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Abstract

Background: Early identification of sepsis improves the survival rate; however, it is one of the most challenging tasks for physicians,
especially since symptoms are easily confused with those of systemic inflammatory response syndrome (SIRS). Our aim was to explore
biomarkers for early identification of sepsis that would aid in its differential diagnosis. Methods: Eight patients with SIRS, eight with
sepsis, and eight healthy controls were included in this study. Metabolites were screened using gas chromatography-mass spectrometry
(GC-MS). Metabolism profiles were analyzed using the untargeted database of GC-MS from Lumingbio (LUG) database, and metabolic
pathways were enriched based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. The S-plot was used to screen the
potential biomarkers distinguishing between patients with SIRS, sepsis, and healthy controls. Receiver operating characteristic (ROC)
curve analysis was used to evaluate potential biomarkers between SIRS and sepsis patients. Correlation analysis was used to measure the
degree of correlation between differential metabolites. Correlation analysis between 2-deoxy-d-erythro-pentofuranose-5-phosphate and
clinical indicators was performed. Results: There were 51 metabolites that were distributed in the SIRS group, and they were enriched
with 18 metabolic pathways compared with healthy controls. Moreover, 63 metabolites in the sepsis group were significantly distin-
guishable compared to the healthy controls, and were associated with 21 metabolic pathways. Methyl 3-o-acetyl-d-galactopyranoside
and N-acetylputrescine were found to be candidate biomarkers for distinguishing between SIRS, sepsis, and healthy controls using the S-
plot model. Only four differential metabolites, including 2-deoxy-d-erythro-pentofuranose-5-phosphate, terbutaline, allantoic acid, and
homovanillic acid (HVA), were enriched in the dopaminergic synapse and tyrosine metabolism pathways when sepsis patients were com-
paredwith SIRS patients. TheAreaUnder Curve (AUC) of 2-deoxy-d-erythro-pentofuranose-5-phosphatewas 0.9297, indicating a strong
diagnostic ability for sepsis. A significant negative correlation was identified between 2-deoxy-d-erythro-pentofuranose-5-phosphate and
lactate (r = –0.8756, p = 0.0044). Conclusions: Methyl 3-o-acetyl-d-galactopyranoside and N-acetylputrescine may be used as candidate
biomarkers to distinguish SIRS and sepsis patients from healthy controls using GC-MS. 2-deoxy-d-erythro-pentofuranose-5-phosphate
may be the candidate biomarker to distinguish sepsis from SIRS. Our study explored candidate biomarkers for the early identification of
sepsis, which is vital for improving its prognosis.
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1. Introduction
Sepsis is a life-threatening condition that affects host

tissues and organs and is caused by an imbalance in the host
immune response to infection. Although the current clinical
guidelines are constantly updated, the mortality rate of sep-
sis remains high. Sepsis progresses rapidly; therefore, early
detection is critical for improving the prognosis. However,
owing to its complex etiology and pathogenesis, the iden-
tification of sepsis is often difficult, and rapid methods are
lacking [1,2]. Another difficult task in the differential diag-
nosis of patients with sepsis is distinguishing between in-
fection and non-infectious systemic inflammatory response
syndrome (SIRS) [3,4]. This differential diagnosis is vital
for determining the appropriate treatment. Therefore, novel
specific biomarkers for sepsis are urgently required.

Many laboratory tests are used for sepsis diagnosis,
such as complete blood count, platelet count, and C-reactive
protein levels. However, there is not yet a specific test for
sepsis [5]. Recent studies have shown that procalcitonin
is a useful marker for identifying sepsis in critically ill pa-
tients. The accuracy and clinical value of using procalci-
tonin as a marker for sepsis have already been validated.
However, when procalcitonin levels are high, sepsis is al-
ready severe [6]. Therefore, this indicator cannot be used
as an early predictor of sepsis. Although the levels of the
pro-inflammatory cytokines like tumor necrosis factor-α,
interleukin -6, and interleukin-1β are known to increase in
patients with sepsis in response to pathogen infection, their
ability to predict sepsis is lagging [7]. Blood culture anal-
ysis for confirming sepsis is reliable, but diagnostic limita-
tions include low sensitivity and frequent contamination of
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blood cultures [8]. To date, there has been a lack of identi-
fied biomarkers for rapid and effective sepsis prediction.

Recent studies have reported that metabolic profiling
is valuable for identifying sepsis because of its ability to de-
tect differential metabolites. It is well recognized amongst
the metabolomics community that gas chromatography-
mass spectrometry (GC-MS) is one of the most effi-
cient, reproducible and well used analytical platforms for
metabolomics research. GC-MS is a method that com-
bines the characteristics of gas chromatography and mass
spectrometry to identify different substances in samples.
It is a robust and reproducible technique with high se-
lectivity complemented by a large number of metabolite
databases to support the identification of potential biomark-
ers [9,10]. Metabolites are the final products of interactions
among physiological, genetic, and environmental factors,
andmetabolic profiling could represent the functional status
of individuals [11]. In this study, we aimed to explore the
metabolic features and candidate biomarkers for the early
identification of sepsis using GC-MS.

2. Materials and Methods
2.1 Study Population

Patients with SIRS and sepsis were recruited fromDe-
partment of Emergency and Critical Care at the Shanghai
General Hospital. The inclusion criteria for patients with
SIRS were the meeting of at least two of the four follow-
ing standards: (1) body temperature>38 °C or<36 °C, (2)
heart rate >90 breaths/min, (3) breathing >20 breaths/min
or PCO2 <32.33 mmHg, and (4) white blood cell count
>12 × 109/L or <4 × 109/L (>12,000/µL or <4000/µL,
or immature granulocyte count >10%). The inclusion cri-
teria for patients with sepsis included diagnosis according
to SEPSIS 3.0. Blood samples were collected from the re-
cruited patients. All treatments were applied in accordance
with the recent guidelines of the Surviving Sepsis Cam-
paign. Patients with autoimmune diseases, malignancies,
immune deficiencies, metabolic and chronic diseases, en-
docrine diseases, and pregnancy were excluded. Healthy
controls were recruited from a physical examination cen-
ter at the Shanghai General Hospital. The healthy controls
had normal clinical test results without a disease history.
Clinical characteristics and demographics of the patients are
shown in the result.

2.2 Sample Preparation
Clinical blood samples were collected into heparin-

coated tubes and centrifuged at 2200 rpm for 10min at room
temperature. The supernatant was collected, then immedi-
ately stored in separate tubes at –80 °C until GC-MS analy-
sis. Next, 20 µL of 2-chloro-l-phenylalanine (catalog num-
ber C105993, Aladdin, Shanghai, China) was dissolved in
methanol as an internal standard, and 80 µL of serum sam-
ple was added. Next, 240 µL of methanol (catalog num-
ber 1.06035, Supelco, Bellefonte, PA, USA): acetonitrile

(catalog number 1.00029, Supelco, Bellefonte, PA, USA)
(2:1 v:v) was added to each sample. The mixtures were ex-
tracted by ultrasonication for 8 min in an ice-water bath.
Next, the samples were centrifuged at 12,000 rpm for 10
min at 4 °C. An aliquot of the supernatant (150 µL) was
transferred to vacuum at 24 °C. Then, 80 µL of methoxy-
lamine (catalog number 89803, Supelco, Bellefonte, PA,
USA) was added, followed by vortexing and incubation for
90 min at 37 °C. After that, 50 µL of BSTFA (with 1%
TMCS) (catalog number B-023, Supelco, Bellefonte, PA,
USA) and 20 µL n-hexane (catalog number 1.00795, Su-
pelco, Bellefonte, PA, USA) were added and mixed, then
vortexed and derivatized for 60 min at 70 °C. The samples
were placed at 24 °C for 30 min prior to GC-MS analysis.

2.3 Analytical and Metabolomics Profiling
The samples were acted on by an Agilent 7890B-

5977B system (Agilent, Palo Alto, CA, USA). A 30 m ×
0.25 mm × 0.25 µm HP-5MS fused-silica capillary col-
umn (Agilent J & W Scientific, Folsom, CA, USA) was
used to separate the derivatives. Helium (>99.999%) was
used as the carrier gas at a rate of 1 mL/min, and the injec-
tor temperature was maintained at 260 °C. The temperature
of the mass spectrometry (MS) quadrupole was set to 150
°C, the ion source was 230 °C, and the collision energy was
70 eV. Mass spectrometric data were obtained in full-scan
mode (m/z 50–500). The samples were individually run,
and quality control was performed. Partial least squares dis-
criminant analysis (PLS-DA) and orthogonal partial least
squares discriminant analysis (OPLS-DA) were used to vi-
sualize metabolic differences between the two groups using
the SIMCA version 14.1 software (Umetrics, Umeå, Swe-
den). Metabolites were screened using the National Insti-
tute of Standards and Technology database (NIST). Enrich-
ment of metabolic pathway was based on the Kyoto Ency-
clopedia of Genes and Genomes (KEGG) database.

2.4 Statistical Analysis
The parametric Student’s t-test or chi-square test were

used to compare the clinical data between the two groups.
Statistical significance of the metabolites was determined
using one-way Analysis of Variance (ANOVA). Receiver
operating characteristic (ROC) curve analysis was used to
evaluate the diagnostic values of the significant differen-
tial metabolites. A two-tailed Student’s t-test was used to
verify whether the metabolite differences between groups
were significant. Differential metabolites were selected
with variable importance of projection (VIP) values >1.0
and p-values< 0.05. Statistical tests were performed using
GraphPad Prism (v8.2.1, GraphPad Software, San Diego,
CA, USA). Data were assessed for normality and analyzed
using parametric or nonparametric tests as appropriate. Sta-
tistical significance was set at p < 0.05.
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Table 1. Demographic and clinical features of patients and healthy controls.

Variables
SIRS SEPSIS HEALTH

(n = 8) (n = 8) (n = 8)

Age (years) 65 ± 23 66 ± 16 62 ± 11
Males/females 4/4 5/3 4/4
Pulmonary infection 2 2 —
Abdominal infection 3 2 —
Urethra infection 3 4 —
Temp. sampling time (°C) 38.1 ± 0.9 38.1 ± 0.6 —
Heart rate (bpm) 107 ± 9 108 ± 15 —
Neutrophil (%) 83.8 ± 8.6 89.0 ± 7.3 —
Lymphocyte (%) 10.0 ± 6.4 6.1 ± 4.6 —
Monocyte (%) 4.9 ± 2.7 3.6 ± 2.7 —
Lymphocyte (109/L) 1.19 ± 0.74 1.19 ± 0.87 —
Monocyte (109/L) 0.40 ± 0.18 1.06 ± 1.22 —
Hemoglobin (g/L) 141 ± 35 129 ± 45 —
CRP (mg/L) * 153.5 ± 103.2 167.4 ± 112.3 —
IL-6 (pg/mL) * 70.42 ± 43.91 199.34 ± 115.74 —
IL-1β (pg/mL) * 276.86 ± 163.17 469.68 ± 185.19 —
TNF-α (pg/mL) 133.80 ± 130.79 133.79 ± 39.55 —
Quantitative data are presented as mean ± SD. *, p < 0.05. Abbreviations: SIRS, sys-
temic inflammatory response syndrome; HC, healthy controls; CRP, c-reactive protein; IL-6,
interleukin-6; IL-1β, interleukin-1β; TNF-α, tumor necrosis factor-α.

3. Results
3.1 Characteristics of Patients and Healthy Controls

Eight patients with SIRS and eight with sepsis were
included in this study. Clinical symptoms and Computed
Tomography (CT) scan showed that two of SIRS patients
have pneumonia, three of them have abdominal infection,
other three patients have urethra infection. Two of sepsis
patients have pulmonary infection, two patients have ab-
dominal infection, four patients have urethra infection.

Eight healthy individuals were also included as con-
trols. The general characteristics and laboratory test results
of patients with sepsis are shown in Table 1. There were
no significant differences in general characteristics between
patients with SIRS and the healthy controls, nor between
patients with sepsis and the healthy controls. There were
significant differences in c-reactive protein (CRP), inter-
leukin (IL-6), IL-1β between patients with SIRS and sepsis.

3.2 Metabolomic Analysis Can Predict the Differences
between the Two Groups

To determine the metabonomic changes, the periph-
eral blood of patients was collected, with eight samples
in each group and eight healthy individuals as controls.
Serum was extracted and analyzed by GC-MS. The PLS-
DA method is a supervised discriminant statistical method
using partial least squares regression for predictive and de-
scriptive modeling, as well as for discriminative variable
selection, to explain and predict the differences between the
two groups. In our PLS-DA model, owing to the different
metabolites, patients with SIRS were significantly distin-

guished from healthy controls, and patients with sepsis were
significantly separated from healthy controls (Fig. 1A). To
further improve the analytical ability and effectiveness of
the model and maximize the differences between different
groups in the model, we modified the PLS-DA to filter out
noise irrelevant to the classification information. As a re-
sult, OPLS-DA showed that SIRS split with healthy con-
trols. Similarly, there was a split between sepsis and healthy
controls between SIRS and sepsis (Fig. 1B).

3.3 Differential Metabolites as Candidate Biomarkers
Distinguish SIRS and Sepsis Patients from Healthy
Controls

In the OPLS-DA model, the VIP value can be used
to evaluate the effects of the influence intensity and inter-
pretation ability of the expression pattern of each metabo-
lite on the classification and discrimination of each group,
mine the differential metabolites with biological signifi-
cance, and then use a t-test to verify whether the differen-
tial metabolite is significant between groups. The screen-
ing criteria were that the VIP value of the first principal
component of the OPLS-DAmodel was>1 and the p-value
of the t-test was <0.05. According to these criteria, there
were 51 differential metabolites between SIRS patients and
healthy controls, and 47 differential metabolites were up-
regulated. Additionally, there were 63 differential metabo-
lites between patients with sepsis and healthy controls, and
47 differential metabolites were upregulated. Compared to
SIRS, there were only four differential metabolites in sepsis
patients, all of which were downregulated (Table 2, Fig. 2).
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Fig. 1. The PLS-DA and OPLS-DA models distinguished patients between groups. (A) The green triangles represent total patients
with SIRS, the blue squares represent patients with sepsis, and the red triangles represent heathy controls in the PLS-DA score plots. (B)
The green circles represent total patients with SIRS, the blue squares represent patients with sepsis, and the red circles represent heathy
controls in the OPLS-DA score plots (PLS-DA, partial least squares discriminant analysis; OPLS-DA, orthogonal projection latent to
structure discriminant analysis).

The load map can be used to identify the strength
of influence of the metabolites in the comparison group.
The abscissa of the S-plot is the characteristic value of
the effect of the metabolite on the comparison group, and
the ordinate is the correlation between the sample score
and the metabolite. As the eigenvalues and correlations
are both positive and negative, all points in the visualized
graph are distributed in the first and third quadrants (sim-

ilar to the “s” shape) and are called S-plots. The closer
the metabolite is to the upper-right corner and lower-left
corner, the more significant the difference. In the S-plot
of the diagnostic model, we identified methyl 3-o-acetyl-
d-galactopyranoside and N-acetylputrescine as candidate
biomarkers for distinguishing between SIRS and healthy
controls, as well as between sepsis and healthy controls
(Fig. 3A). Correlation analysis using the Pearson correla-
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Fig. 2. Differential metabolites were detected by GC-MS. (A) The histogram shows the quantity of differential metabolites. (B) The
volcanic map visualizes changes in differential metabolites.

tion coefficient was used to evaluate the correlation be-
tween the different metabolites. The results showed a sig-
nificant positive correlation between methyl 3-o-acetyl-d-
galactopyranoside and N-acetylputrescine levels (Fig. 3B).

3.4 Differential Metabolites Can Predict SIRS Progression
to Sepsis

To determine a simplified diagnostic biomarker to use
in differentiating between SIRS and sepsis, ROC analy-
sis was carried out, and the area under the curve (AUC)
of each candidate metabolite was calculated. 2-deoxy-
d-erythro-pentofuranose-5-phosphate was the best predic-
tor of SIRS and sepsis (AUC = 0.9297, 95% confidence
interval: 0.8069–1.0000), indicating its strong diagnostic

performance. The AUC of terbutaline was 0.9063, and
that of allantoic acid was 0.7969, indicating that terbu-
taline and allantoic acid were good discriminators between
SIRS and sepsis patients (Fig. 4A). Correlation analysis
showed a significant positive correlation between 2-deoxy-
d-erythro-pentofuranose-5-phosphate and terbutaline (r =
0.66108) and between 2-deoxy-d-erythro-pentofuranose-5-
phosphate and allantoic acid (r = 0.55947) (Fig. 4B).

3.5 Metabolic Pathways Were Enriched in SIRS and Sepsis

To determine the metabolic pathways enriched in
SIRS and sepsis, differential metabolites were subjected to
pathway analysis using the Kyoto Encyclopedia of Genes
and Genomes database (KEGG). These results are shown in
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Table 2. Differential metabolites were screened by GC-MS.

Metabolite name
SIRS vs. HEALTH Sepsis vs. HEALTH SIRS vs. SEPSIS

V VIP FC V VIP FC V VIP FC

Homovanillic acid — — — — — — ↓ 2.3804013 0.3874618
2-deoxy-d-erythro-pentofuranose-5-phosphate — — — — — — ↓ 2.0782491 0.7222923
Terbutaline — — — — — — ↓ 1.9669834 0.7262929
Allantoic acid — — — — — — ↓ 1.0306248 0.8907599
Methyl 3-o-acetyl-d-galactopyranoside ↑ 2.9897861 71.480053 ↑ 3.273992 31.431137 — — —
N-acetylputrescine ↓ 2.8419666 0.0432872 ↓ 2.7994075 0.1679551 — — —
Cadaverine ↑ 2.7730684 38.21312 ↑ 2.9331994 17.795369 — — —
Valyl-leucine ↑ 2.7635738 21.405291 ↑ 2.0790452 7.4992831 — — —
Xanthurenic acid ↑ 2.6908135 29.936944 ↑ 2.7930245 12.593242 — — —
Mannitol ↓ 2.5416888 0.1587076 — — — — — —
Spermine ↑ 2.5143646 14.977715 ↑ 2.8699784 10.014478 — — —
Dl-dopa ↑ 2.3731151 12.102607 ↑ 2.2252405 8.3510021 — — —
Lignoceric acid ↑ 2.3668183 41.598201 ↑ 2.6249828 13.368459 — — —
Glycyl tyrosine ↑ 2.2843552 11.68853 ↑ 1.9836009 6.8880069 — — —
Beta-gentiobiose ↑ 2.1586369 11.045923 — — — — — —
Norleucine ↑ 2.0930844 6.9298737 ↑ 2.1067457 5.2408221 — — —
Lanosterol ↑ 2.0652335 10.322189 ↑ 2.1999335 5.5100827 — — —
Methyl-ornithine ↑ 2.0494509 6.3426184 ↑ 1.8548467 4.4991726 — — —
L-phenylalanine ↑ 2.0352152 9.4226303 ↑ 1.7352391 7.85938 — — —
N-acetyl-l-tyrosine ↑ 1.9737449 7.6650888 ↑ 1.7700233 7.0508449 — — —
L-isoleucine ↑ 1.9504201 6.0346911 ↑ 1.818343 5.8249886 — — —
Arabinofuranose ↑ 1.9150272 4.8253548 ↑ 1.4816488 3.3283155 — — —
L-methionine ↑ 1.8605088 10.773329 ↑ 1.2911021 9.8609908 — — —
Formononetin ↑ 1.8053158 9.7609673 ↑ 1.7388467 6.1410451 — — —
Maleimide ↑ 1.7602332 3.9912852 ↑ 1.8323139 4.2607905 — — —
Ricinoleic acid ↑ 1.7259031 6.8452612 — — — — — —
D-fructose-6-phosphate ↑ 1.7180743 8.5642974 ↑ 1.5012907 19.588702 — — —
L-tryptophan ↑ 1.6863417 4.2435397 ↑ 1.8853432 3.6489463 — — —
2-hydroxyundecanoic acid ↑ 1.6844963 3.9116267 ↑ 1.4612388 4.1748894 — — —
Sinapinic acid ↑ 1.656589 6.9473043 — — — — — —
Palmitelaidic acid ↑ 1.5698803 3.110861 ↑ 1.8738145 5.9860247 — — —
2,5-dihydroxy-pyrazine ↑ 1.5403106 4.2222789 ↑ 1.3516741 3.3262985 — — —
Serine ↑ 1.519169 4.7459609 ↑ 1.3870187 5.5135532 — — —
L-tyrosine ↑ 1.4727852 4.5086267 — — — — — —
Glutaric acid ↑ 1.4364389 2.9498953 ↑ 1.4287323 0.0002747 — — —
Harmol ↑ 1.4304145 3.5141869 ↑ 1.5864991 3.8633207 — — —
1-monoolein ↑ 1.4216273 3.310974 ↑ 1.8819259 3.885722 — — —
5,6-dihydrouracil ↑ 1.4196253 2.8252254 ↑ 1.4071193 2.8933881 — — —
Cellobiose ↑ 1.3719033 2.8404857 ↑ 1.7359587 3.159995 — — —
L-alanine ↑ 1.3621227 3.1181925 — — — — — —
L-threonine ↑ 1.3514955 3.2680077 — — — — — —
Isochlorogenic acid ↑ 1.350742 3.1388726 ↑ 1.8510563 4.2665425 — — —
Octanol ↑ 1.3007048 3.7913169 — — — — — —
Kynurenic acid ↑ 1.2605511 2.2365276 ↑ 1.2769744 1.9100572 — — —
Guanosine ↑ 1.2306354 6.05041 — — — — — —
Coniferin ↑ 1.2235195 1.8189517 ↑ 1.1784971 1.7412512 — — —
3-ureidopropionate ↑ 1.1998851 2.244907 ↑ 1.1167604 2.4315167 — — —
N-acetyl-d-glucosamine ↑ 1.1783531 0.4978428 ↓ 1.2675313 0.5062986 — — —
3-methoxybenzenepropanoic acid ↓ 1.1679431 0.5008457 ↓ 1.2335976 0.5174785 — — —
Tert-butylketene acetal ↑ 1.1619286 2.4896159 ↑ 1.1348412 2.0879014 — — —
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Table 2. Continued.

Metabolite name
SIRS vs. HC Sepsis vs. HC SIRS vs. Sepsis

V VIP FC V VIP FC V VIP FC

2,5-di-tert-butyl-4-(hydroxy)phenol ↑ 1.1436208 1.9179271 — — — — — —
Citrulline ↑ 1.1062984 2.9526565 — — — — — —
4-fluoroaniline ↓ 1.0991659 0.6259472 ↓ 1.2653923 0.622478 — — —
Desyrel ↑ 1.0767652 2.5467642 — — — — — —
N-acetylgalactosamine ↑ 1.0033183 2.1562394 — — — — — —
Allose — — — ↑ 2.2462404 87.409938 — — —
Sedoheptulose — — — ↑ 2.2008564 75.499701 — — —
Linoleic acid — — — ↑ 1.807242 4.4486483 — — —
Erucic acid — — — ↑ 1.7351023 4.2904694 — — —
Oleic acid — — — ↑ 1.7323362 4.2786805 — — —
L-asparagine — — — ↑ 1.6858296 7.709766 — — —
2,3-dihydrobutyraldehyde 1-phosphate — — — ↑ 1.4891256 11.227292 — — —
Pinitol — — — ↓ 1.4705164 0.4544384 — — —
Glucose — — — ↑ 1.3543269 8.1765831 — — —
Beta-alanine — — — ↓ 1.3519891 0.6505915 — — —
3,6-dimethyl-2,5-dihydroxy-pyrazine — — — ↑ 1.4071193 2.8933881 — — —
Phosphoenolpyruvate — — — ↑ 1.3016116 4.7976509 — — —
Uridine — — — ↑ 1.2924314 3.1511016 — — —
D-myo-inositol 4-phosphate — — — ↑ 1.2578405 2.7408571 — — —
3,17,20-trihydroxy-pregn-5-en-11-one — — — ↓ 1.2392217 0.5580432 — — —
L-cysteine — — — ↑ 1.195239 6.0274871 — — —
1-kestose — — — ↑ 1.1745532 4.5597282 — — —
Myristyl myristate — — — ↓ 1.172666 0.5895407 — — —
D-ribose — — — ↑ 1.1436302 2.449142 — — —
Ribitol — — — ↑ 1.1409947 1.908032 — — —
Hypoxanthine — — — ↓ 1.1263163 0.5952783 — — —
5-methyluridine — — — ↑ 1.0666299 3.0846661 — — —
Dehydroabietic acid — — — ↑ 1.014755 1.6333058 — — —
1,5-anhydroglucitol — — — ↑ 1.0075411 1.5409589 — — —
Abbreviations: ↑, upregulated; ↓, downregulated. (SIRS, systemic inflammatory response syndrome; V, variation; VIP,
variable importance in the projection; FC, fold change).

Fig. 5. Eighteen pathways were enriched in SIRS patients
compared to healthy controls. Nine metabolic pathways
were related to amino acid biosynthesis and metabolism,
including protein digestion and absorption; aminoacyl-
tRNA biosynthesis; beta-alanine metabolism; phenylala-
nine, tyrosine, and tryptophan biosynthesis; glycine, ser-
ine, and threonine metabolism; cysteine and methionine
metabolism; valine, leucine, and isoleucine biosynthesis;
tryptophanmetabolism; and glutathionemetabolism. There
were seven atypical pathways which are related to the use of
glucocorticoids and catecholamines, including cocaine ad-
diction; amphetamine addiction; alcoholism; prolactin sig-
naling pathway; dopaminergic synapses; Parkinson’s dis-
ease and melanogenesis. The other two important path-
ways were the central carbon metabolism in cancer and the
biosynthesis of pantothenate and coenzyme A (CoA).

There were 21 enriched pathways in sepsis patients
compared with healthy controls. Eight metabolic pathways
were related to amino acid biosynthesis and metabolism,
including protein digestion and absorption; aminoacyl-
tRNA biosynthesis; beta-alanine metabolism; phenylala-
nine, tyrosine, and tryptophan biosynthesis; glycine, ser-
ine, and threonine metabolism; cysteine and methion-
ine metabolism; glutathione metabolism; and thiamine
metabolism. Two pathways related to glucose metabolism
(glycolysis/gluconeogenesis and the pentose phosphate
pathway), one pathway related to pyrimidine metabolism,
and one was related to the biosynthesis of unsaturated
fatty acids. Three other important pathways were iden-
tified: central carbon metabolism in cancer; pantothenate
and CoA biosynthesis, and sulfur metabolism. There were
six atypical pathways, including cocaine addiction; am-
phetamine addiction; alcoholism; prolactin signaling path-
way; dopaminergic synapses; and Parkinson’s disease.
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Fig. 3. The S-plot was used to screen the potential biomarkers distinguishing between SIRS, sepsis, and healthy controls and the
correlation between differential metabolites. (A) The S-plot was used to select the potential biomarkers distinguishing between SIRS,
sepsis, and healthy controls. (B) Correlation analysis was used to measure the degree of correlation between differential metabolites.
The red dot indicates positive correlation, and the blue dot indicates negative correlation.

Only two pathways were enriched in sepsis compared
to SIRS. One was the dopaminergic synapse, and the other
was tyrosine metabolism.

3.6 The Correlation between
2-deoxy-d-erythro-pentofuranose-5-phosphate and
Clinical Indicators

In order to further verify the clinical value of 2-
deoxy-d-erythro-pentofuranose-5-phosphate, we analyzed
the correlation between 2-deoxy-d-erythro-pentofuranose-

5-phosphate and some clinical indicators. Analysis
showed no significant correlation between 2-deoxy-d-
erythro-pentofuranose-5-phosphate and clinical indicators,
such as IL-6, IL-1β, tumor necrosis factor-α (TNF-α),
CRP, platelet, Ca2+, the absolute value of monocytes,
and the absolute value of lymphocytes. There was a sig-
nificant negative correlation between 2-deoxy-d-erythro-
pentofuranose-5-phosphate and Lactate (r = –0.8756, p =
0.0044) (Table 3).

8

https://www.imrpress.com


Fig. 4. The ROC was used to analyze the potential biomarkers between SIRS and sepsis patients and the correlation between
differential metabolites. (A) The ROC was used to analyze the potential biomarkers for differentiating patients with SIRS and sepsis
(ROC, receiver operating characteristic). (B) Correlation analysis was used to measure the degree of correlation between differential
metabolites.

4. Discussion
Sepsis is one of the most common diseases and is as-

sociated with high mortality. Early identification of sep-
sis from SIRS is beneficial for early intervention, which is
key to achieving improved outcomes [12]. Although many
biomarkers related to sepsis have been reported in the past,
their predictive accuracy remains unclear. Application of
available biomarkers is urgently needed for early identifi-
cation of patients at the highest risk of having poor outcome.
To our knowledge, our work can contribute to the discov-
ery of new biomarkers with significant efficacy and predic-
tive value in the diagnosis of sepsis using a GC-MS-based
metabolomic method.

Our results showed that 51 metabolites were clearly
distributed in the SIRS group and were associated with
18 metabolic pathways compared with healthy controls.

Furthermore, 63 metabolites in the sepsis group were sig-
nificantly distinguished from those in the healthy con-
trols and were associated with 21 metabolic pathways.
Among these differential metabolites and pathways, there
were 14 metabolic pathways containing metabolites that
were enriched in both the SIRS and sepsis groups. Nine
metabolic pathways in the SIRS patients and eight in the
sepsis patients were related to amino acid biosynthesis and
metabolism. This indicates that when SIRS and sepsis oc-
cur, both the biosynthesis and metabolism of amino acids
are activated. Compared with SIRS, the biosynthesis of un-
saturated fatty acids and glycolysis/gluconeogenesis path-
ways were enriched in sepsis. The reason for which the gly-
colysis/gluconeogenesis pathway enriched in sepsis is that
the body needs more energy to defeat inflammation. This is
referred to as the Warburg effect which is an essential com-
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Fig. 5. The bubble diagram was analyzed using KEGG metabolism pathway enrichment. The p value is the significance of en-
richment of this metabolic pathway. The ordinate is the name of the metabolic pathway; the abscissa is the rich factor (rich factor =
the number of significantly different metabolites/the total number of metabolites in this pathway). The larger the rich factor, the more
metabolites enriched in the pathway. The color from green to red indicates that p-value decreases in turn.

Table 3. The correlation between
2-deoxy-d-erythro-pentofuranose-5-phosphate and clinical

indicators.
Correlation  2-deoxy-d-erythro-pentofuranose-5-phosphate

IL-6 (pg/mL) r = –0.2383 p = 0.5698
IL-1β (pg/mL) r = –0.3532 p = 0.1247
TNF-α (pg/mL) r = –0.4734 p = 0.2241
CRP (mg/L) r = –0.4419 p = 0.2730
Platelet (× 109/L) r = –0.2685 p = 0.5202
Ca2+ (mmol/L) r = –0.3535 p = 0.1249
Lactate (mmol/L) * r = –0.8756 p = 0.0044
Monocyte (× 109/L) r = –0.2208 p = 0.5995
Lymphocyte (× 109/L) r = –0.0445 p = 0.9166
Abbreviations: IL-6, interleukin-6; IL-1β, interleukin-1β; TNF-α, tu-
mor necrosis factor-α; CRP, c-reactive protein. *, p < 0.05.

ponent of metabolic reprogramming during sepsis. Aero-
bic glycolysis, which generates energy through glycolysis
rather than through oxidative phosphorylation, is a hallmark
of sepsis [13,14].

Our results showed strong differentiation between
SIRS, sepsis, and healthy controls using the PLS-DA and
OPLS-DA models. Based on the S-plot results, methyl
3-o-acetyl-d-galactopyranoside and N-acetylputrescine in
the lower-left corner and upper-right corner are differentia-
tors between SIRS, sepsis, and healthy controls. Methyl
3-o-acetyl-d-galactopyranoside is a monosaccharide, and
galactose is usually present in the body in the form of d-
galactopyranoside. Galactose interacts with ATP to form
UDP glucose and 1-phosphate glucose, participate in glu-
cose metabolism, and provide cellular energy [15]. N-
acetylputrescin is a polyamine that is metabolized by amino
acids such as lysine, L-arginine, and L-ornithine; plasma n-
acetylputrescine has been shown to be a potential biomarker

of lung cancer and can be used to evaluate the efficacy of
antitumor drugs [16]. A previous study demonstrated that
plasma polyamines, including n-acetylputrescine, may pro-
videmeans to identify patients withmultiple endocrine neo-
plasia type 1 who are harboring or developing an aggressive
form of the disease [17]. According to our results, methyl
3-o-acetyl-d-galactopyranoside and N-acetylputrescine can
be used as diagnostic biomarkers for SIRS or sepsis. De-
tection of methyl 3-o-acetyl-d-galactopyranoside and N-
acetylputrescine indicated the patient was either in the SIRS
period or quickly progressing to sepsis. Six atypical path-
ways were detected in SIRS and sepsis, including cocaine
addiction, amphetamine addiction, alcoholism, prolactin
signaling pathway, dopaminergic synapse, and Parkinson’s
disease, which may be related to use of glucocorticoids and
catecholamines.

However, the distinction between SIRS and sepsis is
a complicated task. To identify the differential capacity
of metabolites in separating sepsis from SIRS, PLS-DA
and OPLS-DA models were conducted for patients with
SIRS and sepsis. Four differential metabolites, including
2-deoxy-d-erythro-pentofuranose-5-phosphate, terbutaline,
allantoic acid, and homovanillic acid (HVA), were enriched
in the dopaminergic synapse and tyrosine metabolism path-
ways. 2-deoxy-d-erythro-pentofuranose-5-phosphate is an
intermediate product of glycol metabolism. Allantoic acid
is an important part of purine degradation, terbutaline is
a beta-2-adrenoreceptor agonist, and HVA is a metabolite
produced by dopamine and tyrosine metabolism. The rea-
son for dopaminergic synapse enrichment may be that pa-
tients with septic shock need to stimulate dopamine secre-
tion to increase their blood pressure. The other is tyro-
sine metabolism, which is related to many diseases such as
allergic airway inflammation, glioma, and pulmonary tu-
berculosis [18–20]. Furthermore, in order to determine a
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simplified diagnostic biomarker in differentiating between
SIRS and sepsis, ROC curves were analyzed. The results
showed that the AUC of 2-deoxy-d-erythro-pentofuranose-
5-phosphate was 0.9297, that of terbutaline was 0.9063,
and that of allantoic acid was 0.7969, indicating their good
predictive capacity for sepsis. To further verify the clini-
cal value of 2-deoxy-d-erythro-pentofuranose-5-phosphate,
we analyzed the correlation between 2-deoxy-d-erythro-
pentofuranose-5-phosphate and clinical indicators. A sig-
nificant negative correlation between 2-deoxy-d-erythro-
pentofuranose-5-phosphate and lactate was identified (r
= –0.8756, p = 0.0044). This means that as more 2-
deoxy-d-erythro-pentofuranose-5-phosphate is consumed,
more lactic acid will be produced. This may be related to
metabolic pathway shifts to glycolysis which generated lac-
tate. 2-deoxy-d-erythro-pentofuranose-5-phosphate is sub-
strate produced from pentose phosphate pathway. 2-deoxy-
d-erythro-pentofuranose-5-phosphate decreased in septic
shock indicated that pentose phosphate pathway is active
because of 2-deoxy-d-erythro-pentofuranose-5-phosphate
is continuously consumed. Pentose phosphate pathway,
which can produce a large amount of NADPH, and the in-
termediates as raw materials for glycolysis, is an important
pathway for glucose metabolism [14]. It is the character-
istic of the Warburg effect of sepsis. Our results demon-
strated that 2-deoxy-d-erythro-pentofuranose-5-phosphate
may be the candidate biomarker to distinguish sepsis from
SIRS which may related with metabolic pathway change in
sepsis.

5. Conclusions
Our study suggested that 2-deoxy-d-erythro-

pentofuranose-5-phosphate could be used as a candidate
biomarker to distinguish sepsis from SIRS and provided a
potential method for the early identification of sepsis using
GC-MS. Our study yielded useful findings but had some
limitations. First, our sample size was small and for further
verification, we would need a larger number of samples.
Second, in order to validate the clinical utility and speci-
ficity of metabolites as biomarkers for sepsis also need to
be verified. Moreover, for clarify the specific function of
this metabolite, some molecular biology experiments need
to be improved in the future.
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