotype E with heavy-chain camelid an-
tibodies (VHH). Molecular Biotechnology. 2013; 55: 159-167.
Hu Y, Liu C, Muyldermans S. Nanobody-Based Delivery Sys-
tems for Diagnosis and Targeted Tumor Therapy. Frontiers in
Immunology. 2017; 8: 1442.

Muyldermans S. Nanobodies: natural single-domain antibodies.
Annual Review of Biochemistry. 2013; 82: 775-797.

Zare H, Rajabibazl M, Rasooli I, Ebrahimizadeh W, Bakherad
H, Ardakani LS, et al. Production of nanobodies against
prostate-specific membrane antigen (PSMA) recognizing
LnCaP cells. The International Journal of Biological Markers.
2014; 29: e169-e179.

Custodio TF, Das H, Sheward DJ, Hanke L, Pazicky S, Pieprzyk
J, et al. Selection, biophysical and structural analysis of syn-
thetic nanobodies that effectively neutralize SARS-CoV-2. Na-
ture Communications. 2020; 11: 5588.

Hanke L, Vidakovics Perez L, Sheward DJ, Das H, Schulte T,
Moliner-Morro A, et al. An alpaca nanobody neutralizes SARS-
CoV-2 by blocking receptor interaction. Nature Communica-
tions. 2020; 11: 4420.

Huo J, Le Bas A, Ruza RR, Duyvesteyn HME, Mikolajek H,
Malinauskas T, et al. Neutralizing nanobodies bind SARS-CoV-
2 spike RBD and block interaction with ACE2. Nature Structural
& Molecular Biology. 2020; 27: 846-854.

Koenig P, Das H, Liu H, Kiimmerer BM, Gohr FN, Jenster L, et
al. Structure-guided multivalent nanobodies block SARS-CoV-
2 infection and suppress mutational escape. Science. 2021; 371:
eabe6230.

Schoof M, Faust B, Saunders RA, Sangwan S, Rezelj V, Hoppe
N, et al. An ultrapotent synthetic nanobody neutralizes SARS-
CoV-2 by stabilizing inactive Spike. Science. 2020; 370: 1473—
1479.

Valenzuela Nieto G, Jara R, Watterson D, Modhiran N, Amarilla
AA, Himelreichs J, et al. Potent neutralization of clinical iso-

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

lates of SARS-CoV-2 D614 and G614 variants by a monomeric,
sub-nanomolar affinity nanobody. Scientific Reports. 2021; 11:
3318.

Wrapp D, De Vlieger D, Corbett KS, Torres GM, Wang N, Van
Breedam W, et al. Structural Basis for Potent Neutralization of
Betacoronaviruses by Single-Domain Camelid Antibodies. Cell.
2020; 181: 1004-1015.e15.

Xiang Y, Nambulli S, Xiao Z, Liu H, Sang Z, Duprex WP, et
al. Versatile and multivalent nanobodies efficiently neutralize
SARS-CoV-2. Science. 2020; 370: 1479-1484.

Xu J, Xu K, Jung S, Conte A, Lieberman J, Muecksch F, et
al. Nanobodies from camelid mice and llamas neutralize SARS-
CoV-2 variants. Nature. 2021; 595: 278-282.

Zhou D, Duyvesteyn HME, Chen C, Huang C, Chen T, Shih
S, et al. Structural basis for the neutralization of SARS-CoV-2
by an antibody from a convalescent patient. Nature Structural &
Molecular Biology. 2020; 27: 950-958.

Nambulli S, Xiang Y, Tilston-Lunel NL, Rennick LJ, Sang Z,
Klimstra WB, et al. Inhalable Nanobody (PiN-21) prevents and
treats SARS-CoV-2 infections in Syrian hamsters at ultra-low
doses. Science Advances. 2021; 7: eabh0319.

Pymm P, Adair A, Chan L, Cooney JP, Mordant FL, Allison
CC, et al. Nanobody cocktails potently neutralize SARS-CoV-
2 D614G N501Y variant and protect mice. Proceedings of the
National Academy of Sciences of the United States of America.
2021; 118: €2101918118.

Marti-Renom MA, Stuart AC, Fiser A, Sanchez R, Melo F,
Sali A. Comparative protein structure modeling of genes and
genomes. Annual Review of Biophysics and Biomolecular
Structure. 2000; 29: 291-325.

Webb B, Sali A. Comparative Protein Structure Modeling Using
MODELLER. Current Protocols in Bioinformatics. 2016; 54:
5.6.1-5.6.37.

Lee FS, Chu ZT, Warshel A. Microscopic and Semimicroscopic
Calculations of Electrostatic Energies in Proteins by the Polaris
and Enzymix Programs. Journal of Computational Chemistry.
1993; 14: 161-185.

Kamerlin SCL, Vicatos S, Dryga A, Warshel A. Coarse-grained
(multiscale) simulations in studies of biophysical and chemical
systems. Annual Review of Physical Chemistry. 2011; 62: 41—
64.

Vicatos S, Rychkova A, Mukherjee S, Warshel A. An effective
coarse-grained model for biological simulations: recent refine-
ments and validations. Proteins. 2014; 82: 1168—1185.
Vorobyov I, Kim I, Chu ZT, Warshel A. Refining the treatment
of membrane proteins by coarse-grained models. Proteins. 2016;
84: 92-117.

Bai C, Wang J, Mondal D, Du Y, Ye RD, Warshel A. Exploring
the Activation Process of the 52AR-G s Complex. Journal of
the American Chemical Society. 2021; 143: 11044-11051.
Messer BM, Roca M, Chu ZT, Vicatos S, Kilshtain AV, Warshel
A. Multiscale simulations of protein landscapes: using coarse-
grained models as reference potentials to full explicit models.
Proteins. 2010; 78: 1212-1227.

Beroza P, Fredkin DR, Okamura MY, Feher G. Protonation of
interacting residues in a protein by a Monte Carlo method: ap-
plication to lysozyme and the photosynthetic reaction center of
Rhodobacter sphaeroides. Proceedings of the National Academy
of Sciences of the United States of America. 1991; 88: 5804—
5808.

Schlitter J, Engels M, Kriiger P. Targeted molecular dynamics:
a new approach for searching pathways of conformational tran-
sitions. Journal of Molecular Graphics. 1994; 12: 84-89.

Shi D, An K, Zhang H, Xu P, Bai C. Application of Coarse-
Grained (CG) Models to Explore Conformational Pathway of
Large-Scale Protein Machines. Entropy. 2022; 24: 620.

&% IMR Press


https://www.imrpress.com

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

Grant OC, Montgomery D, Ito K, Woods RJ. Analysis of the
SARS-CoV-2 spike protein glycan shield reveals implications
for immune recognition. Scientific Reports. 2020; 10: 14991.
Guo H, Gao Y, Li T, Li T, Lu Y, Zheng L, et al. Structures of
Omicron spike complexes and implications for neutralizing an-
tibody development. Cell Reports. 2022; 39: 110770.

Ahmad J, Jiang J, Boyd LF, Zeher A, Huang R, Xia D, et
al. Structures of synthetic nanobody-SARS-CoV-2 receptor-
binding domain complexes reveal distinct sites of interaction.
The Journal of Biological Chemistry. 2021; 297: 101202.

Gu J, Liu T, Guo R, Zhang L, Yang M. The coupling mecha-
nism of mammalian mitochondrial complex I. Nature Structural
& Molecular Biology. 2022; 29: 172-182.

Hong J, Kwon HJ, Cachau R, Chen CZ, Butay KJ, Duan Z, et al.
Dromedary camel nanobodies broadly neutralize SARS-CoV-2
variants. Proceedings of the National Academy of Sciences of
the United States of America. 2022; 119: €2201433119.

Li T, Cai H, Yao H, Zhou B, Zhang N, van Vlissingen MF,
et al. A synthetic nanobody targeting RBD protects hamsters
from SARS-CoV-2 infection. Nature Communications. 2021;
12: 4635.

Sun D, Sang Z, Kim YJ, Xiang Y, Cohen T, Belford AK, et
al. Potent neutralizing nanobodies resist convergent circulating
variants of SARS-CoV-2 by targeting diverse and conserved epi-
topes. Nature Communications. 2021; 12: 4676.

YiC, Sun X, YeJ, Ding L, Liu M, Yang Z, et al. Key residues of
the receptor binding motif in the spike protein of SARS-CoV-2
that interact with ACE2 and neutralizing antibodies. Cellular &
Molecular Immunology. 2020; 17: 621-630.

Jackson CB, Farzan M, Chen B, Choe H. Mechanisms of SARS-
CoV-2 entry into cells. Nature Reviews. Molecular Cell Biology.
2022; 23: 3-20.

Lassmann T. Kalign 3: Multiple Sequence Alignment of Large
Datasets. Oxford University Press: Oxford. 2020.

LuY, Zhao T, Lu M, Zhang Y, Yao X, Wu G, et al. The Analyses
of High Infectivity Mechanism of Sars-Cov-2 and Its Variants.
COVID. 2021; 1: 666—673.

Xie Y, Karki CB, Du D, Li H, Wang J, Sobitan A, et al.
Spike Proteins of SARS-CoV and SARS-CoV-2 Utilize Dif-
ferent Mechanisms to Bind With Human ACE2. Frontiers in
Molecular Biosciences. 2020; 7: 591873.

Dumoulin M, Conrath K, Van Meirhaeghe A, Meersman F,
Heremans K, Frenken LGJ, et al. Single-domain antibody frag-
ments with high conformational stability. Protein Science. 2002;
11: 500-515.

Premkumar L, Segovia-Chumbez B, Jadi R, Martinez DR, Raut
R, Markmann A, et al. The receptor binding domain of the vi-
ral spike protein is an immunodominant and highly specific tar-
get of antibodies in SARS-CoV-2 patients. Science Immunol-
ogy. 2020; 5: eabc8413.

Dacon C, Tucker C, Peng L, Lee CD, Lin T, Yuan M, et al.
Broadly neutralizing antibodies target the coronavirus fusion
peptide. Science. 2022; 377: 728-735.

Low JS, Jerak J, Tortorici MA, McCallum M, Pinto D, Cassotta
A, et al. ACE2-binding exposes the SARS-CoV-2 fusion peptide
to broadly neutralizing coronavirus antibodies. Science. 2022;

&% IMR Press

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

377: 735-742.

Amitai A. Viral surface geometry shapes influenza and coron-
avirus spike evolution through antibody pressure. PLoS Com-
putational Biology. 2021; 17: €1009664.

Chen B, Khodadoust MS, Olsson N, Wagar LE, Fast E, Liu CL,
et al. Predicting HLA class II antigen presentation through in-
tegrated deep learning. Nature Biotechnology. 2019; 37: 1332—
1343.

Mason DM, Friedensohn S, Weber CR, Jordi C, Wagner B,

Meng SM, et al. Optimization of therapeutic antibodies by pre-
dicting antigen specificity from antibody sequence via deep

learning. Nature Biomedical Engineering. 2021; 5: 600-612.
Tubiana J, Schneidman-Duhovny D, Wolfson HJ. ScanNet: an
interpretable geometric deep learning model for structure-based
protein binding site prediction. Nature Methods. 2022; 19: 730—
739.

Xu Z, Davila A, Wilamowski J, Teraguchi S, Standley DM. Im-
proved Antibody-Specific Epitope Prediction Using AlphaFold
and AbAdapt. Chembiochem. 2022; 23: ¢202200303.

Lim YW, Adler AS, Johnson DS. Predicting antibody binders
and generating synthetic antibodies using deep learning. MAbs.
2022; 14: 2069075.

Mabhajan SP, Ruffolo J, Frick R, Gray JJ. Towards Deep Learn-
ing Models for Target-Specific Antibody Design. Biophysical
Journal. 2022; 121: 528a.

Prihoda D, Maamary J, Waight A, Juan V, Fayadat-Dilman L,
Svozil D, et al. BioPhi: A platform for antibody design, human-
ization, and humanness evaluation based on natural antibody
repertoires and deep learning. MAbs. 2022; 14: 2020203.
Ruffolo JA, Gray JJ. Fast, Accurate Antibody Structure Predic-
tion from Deep Learning on Massive Set of Natural Antibodies.
Biophysical Journal. 2022; 121: 155a—156a.

Schneider C, Buchanan A, Taddese B, Deane CM. DLAB-Deep
learning methods for structure-based virtual screening of anti-
bodies. Bioinformatics. 2022; 38: 377-383.

Myung Y, Pires DEV, Ascher DB. CSM-AB: graph-based
antibody-antigen binding affinity prediction and docking scor-
ing function. Bioinformatics. 2021; 38: 1141-1143.

Taft JM, Weber CR, Gao B, Ehling RA, Han J, Frei L, et al.
Predictive Profiling of Sars-Cov-2 Variants by Deep Mutational
Learning. bioRxiv. 2021. (preprint)

Shan S, Luo S, Yang Z, Hong J, Su Y, Ding F, et al. Deep learn-
ing guided optimization of human antibody against SARS-CoV-
2 variants with broad neutralization. Proceedings of the National
Academy of Sciences of the United States of America. 2022;
119: €2122954119.

Taft JM, Weber CR, Gao B, Ehling RA, Han J, Frei L, et al. Deep
mutational learning predicts ACE2 binding and antibody escape
to combinatorial mutations in the SARS-CoV-2 receptor-binding
domain. Cell. 2022; 185: 4008-4022.e14.

Zhang R, Ghosh S, Pal R. Predicting binding affinities of emerg-
ing variants of SARS-CoV-2 using spike protein sequencing
data: observations, caveats and recommendations. Briefings in
Bioinformatics. 2022; 23: bbac128.

Shaver JM, Smith J, Amimeur T. Deep Learning in Therapeutic
Antibody Development. Methods in Molecular Biology. 2022;
2390: 433-445.

11


https://www.imrpress.com

	1. Introduction
	2. Materials and Methods
	2.1 Modelling the S Trimers
	2.2 Coarse-Grained (CG) Model and the Total Energy Calculation
	2.3 The Binding Free Energy Change Calculation

	3. Results
	3.1 The Activation Process of the SARS-CoV-2 Spike Protein
	3.2 Identify Key Residues of the RBD in the Spike Protein for Nanobody Binding
	3.3 Mutation Impacts on SARS-CoV-2 Nanobodies

	4. Discussion
	5. Conclusions
	Availability of Data and Materials
	Author Contributions
	Ethics Approval and Consent to Participate
	Acknowledgment
	Funding
	Conflict of Interest
	Supplementary Material

