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Abstract

Background: Mathematical models reflecting the epidemiological dynamics of dengue infection have been discovered dating back to
1970. The four serotypes (DENV-1 to DENV-4) that cause dengue fever are antigenically related but different viruses that are transmitted
by mosquitoes. It is a significant global public health issue since 2.5 billion individuals are at risk of contracting the virus. Methods:
The purpose of this study is to carefully examine the transmission of dengue with a time delay. A dengue transmission dynamic model
with two delays, the standard incidence, loss of immunity, recovery from infectiousness, and partial protection of the human population
was developed. Results: Both endemic equilibrium and illness-free equilibrium were examined in terms of the stability theory of
delay differential equations. As long as the basic reproduction number (R0) is less than unity, the illness-free equilibrium is locally
asymptotically stable; however, when R0 exceeds unity, the equilibrium becomes unstable. The existence of Hopf bifurcation with
delay as a bifurcation parameter and the conditions for endemic equilibrium stability were examined. To validate the theoretical results,
numerical simulations were done. Conclusions: The length of the time delay in the dengue transmission epidemic model has no effect
on the stability of the illness-free equilibrium. Regardless, Hopf bifurcation may occur depending on how much the delay impacts the
stability of the underlying equilibrium. This mathematical modelling is effective for providing qualitative evaluations for the recovery
of a huge population of afflicted community members with a time delay.
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1. Introduction

Dengue fever is a critical feverish illness caused by
mosquito-borne dengue fever viruses (DENV) [1], which
are Flaviviridae flaviviruses. When an infected Aedes ae-
gypti mosquito infects a person, many viruses are transmit-
ted. The transmission of the dengue virus is mostly car-
ried out by humans. A virus-infected mosquito feeds on
the blood of a virus-infected person. The virus spreads to
tissues such as the duct gland from the mosquito’s gut in
8–10 days. The virus appears to have no negative influence
on the mosquito. When a DENV-carrying mosquito bites a
human, both the virus and the mosquito’s secretions are in-
jected into the skin. As it circulates throughout the body, it
clings to and enters white blood cells, multiplying in them.
White blood cells produce a number of signal proteins in re-
sponse, including interferon, which can lead to symptoms
including fever, flu-like symptoms, and excruciating pains.

A variety of organs, including the liver and bone mar-
row, are regularly damaged by serious infections. They also

increase the body’s production of viruses and frequently
cause fluid to leak from the circulation into internal organ
cavities via the membranes of tiny blood vessels. As a con-
sequence, blood pressure drops to a level where many or-
gans are unable to get enough blood due to decreased blood
flow in the blood vessels. The other major effect of dengue
fever is bleeding, which wasmademore likely by bonemar-
row diseases that decreased the quantity of platelets needed
for effective blood coagulation [2].

We provide an associative model that supports the
susceptible-infective-recovery-susceptible (SIRS) in the
human population and the susceptible-infective (SI) in the
vector (mosquito) population while avoiding delays in a
trial to examine the dynamics of infection across consider-
able time periods when susceptible people are born and im-
munity is lost. Because of vector dynamics, the vector pop-
ulation is typically regarded as being in equilibriumwith the
human population [3,4]. The analysis of the delay differen-
tial equation in the epidemic model was studied in [5–7].
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The transmission process between humans and mosquitoes
takes a long time because of the different parasites’ incu-
bation times [2,8]. The dynamics of dengue virus transmis-
sion with a delayed SIVAmodel are studied in [9]. Sefidgar
et al. [10] discussed the nonlinear system of fractional dif-
ferential equations that appear in a model of HIV infection
of CD4+T cells and proposed the LAM for solving the sys-
tem. The results showed the effectiveness and efficiency of
the method. Wei et al. [11] developed a system for a vector-
borne disease with a direct method of transmission, but they
also showed how the addition of a latency inside the host-to-
vector transmitter term will make the system unstable and
cause periodic solutions through Hopf bifurcation.

Omame et al. [12] formulated a mathematical model
for the co-infection, COVID-19 and dengue transmission
dynamics with optimal control and cost-effectiveness anal-
ysis. The results showed that the strategy for implement-
ing control against incident dengue infection is the most
cost-effective in controlling dengue and COVID-19 co-
infection. Omame et al. [13] design a non-integer ordered
model for SARS-CoV-2, dengue, and HIV co-dynamics
to assess the impact of SARS-CoV-2 infection on the dy-
namics of dengue and HIV through fractional derivatives.
They showed, using numerical simulations, that keeping
the spread of SARS-CoV-2 low would have a significant
impact on reducing the co-infections of SARS-CoV-2 and
dengue or SARS-CoV-2 and HIV. Based on SIRS-SI in the
human and vector populations, Wan and Cui [14] presented
a model that utilized two latencies for communication be-
tween humans and vector populations with the standard in-
cidence rate, loss of immunity, and rate of recovery from in-
fectiousness. To explore the possibility of equilibrium sta-
bility and dynamic behavior, Xu and Zhou [15] projected
the dynamics of delayed vector-borne transmission with re-
infection. An epidemic model with vaccination and numer-
ous time delays is taken into account in [16] along with the
stability and Hopf bifurcation analysis. Baleanu and Babak
[17] studied a terminal value problem for nonlinear systems
of generalized fractional differential equations and formu-
lated a classical operator and a related weighted space with
a generalized fractional operator. The results showed the
effects of various choices of weight function on modeling
with a TVP. Nowadays, many authors do their research on
epidemic models [18–20] with various strategies. To take
into consideration the amount of time required for a viral
infection to spread to host and vector populations, Yanxia
et al. [21] design an associated upgraded vector-borne epi-
demic model with two latency periods and reinfection. We
created a newmodel using the information in this article and
included three new parameters, including loss of immunity,
recovery from infectiousness, and partial protection of the
human population.

In this paper, the basic reproduction number for the de-
veloped model was determined, and the existence of equi-
librium was also examined. The aim of the paper is to

explore the stability and Hopf bifurcation of a dynamic
model of dengue transmission that incorporates two de-
lays. The numerical simulations were described, and the
main conceptual outcomes were exhibited. Fig. 1 provides
a schematic overview of this model.

2. Model Formulation
The model considers a uniform mix of human and

mosquito populations, ensuring that every mosquito bite
provides the same possibility of spreading the virus (or
transmitting the virus from an infected human). Because
mosquitoes cannot recover from infection, their infection
period ends when they die, owing to their incredibly short
lifespan. As a result, the mosquito population has a rela-
tively low immunity class, and mortality rates are compa-
rable across all categories.

HN (t) represents the whole human population at time
t, which is divided into three compartments: susceptible hu-
mans SH (t), infectious humans IH (t), and recovered hu-
mans RH (t). So, the entire human population is HN (t) =
SH (t) + IH (t) + RH (t).

Similarly, VN (t) represents the whole mosquito pop-
ulation at time t, which is divided into two compartments:
susceptible vectorSV (t) and infectious vector IV (t). So, the
entire vector population is VN (t) = SV (t) + IV (t).
Assumptions of the model:

(a) The human and vector total population sizes are
considered to be constant. It is expected that new hu-
mans will enter the human population at any time at ΩH

rate through birth or immigration, and those susceptible
mosquitoes will be recruited at a constant rate ΩV .

(b) Depending on the sickness, people shift from one
class to another as their health improves. This infusion
is not contagious since there is no vertical transmission or
immigration of affected persons. When the Aedes aegypti
mosquito bites the host, all people get infected, and dengue
development begins.

(c) Natural death occurs at a rate of dh and dv [21]
(according to their limited life span) for all humans and
mosquitoes respectively, regardless of condition.

(d) Individuals who have recovered in the human pop-
ulation acquire partial immunity (σ) or loss of immunity (ρ)
[21].

(e) Illness mortality rates for humans and mosquitoes
are µh and µv , respectively.

(f) The term e−dhτ1 and e−dvτ2 is the human and
mosquito survival rate [22].

(g) Mosquitoes do not die or become infected by in-
fection.

The system of non-linear differential equations for the
dengue model is

dSH

dt
= ΩH − αβhSH (t− τ1) IV (t− τ1) e

−dhτ1

− dhSH + θIH + ρRH

(1)

2
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Fig. 1. Schematic diagram of dengue transmission.

Fig. 2. When τ1 = τ2 = 0,E∗ of the system Eqn. 7 is locally asymptotically stable. (a) The force of the susceptible population con-
verges to the positive equilibrium value S∗

H = 267.781. (b) The force of the infected population converges to the positive equilibrium
value I∗H = 210.142. (c) The force of the infected vector converges to the positive equilibrium value I∗V = 196.792. (d) Phase diagram
of E∗.
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Fig. 3. When τ1 >0 and τ2 >0, E∗ of the system Eqn. 7 is locally asymptotically stable. (a) The force of the susceptible pop-
ulation converges to the positive equilibrium value S∗

H = 339.886. (b) The force of the infected population converges to the positive
equilibrium value I∗H = 180.022. (c) The force of the infected vector converges to the positive equilibrium value I∗V = 183.872. (d) Phase
diagram of E∗.

dIH
dt

= αβhSH (t− τ1) IV (t− τ1) e
−dhτ1 + σαβhRHIV

− (δ + dh + µh + θ) IH
(2)

dRH

dt
= δIH − σαβhRHIV − (dh + ρ)RH (3)

dSV

dt
= ΩV −αβV SV (t− τ2) IH (t− τ2) e

−dvτ2 −dvSV

(4)

dIV
dt

= αβV SV (t− τ2) IH (t− τ2) e
−dvτ2−(dv + µv) IV

(5)

with the following initial conditions:

SH(ψ) = S0H(ψ), IH(ψ) = I0H(ψ), RH(ψ) = R0H(ψ)

SV (ψ) = S0V (ψ), IV (ψ) = I0V (ψ)

HN (ψ) = H0N (ψ), VN (ψ) = V0N (ψ)

ψ ∈ [−τ, 0], τ = max {τ1, τ2}
(6)

The systems Eqn. 1 to Eqn. 5 is reformulated as

dSH

dt
= ΩH − αβhSH (t− τ1) IV (t− τ1) e

−dhτ1 − dhSH

+ θIH + ρ

(
ΩH

dh
− SH − IH

)
dIH
dt

= αβhSH (t− τ1) IV (t− τ1) e
−dhτ1+

σαβh

(
ΩH

dh
− SH − IH

)
IV − (δ + dh + µh + θ) IH

dIV
dt

= αβV

(
ΩV

dv
− IV (t− τ2)

)
IH (t− τ2) e

−dvτ2

− (dv + µv) IV
(7)

The parameters of the above system Eqn. 7 is de-
scribed in Table 1.

3. Model Analysis
3.1 Positivity and Boundedness Solution of Dengue
Transmission Dynamic Model

The solution of the system Eqn. 7 is usually positive
for positive initial values of the data at all times t ≥0. Es-
pecially, the feasible region is C = { (SH , IH , IV ) ∈ R3

+ |
0 ≤ SH + IH ≤ ΩH

dh
, 0 ≤ IV ≤ ΩV

dv
, SH ≥0, IH ≥0, IV

≥0}.
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Fig. 4. When τ1 = 32.8> τ∗
1 and τ2 = 0, E∗ of the system Eqn. 7 is locally asymptotically stable. (a) The force of the susceptible

population converges to the positive equilibrium value S∗
H = 333.986. (b) The force of the infected population converges to the positive

equilibrium value I∗H = 188.115. (c) The force of the infected vector converges to the positive equilibrium value I∗V = 196.753. (d) Phase
diagram of E∗.

Table 1. Parameters of the model.
Parameter Description

ΩH the rate of human recruitment population
ΩV the rate of mosquito recruitment population
βh infection rate from mosquitoes in humans
βv infection rate from humans in mosquitoes
dh the natural death rate of the human population
dv the natural death rate of the vector population
µh the illness-induced death rate of the human population
µv the illness-induced death rate of the mosquito population
α the biting rate of Aedes aegypti mosquitoes per day
θ the individual rate of recovery for a class susceptible to infection
δ recovery rate of the infected human population
σ partial immunity for people who have recovered from the initial illness
ρ individual rate of immune loss in the human population
τ1 extrinsic incubation period of time delay from susceptible to infectious class in populations of humans
τ2 intrinsic incubation period of time delay from susceptible to infectious class in populations of mosquitoes

Theorem 1
The feasible region C = { (SH , IH , IV ) ∈ R3

+ | 0 ≤
SH + IH ≤ ΩH

dh
, 0 ≤ IV ≤ ΩV

dv
, SH ≥0, IH ≥0, IV ≥0}

is positively-invariant for the system Eqn. 7.
Proof
According to [23,24], it is easy to show that the solu-

tion of the Eqns. 1 to 5 with the initial conditions Eqn. 6 is

distinct and nonnegative for all t ≥0, based on the funda-
mental theory of differential equations.

From Eqns. 1 to 3, the rate of change of whole human
population is given by

H ′
N (t) = ΩH − dhHN − µhIH (8)

5
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Fig. 5. E∗ of the system Eqn. 7 is unstable and a Hopf bifurcation occurring in τ1 = 33 > τ∗
1 and τ2 = 0. (a) The force of the

susceptible population diverges to the positive equilibrium. (b) The force of the infected population diverges to the positive equilibrium.
(c) The force of the infected vector diverges to the positive equilibrium. (d) Phase diagram of E∗.

Without loss of generality, this equation can be ex-
pressed as an inequality as

H ′
N (t) ≤ ΩH − dhHN

HN (t) ≤ ΩH

dh
+

[
H0N −

(
ΩH

dh

)]
exp (−dht) .

Then, lim
t→∞

HN (t) ≤ ΩH

dh .
Therefore, HN (t) is bounded.
From Eqns. 4 to 5, the rate of change of whole

mosquito population is given by

V ′
N (t) = ΩV − dvVN − µvIV (9)

Without loss of generality, this equation can be ex-
pressed as an inequality as

V ′
N (t) ≤ ΩV − dvVN

VN (t) ≤ ΩV

dv
+

[
V0N −

(
ΩV

dv

)]
exp (−dvt) .

Then, lim
t→∞

VN (t) ≤ ΩV

dv .
Therefore, VN (t) is bounded.
By limits theorem, 0 ≤ SH + IH ≤ HN (t) <(

ΩH

dh

)
+ ϵ holds for all t → ∞.

Then for any, ϵ >0, 0 ≤ SH + IH ≤ ΩH

dh
.

Similarly, 0 ≤ IV ≤ ΩV

dv
.

Thus, the region C = { (SH , IH , IV ) ∈ R3
+ | 0 ≤

SH + IH ≤ ΩH

dh
, 0 ≤ IV ≤ ΩV

dv
, SH ≥0, IH ≥0, IV ≥0}

is positively-invariant for the system (Eqn. 7).

3.2 Basic Reproduction Number of the Model
The illness-free equilibrium, E0 = {S0

H ,I0H ,I0V } is the
model’s steady state in the lack of infection or illness. All
the components of E0 are determined from the first three
equations of system Eqn. 7 by putting the RHS equal to zero
and assuming that I0H = 0 and I0V = 0, where I0H and I0V refer
to the equilibrium points.

Thus,

E0 =

{
ΩH

dh + ρ
, 0, 0

}
(10)

The next generation matrix technique, as designated
by Diekmann et al. [25], was used to determine the basic
reproduction number R0.

From system Eqn. 7, the illness states A and the trans-
fer states B are given by

A=
[
αβhSHIV e

−dhτ1

αβvSV IHe
−dvτ2

]
and B=[

( δ + dh + µh + θ )IH
(dv + µv)IV

]
respectively.

6
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Fig. 6. When τ1 = 0 and τ2 = 36 < τ∗
2, the system Eqn. 7 is unstable and a Hopf bifurcation occurring. (a) The force of the

susceptible population diverges to the positive equilibrium. (b) The force of the infected population diverges to the positive equilibrium.
(c) The force of the infected vector diverges to the positive equilibrium. (d) Phase diagram of E∗.

Using Jacobianmatrix, the partial derivatives of A and
B with respect to IH and IV at the illness-free equilibrium
Eqn. 10, are given by

F =

[
0 αβh

ΩH

dh+ρe
−dhτ1

αβv
ΩV

dv
e−dvτ2 0

]
and V =[

( δ + dh + µh + θ ) 0

0 (dv + µv)

]
Now the next generation matrix FV −1 can be calcu-

lated as

FV −1 =

 0 αβhΩHe−dhτ1

(dh+ρ)(dv+µv)
αβvΩV e−dvτ2

dv( δ+dh+µh+θ ) 0

 (11)

The eigenvalues of Eqn. 11 are used to derive the basic
reproduction number, which is

R0 =
α2βhβvΩHΩV e

−dhτ1e−dvτ2

(dh + ρ) dv (dv + µv) (δ + dh + µh + θ)
(12)

3.3 Endemic Equilibrium Existence of the Model

The endemic equilibrium E∗, is the model’s stable
state in which the illness continues. All the components
of E∗ are obtained from the system Eqn. 7 by framing the
right - hand side equal to zero.

Thus,

E∗ = {S∗
H , I

∗
H , I

∗
V } (13)

where

S∗
H=

(
(

ΩH
dh

)
ρ+ΩH+(θ−ρ)I∗

H)(αβvI
∗
He−dvτ2+(dv+µv))

(dh+ρ)(αβvI
∗
He−dvτ2+(dv+µv))+

(
ΩV
dv

)
α2βhβvI

∗
He−dhτ1e

−dvτ2

I∗V =
(

ΩV
dv

)
αβvI

∗
He−dvτ2

αβvI
∗
He−dvτ2+(dv+µv)

I∗H is the positive root of the quadratic equation shown
below

X1I
∗
H

2 +X2I
∗
H +X3 = 0 (14)

where
X1 = αβv

2e−2dvτ2 [αβh

(
ΩV

dv

)
e−dhτ1−dh](δ + ρ+

dh + µh)+ σα2βhβv

(
ΩV

dv

)
e−2dvτ2

[αβhβv

(
ΩV

dv

)
e−dhτ1 − (θ + dh)]

−αβv
2e−2dvτ2 [ρ(δ + θ)+µh(ρ+ dh)]

X2 = α2βhβv
2
(

ΩV

dv

)
e−2dvτ2 [ρ

(
ΩH

dh

)
e−dhτ1

σ(
(

ΩH

dh

)
dh − ΩH )+ e−dhτ1 (σαβh

(
ΩH

dh

)(
ΩV

dv

)
− ΩH )]

−αβv(dv + µv)(δ+ θ+ ρ+ dh)[2dh+αβh

(
ΩV

dv

)
e−dhτ1 ]

e−dvτ2 − αβv(dv + µv) e
−dvτ2 [2µh(ρ + dh)+σαβh(θ +

7
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Fig. 7. When τ1 = 0 and τ2 = 37 > τ∗
2, E∗ of the system Eqn. 7 is locally asymptotically stable. (a) The force of the susceptible

population converges to the positive equilibrium value S∗
H = 280.148. (b) The force of the infected population converges to the positive

equilibrium value I∗H = 197.053. (c) The force of the infected vector converges to the positive equilibrium value I∗V = 180.947. (d) Phase
diagram of E∗.

dh)
(

ΩV

dv

)
]−2αβvρ[dv(δ+ θ)+µv(δ+ θ+ ρ+ dh)]e−dvτ2

X3 = α2βhβv(dv +

µv)(ρe−dhτ1+σdh)
(

ΩH

dh

)(
ΩV

dv

)
e−dvτ2+

α2βhβvΩH

(
ΩV

dv

)
e−dvτ2 [e−dhτ1 (1+µv)−σ(dv +

µv)]−(ρ+ dh)(δ + ρ+ dh + µh)(dv + µv)
2

I1 =
−X2+

√
X2

2−4X1X3

2X1
and I2 =

−X2−
√

X2
2−4X1X3

2X1

be the roots of Eqn. 14.
Clearly, we haveX1 >0,X2 >0 andX3 >0 ifR0 <1,

and X1 >0, X3 <0 if R0 >1. It is obvious that I1 and I2
are negative roots if R0 <1, and that I1 is positive roots
if R0 >1. The following result is drawn from the relation-
ship between the roots Eqn. 14 and the equilibrium ofmodel
Eqn. 7.

“If R0 <1, then the system (Eqn. 7) holds illness-
free equilibrium E0. If R0 >1, then the system (Eqn. 7)
holds illness-free equilibrium E0 and an endemic equilib-
rium E∗”.

4. Stability analysis and Hopf Bifurcation
Theorem 2
For τ1, τ2 ≥0, illness-free equilibrium E0 is locally

asymptotically stable if R0 <1 and is unstable if R0 >1.
Proof

The Jacobian matrix of the system Eqn. 7 at E0 is

(15)

The characteristic equation of Eqn. 15 is given by

(16)

One negative eigen value is λ = −(dh + ρ) and the
remaining eigen values of the characteristic equation are

λ2 + [(δ + dh + µh + θ) + (dv + µv)]λ+ (δ + dh + µh + θ)

(dv + µv)

[
1−R0e

−λ(τ1+τ2)

(
1 +

σρ

dh
edhτ1eλτ1

)]
= 0

(17)

⇒ λ2 +Xλ+ Y = 0

Where X = (δ + dh + µh + θ) + (dv + µv)

8
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Y = (δ + dh + µh + θ) (dv + µv)[
1−R0e

−λ(τ1+τ2)

(
1 +

σρ

dh
edhτ1eλτ1

)]

The quadratic equation is the same in the ODE case
for τ1 = τ2 = 0. In that case, the real component of every
eigenvalue of the characteristic equation is already nega-
tive. The Hurwitz criterion states that when τ1 = τ2 = 0,
the illness-free equilibrium E0 at R0 <1 is locally asymp-
totically stable, however, when R0 >1, it is unstable.

Let us first considerR0>1. It is simple to demonstrate
that Eqn. 17 has a real positive root. Rearranging Eqn. 17
in the form

(18)

Suppose λ is real. From Eqn. 18, the LHS and RHS
are denoted by A(λ) and B(λ) respectively. We have A(0)
= 0 and lim

λ→∞
A(λ) =∞.

Here, B(λ) is a decreasing function of λ

As a result, Eqn. 17 has a non-negative real root for
any τ1 ≥0 and τ2 ≥0, and the illness-free equilibrium is
destabilizing.

Hence E0 is locally asymptotically stable in system
Eqn. 7 if R0 <1 and is unstable if R0 >1.

Theorem 3

For τ1= τ2 = 0, the endemic equilibriumE∗ is locally
asymptotically stable if R0 >1 and is unstable if R0 <1.

Proof

The Jacobian matrix of the system Eqn. 7 of E∗ is

(19)

The characteristic equation of Eqn. 19 is given by

λ3 + k2λ
2 + k1λ+ k0 +

(
l2λ

2 + l1λ+ l0
)
e−λτ1+(

q2λ
2 + q1λ+ q0

)
e−λτ2 + (r1λ+ r0) e

−λ(τ1+τ2) = 0
(20)

where

When τ1 = 0 and τ2 = 0
The characteristic Eqn. 20 becomes

λ3 +A1λ
2 +A2λ+A3 = 0 (21)

where, A1 = k2 + l2 + q2, A2 = k1 + l1 + q1 + r1,
A3 = k0 + l0 + q0 + r0

According to the Routh-Hurwitz criterion, the roots of
the characteristic Eqn. 21 does not have a positive real part
if and only if the coefficients of Ai are non negative and
matrix Hi >0, for i = 0, 1, 2, 3. From this A1A2−A3

>0.
Hence the endemic equilibrium E∗ is locally asymp-

totically stable when τ1 = τ2 = 0.
Theorem 4
For τ1 >0 and τ2 = 0, the endemic equilibrium E∗ is

locally asymptotically stable ifR0 >1 and is unstable ifR0

<1 [26,27].
Proof
When τ1 >0 and τ2 = 0, the characteristic Eqn. 20

becomes

λ3+B1λ
2+B2λ+B3+

(
C1λ

2 + C2λ+ C3

)
e−λτ1 = 0

(22)
whereB1 = k2+q2,B2 = k1+q1,B3 = k0+q0,C1 = l2,
C2 = l1 + r1 and C3 = l0 + r0

Suppose that λ = iω0, ω0 >0 then the Eqn. 22 be-
comes

B1ω
2
0 −B3 =

(
C3 − C1ω

2
0

)
cosω0τ1 + C2ω0 sinω0τ1

ω3
0 −B2ω0 = −

(
C3 − C1ω

2
0

)
sinω0τ1 + C2ω0 cosω0τ1

(23)
It follows that

ω6
0 +

(
B2

1 − 2B2 − C2
1

)
ω4
0 +

(
B2

2 − C2
2 − 2B3B1 + 2C3C1

)
ω2
0 +B2

3 − C2
3 = 0

(24)

9
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Denote in z = ω0
2 in Eqn. 24

g(z) = z3 +
(
B2

1 − 2B2 − C2
1

)
z2+(

B2
2 − C2

2 − 2B3B1 + 2C3C1

)
z +

(
B3

2 − C2
3

)
= 0
(25)

g(z) = z3 + h3z
2 + h2z + h1 = 0 (26)

where h3 = B1
2−2B2−C1

2, h2 = B2
2−C2

2−2B3B1+

2C3C1, h1 = B3
2 − C3

2

It is easy to get that g′
(z) = 3z2 + 2h3z +

h2 = 0 has two roots z1 =
(−h3+

√
h3

2−3h2)

3 and z2 =

(−h3−
√

h3
2−3h2)

3

Clearly, if h1 ≥0, h2 ≥0 and h3 ≥0, then Eqn. 26 has
a negative real root. As a result, Eqn. 22 has negative real
parts and has no pure imaginary roots.

Suppose that Eqn. 26 has positive root ω0. A pair
of imaginary roots (±iω0), appear in the characteristic
Eqn. 22. Let λ(τ1) = η(τ1)+iω0(τ1) be the eigenvalues
Eqn. 22 for a certain starting value of the bifurcation pa-
rameter τ1 then we have η (τn1k) = 0, ω0 (τ

n
1k) = ω0.

Denote τn1k = θ1+2nπ
ω0k

, n = 0, 1, 2, …. Where θ1 ∈
[0, 2π]

From Eqn. 23, we get
sin (θ1) = ω5

0C1+ω3
0(B1C2−C3−C1B2)+ω0(C3B2−B3C2)

(C3−C1ω2
0)

2+C2
2ω

2
0

cos (θ1) =−ω4
0(B1C1−C2)+ω2

0(C2B2−B1C3−B3C1)+B3C3

(C3−C1ω2
0)

2+C2
2ω

2
0

The following transversality condition also verified.
d

dτ1
Re(λ(τ))∥τ=τ1 = d

dτ1
η(τ)

∣∣∣
τ=τ1

> 0 holds.

By continuity, when τ1 > τ∗1 and the real part of λ(τ1)
turns positive, the steady state is unstable. Furthermore, the
Hopf bifurcation occurs when τ1 reaches the crucial value
in τ∗1 [23]. When τ2 = 0, τ1 > τ2, the equilibrium E∗ is
asymptotically stable. However, if τ∗1 remains in a certain
right neighbourhood of τ1, the equilibriumE∗ becomes un-
stable.

Hence, the Hopf bifurcation occurs when τ∗1 = τ1.
Theorem 5
For τ1 = 0 and τ2 >0, the endemic equilibrium E∗

is locally asymptotically stable if R0 >1 and is unstable
if R0 <1. Hopf bifurcation occurs when τ2 = τ∗2, at the
equilibrium E∗ of the system Eqn. 7.

Proof
When τ1 = 0 and τ2 >0, the characteristic Eqn. 20

becomes

λ3+D1λ
2+D2λ+D3+

(
E1λ

2 + E2λ+ E3

)
e−λτ2 = 0

(27)
where D1 = k2 + l2, D2 = k1 + l1, D3 = k0 + l0,

E1 = q2, E2 = q1 + r1 and E3 = q0 + r0

Suppose that λ = iω1, ω1 >0 then the Eqn. 27 be-

comes

D1ω
2
1 −D3 =

(
E3 − E1ω

2
1

)
cosω1τ2 + E2ω1 sinω1τ2

ω3
1 −D2ω1 = −

(
E3 − E1ω

2
1

)
sinω1τ2 + E2ω1 cosω1τ2

(28)
It follows that

ω6
1 +

(
D2

1 − 2D2 − E2
1

)
ω4
1 +

(
D2

2 − E2
2 − 2D3D1 + 2E3E1

)
ω2
1

+D2
3 − E2

3 = 0
(29)

Denote z = ω1
2 in Eqn. 29

f(z) = z3 +
(
D2

1 − 2D2 − E1
2
)
z2+(

D2
2 − E2

2 − 2D3D1 + 2E3E1

)
z +

(
D2

3 − E2
3

)
= 0
(30)

Let j3 = D2
1−2D2−E2

1 , j2 = D2
2−E2

2−2D3D1+

2E3E1, j1 =
(
D3

2 − E2
3

)
then Eqn. 30 is

f(z) = z3 + j3z
2 + j2z + j1 = 0 (31)

It is easy to get that f ′
(z) = 3z2+2j3z+ j2 = 0 has

two roots z1 =
(−j3+

√
j32−3j2)

3 and z2 =
(−j3−

√
j32−3j2)

3

Clearly, if j1 ≥0, j2 ≥0 and j3 ≥0, then Eqn. 31 has
negative real roots. Hence, Eqn. 27 has negative real parts
and does not have any pure imaginary roots.

If we assume that Eqn. 31, z1, z2 and z3 are three posi-
tive roots, then ω1 =

√
z1, ω2 =

√
z2 and ω3 =

√
z3 are three

positive numbers.
From Eqn. 28
cos ω1τ2 =

(D1ω1
2−D3)(E3−E1ω1

2)+E2ω1(ω1
3−D2ω1)

(E3−E1ω1
2)2+E2

2ω1
2

Denote
τn2k = 1

ω1k
arccos

{
(D1ω

2
1−D3)(E3−E1ω

2
1)+E2ω1(ω1

3−D2ω1)
(E3−E1ω2

1)
2
+E2

2ω1
2

}
+

2nπ
ω1k

and τ∗2 = min
1≤k≤m

τ
(0)
2k , ω1 = ωi, i = 1, 2, 3,….m

where ω1 is corresponds to τ∗2.
Let λ(τ2) = η(τ2)+iω1(τ2) be the eigenvalues of the

characteristic Eqn. 27 satisfying η (τn2k) = 0, ω1 (τ
n
2k) =

ω1.
From Eqn. 27, we get ( dλ

dτ2
)
−1 = P1+iP2

P3+iP4

where,

Therefore, Re ( dλ
dτ2

)
−1|λ=iω0

= P1P3+P2P4

P 2
3 +P 2

4

If P1P3+P2P4 ̸= 0 then Re ( dλ
dτ2

)
−1|λ=iω0

̸= 0 hold.
If τ1 = 0 and P1P3 + P2P4 ̸= 0 the E∗ is asymptoti-

cally stable when τ2 ∈ [0, τ∗2).
Hence, the Hopf bifurcation occurs when τ∗2 = τ2.
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5. Numerical Simulations
Theorems 2, 3, 4, and 5 explore the stability of an en-

demic equilibrium, which is important from an epidemio-
logical perspective. The parameter values of the model is
showed in Table 2 (Ref. [3,21]).

Table 2. Parameter and values of the model.
Parameter Value Source

ΩH 9 Yanxia et al. [21]
ΩV 10 Yanxia et al. [21]
βh 0.002 Yanxia et al. [21]
βv 0.005 Yanxia et al. [21]
dh 0.01 Yanxia et al. [21]
dv 0.05 Yanxia et al. [21]
µh 0.05 Hui, Jing-An [3]
µv 0.1 Hui, Jing-An [3]
α 0.3 Yanxia et al. [21]
θ 0.08 Hui, Jing-An [3]
δ 0.2 Assumed
σ 0.8 Yanxia et al. [21]
ρ 0.02 Assumed

By Theorem 3, when , τ1 = τ2 = 0 the sta-
bility of the endemic equilibrium E∗ (267.781, 210.142,
196.792) is converging towards being locally asymptoti-
cally stable (Fig. 2). It is tougher to control the disease as
R0 = 3.17647 > 1 and dengue fever persists in both hu-
man and vector populations.

When τ1 >0, τ2 >0, the stability of the endemic equi-
librium E∗ (339.886, 180.022, 183.872) is converging to-
wards locally asymptotically stable (Fig. 3). As R0 =

0.499459 < 1 is obtained, dengue fever disappears in both
the human and vector populations, making it simpler to stop
the disease’s spread.

By Theorem 4, if τ1 = 32.8 and τ2 = 0, the stability of
the endemic equilibrium E∗ (333.986, 188.115, 196.753)
is converging towards being locally asymptotically stable
(Fig. 4). Dengue fever is more difficult to control as R0 =

2.28821 > 1 and the human and vector populations remain
infected. If τ1>32.8 and τ2 = 0, the stability of the endemic
equilibrium E∗ is diverging towards instability and its E∗

loses stability as τ1 passes through τ∗1(32.9), leading to a
Hopf bifurcation (Fig. 5).

By Theorem 5, if τ1 = 0 and τ2 <36.9, the stability of
the endemic equilibrium E∗ is diverging towards instabil-
ity, resulting in a bifurcation when τ2 passes upon τ∗2 (36.8)
(Fig. 6). If τ1 = 0 and τ2 = 37, the stability of the endemic
equilibrium E∗ (280.148, 197.053, 180.947) is converging
towards being locally asymptotically stable (Fig. 7). As
R0 = 0.499459 < 1 is obtained, dengue fever disappears
in both human and vector populations, making it simpler to
stop the disease’s spread.

In every instance, the stability of the endemic equilib-
rium E∗ is comparatively higher than that of the existing

literature [21], which strengthens the model we have cre-
ated.

6. Conclusions
In this study, positivity and boundedness were veri-

fied for the solution of the dengue transmission dynamic
model. The basic reproduction number R0 was chosen to
ensure the model’s stability. It was established that the two
delayed models’ endemic equilibrium E∗ and illness-free
equilibrium E0 both existed. The steadiness of illness-free
equilibrium was determined for τ1, τ2 ≥0 in terms of R0.
The steadiness of endemic equilibrium was determined for
τ1 = τ2 = 0; τ1 >0 and τ2 = 0; τ1 = 0 and τ2 >0 in terms
of positivity of R0. The local asymptotic stability of the
endemic equilibrium E∗ occurs when τ1 = τ2 = 0. The en-
demic equilibrium becomes unstable and undergoes Hopf
bifurcation if τ2 = 0 and τ1 > τ∗1. Similarly, the endemic
equilibrium becomes unstable and undergoes Hopf bifur-
cation if τ1 = 0 and τ2 < τ∗2. As a result, the endemic
equilibrium is locally asymptotically stable if two delays
are greater than zero. Our numerical simulations clearly
demonstrate that, whereas susceptible and infected popu-
lation levels are initially unstable, they become stable as
time moves on. The length of the delay has no effect on the
stability of the illness-free equilibrium. The Hopf bifurca-
tion might occur nonetheless, depending on how much the
delay affects the underlying equilibrium’s stability. Future
research will expand on this assessment to examine the ef-
fects of a few control measures built into our model. The
best way to control the disease will be examined as well,
taking into account a variety of prevention strategies like
self-defense, medical attention, and insecticide spraying.

Medical Implication of Mathematical Study
In this paper, mosquito-borne dengue fever viruses

(DENV) were studied with the help of two delays. We have
observed the following medical implications as mathemat-
ical observations.

Since the basic reproduction number is given byR0, if
R0 <1, the disease does not survive, and if R0 >1, the dis-
ease keeps spreading, the infection rate will increase. The
results are mostly favorable to R0 >1, but it requires good
medical treatment, and the patients are also required to have
the place very clean, free from stagnant water and unwanted
materials around the shelter, to reduce the reproduction of
dengue-spreading mosquitoes. Bifurcation in mathematical
theory is used to verify the topological structure of the so-
lutions of the system of differential equations. This is not a
quantitative result, but it provides a qualitative assessment
of whether the system is stable or not after some transition
time. Medically, the bifurcations can be understood as a
visualization of the possibility of a group of infective hosts
becoming healthy or not. By our numerical simulations, we
can easily see that initially the populations of susceptibles
and infected were not stable, but as time increased, they be-
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came stable. It clearly shows that, medically, it is possible
to bring society back to being free from dengue.

Other than the basic reproduction number, stability
analysis, and bifurcation analysis, we also like to men-
tion a few points shared by the World Health Organization
(WHO) [28]. DENV is caused by females of the mosquito
species Aedes aegypti and rarely by Albopictus.

Severe dengue is a very deadly disease, as it causes
serious illness and death in some Asian and Latin Amer-
ican countries. It requires management by medical ex-
perts. Though Dengue has various epidemiological struc-
tures (DENV-1, DENV-2, DENV-3 and DENV-4) produced
by the Flaviviridae family of viruses, there is a strong be-
lief that once recovered from this disease, one will have a
lifelong immunity against the same [29].

As we have mentioned, medically, there is no proper
treatment for the later stages of dengue. Therefore, math-
ematical modeling is useful to provide qualitative analyses
for the chance of recovery for a large infected community.
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