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Abstract

O6-methylguanine-DNA-methyltransferase (MGMT) is a DNA repair enzyme, which reverses the alkylation of guanine O6 through
directtransfer of the methyl group, maintains the gene stability and avoids tumor occurrence. Studies have shown that MGMT gene
methylation, polymorphism and protein expression are involved in the process of various tumor development, such as colon cancer,
gastric carcinoma, etc. MGMT gene promotes methylation, protein expression and enzyme activity from various tissues, which resultsin
different effects on the prognosis of patients. MGMT promoter methylation is a positive factor for the prognosis of Glioblastoma (GBM),
which can prolong overall survival and progression-free survival, reduce the resistance of tumor cells to temozolomide treatment, and
improve the prognosis. The treatment of tumors based on MGMT focuses on three aspects: targeting MGMT to increase the sensitivity
of alkylated drug therapy in tumors, immunotherapy combined with alkylated agents on tumor treatment, and treatment for patients
with MGMT promoter non-methylation. Similarly, a number of studies have targeted MGMT to reduce alkylated agent resistance in
other systems. Although numerous studies on MGMT in tumors have been reported, there are problems that need to be solved, such
as selection and consensus of MGMT promoter methylation detection methods (CpG detection sites, cut-off value) and the treatment of
MGMT non-methylated GBM patients, especially elderly patients. In this review, we describe the regulation of MGMT expression and
its role inchemotherapy, especially in gliomas. Further studies exploring new methods targeting MGMT with better curative effect and
less toxicity are advocated. We anticipate that these developments will be progressive and sufficiently used for clinical application.
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1. Introduction

O6-methylguanine-DNA-methyltransferase
(MGMT), located on chromosome 10q26, is over 170
kb in length, including 5 exons and 4 introns. mRNA is
866 bp in length, encodes 207 amino acids and contains a
conserved active site [1]. The promoter region is approx-
imately 1.2 kb and contains enhancers, binding sites for
transcription factors such as GR, Sp1, AP1, AP2 [2–4].
The promoter region lacks TATA and CAAT boxes, but is
rich in GC sequences, forming 98 CpG sites. These sites
are where cytosines are easily methylated, especially in
the regions –186 to –172 and +93 to +153 where CpG
methylation plays a major role in transcriptional regulation.
MGMT expression is mainly regulated by transcriptional
and epigenetic regulation, the former including SP1, AP1,
NF-κB, GRE, p53, etc., while the latter contains DNA
methylation in the promoter region and post-translational
modifications of histones [5]. With cytosine methylation,
the chromosome structure changes from loose and active
euchromatin to compressed and aggregated heterochro-
matin, which prevents transcription factors from binding to
the promoter region and inhibits transcription. The amino
termini of histones could be modified by methylation,

acetylation, ubiquitination, and poly-ADP-ribosylation,
and modification of H3K9 was associated with MGMT
silencing [6]. With DNA methylation, methylated CpG
island binding proteins, especially MeCP2, bind to the
methylated CpG island and then recruit histone deacety-
lases and H3K4 demethylases (such as LSD1), as well as
histone methyltransferase to form heterochromatin like
protein factors (HP1), eventually preventing the transcrip-
tion process [5]. miRNAs, such as miR-181b, miR-181d,
miR-221, miR-222, miR-767-3p and miR-648n [7–10],
bind to the 3′ untranslated region of MGMT to reduce
mRNA stability and affect protein translation.

MGMT is a highly conserved enzyme involved in
DNA damage repair with a conserved amino acid sequence-
(I/V) PCHR (Proline, cysteine, histidine, arginine) (V/I) lo-
cated at the active center. During repair, MGMT indepen-
dently transfers methyl groups from the guanine O6 site di-
rectly to its own 145 cysteine residue, which is then ac-
companied by irreversible ubiquitination degradation [11]
(Fig. 1). If O6MeG is not repaired, it leads to a G:C →
A:Tmutation that can be recognized by the mismatch repair
system (MMR), which then initiates an apoptotic signaling
pathway, leading to an ineffective replication cycle, DNA
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fragmentation, and eventually apoptosis [12]. MGMT can
repair various types of damage caused by alkylated agents
from a wide range of sources, including endogenous and
exogenous damage, the latter of which encompasses the
DNA causing methylation damage at the guanine O6 site,
such as temozolomide (TMZ), and drugs that cause O6-
CLG damage at the guanine O6 site on DNA, such as carni-
tine mustard (BCNU, BiCNU), ronazine mustard (CCNU
and CeeNU) and other chemotherapeutic agents [13,14].
MGMT transfers methyl from the guanine O6 site directly
to its cysteine residue at position 145 to complete repairing
O6-mG damage of DNA.

Fig. 1. The process of (MGMT) repairing damaged DNA.
MGMT, O6-methylguanine-DNA-methyltransferase; Cys, Cys-
teine.

2. Role of MGMT in Tumorigenesis and
Progression

The G:C → A:T mutation in K-ras, P53, and other
oncogenes or tumor suppressor genes is caused by MGMT
down-regulation of protein expression as a result of pro-
moter methylation, which favors the emergence and growth
of malignancies. With this modification, a clear con-
nection has been made between MGMT decrease and tu-
morigenesis [15]. In gastric cancer, colorectal cancer,
breast cancer, oral squamous cell carcinoma and cervi-
cal squamous cell carcinoma tissues, MGMT promoter
methylation is higher than that of surrounding normal mu-
cosa or tissues. Therefore, MGMT promoter methyla-
tion might be considered a marker of precancerous lesions
and a biomarker for early tumor diagnosis [16–19]. An-
other meta-analysis revealed that MGMT promoter hyper-
methylation was strongly linked to a higher risk of devel-
oping gastric cancer and may be connected to the spread
of gastric cancer to distant sites and lymph nodes [20]. In
our previous study to explore the molecular mechanism of
MGMT in the malignant transformation and tumorigene-

sis of gastric cells induced by amide compounds, we found
that MGMT up-regulation was induced by promoter hy-
pomethylation. High expression ofMGMTcan preventma-
lignant transformation and tumorigenesis induced by amide
compounds. In addition, in normal gastric tissues and gas-
tric cancer patient specimens, MGMT was up-regulated in
precancerous lesions and metaplastic tissues, and down-
regulated in gastric cancer tissues, suggesting that MGMT
may be involved in the occurrence and development of gas-
tric cancer [21]. Additionally, MGMT has been shown to
have a role in the development of other pathologies such as
liver cancer, cholangiocarcinoma, lung cancer and other tu-
mors [22–24]. MGMT gene polymorphisms have also been
shown to be involved in tumor formation. AMexican study
demonstrated that MGMT rs12917 may contribute to the
occurrence and progression of lung cancer [25]. It has also
been revealed that women having the MGMT gene poly-
morphism Ile143Val have a lower chance of developing
rectal cancer [26]. Single nucleotide polymorphisms in the
MGMT gene can also affect the duration of TMZ-induced
myelotoxicity and the side effects of antitumor drugs in
adult patients with diffuse glioma [27]. MGMT polymor-
phism rs12917 might affect the response to chemotherapy
in pediatric Hodgkin lymphoma [28]. Several investiga-
tions have discovered a link between the MGMT V1/W
genotype and glioma recurrence [29] with other studies on
the association between MGMT gene polymorphisms and
tumors being performed.

3. Effect of MGMT on Tumor Prognosis
3.1 Effect of MGMT Promoter Methylation on Prognosis
of Different Tumors

MGMT promoter methylation varied among different
tumors. Approximately 38% of brain tumors were prone
to MGMT promoter methylation, as were 28% of head and
neck tumors, 26% of colon cancer, 25% of lymphoma, and
24% of lung cancer, while tumors of other organs exhibited
a lower incidence of MGMT promoter methylation, such as
pancreatic cancer, melanoma, kidney cancer, bladder can-
cer, and leukemia [30].

Numerous studies have demonstrated that MGMT
promoter methylation is a beneficial factor for tumor prog-
nosis. It has been proven to be related to improved patient
prognosis, particularly in Glioblastoma (GBM), as well as
prolonged overall survival (OS) and progression-free sur-
vival (PFS).

In a prospective clinical experiment conducted in
2004, Hegi et al. [31] showed the prognostic significance
of MGMT promoter methylation for the prognosis of GBM
patients receiving TMZ, an alkylating drug. The study re-
vealed thatMGMTpromotermethylation leading toMGMT
gene inactivation was associated with longer survival in
GBM patients, suggesting that MGMT promoter methyla-
tion remains the only significant predictor for GBMpatients
[31]. In a subsequent study of 206 GBM patients, the re-
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searchers found that GBM patients with MGMT promoter
methylation responded to TMZ, while those who did not
were more likely to develop treatment resistance [32]. Sub-
sequently, other researchers have carried out a large num-
ber of studies on the correlation between MGMT promoter
methylation and prognosis of GBM patients and found the
prognosis of grade II and III gliomas to be positively im-
pacted by MGMT promoter methylation [33,34].

Szylberg et al. [35] collected data on 41 newly diag-
nosed GBM patients treated at the 10th Military Research
Hospital and Polyclinic in Poland between 2011 and 2014
to assess the impact of MGMT promoter methylation and
other clinical factors on survival in patients with primary
GBM (mean age, 53 years). They discovered that MGMT
promoter methylation, which may be correlated with age
and surgical resection technique, was also a significant pos-
itive predictive biomarker in GBM patients [35].

The results are still debatable even though the prog-
nostic value of MGMT promoter methylation in GBM pa-
tients are well acknowledged. Some studies have not shown
a significant correlation between MGMT promoter methy-
lation and OS or PFS. In a multicenter Portuguese investi-
gation, neither univariate nor multivariate analysis revealed
a statistically significant relationship between MGMT pro-
moter methylation and overall survival or PFS in patients
with GBM receiving TMZ-based chemoradiotherapy [36].
Egaña et al. [37] also concluded that MGMT promoter
methylation did not affect patient survival in the cohort
studied. However, around 9 months after the diagnosis
of GBM, Dahlrot et al. [38] discovered the connection
between MGMT promoter methylation and overall sur-
vival, as prior to this, there was no correlation between
MGMT promoter methylation and OS. In addition, Cac-
cese et al. [39] found there was a nonlinear correlation be-
tween MGMT promoter methylation and OS, with longer
OS with increasing MGMT promoter methylation. This
study showed a median OS of 14.8 months for MGMT 0–
4%, 18.9 months for MGMT 4–40%, and 29.9 months for
MGMT 40–100% [39]. MGMT promoter methylation has
also been used to stratify malignant gliomas in GBM and
has been used as a prognostic marker for overall survival
and as a predictor of chemotherapy response in GBM pa-
tients [40].

Numerous studies have been conducted in other tu-
mors in addition to the one on MGMT promoter methy-
lation and GBM, and the effects of tumor prognosis var-
ied. MGMT promoter methylation in succinate dehydro-
genase defect of gastrointestinal stromal tumors and ep-
ithelioid/mixed phenotype is particularly common in the
wild type of gastrointestinal stromal tumor and this MGMT
methylation pattern may provide a new potential treatment
option for wild-type gastrointestinal stromal tumor [41]. In
well-differentiated pancreatic neuroendocrine tumors, PFS
is longer in patients with high MGMT promoter methyla-
tion and lowMGMT expression [42]. Inmetastatic colorec-

tal cancer, melanoma, central nervous system lymphoma
and other tumors, MGMT promoter hypermethylation in-
creased the sensitivity of alkylating agents, thus prolong-
ing the survival of patients [43–45]. Numerous studies in
esophageal, cervical, and lung cancers have shown contro-
versial results [24,46,47]. These differences may be caused
by: differences in MGMT promoter methylation detection
assays or different methylation sites in the detected MGMT
promoter region, different samples, different numbers con-
tained in different tumor cells, and patient age [48].

MGMT gene polymorphism was also involved in pre-
dicting the prognosis of many tumors. Researchers have
found that MTNR1B single-nucleotide polymorphisms
(SNPs) combined with CDKN2A and MGMT promoter
methylation status can be used to predict shorter survival
in colon cancer [49].

3.2 Effect of MGMT Protein Expression on Prognosis of
Different Tumors

MGMT, a DNA repair enzyme, is expressed in many
organs of the body and its expression varies from one or-
gan and tissue to another. The expression of MGMT pro-
tein was highest in the liver, followed by lung, kidney and
colon, and lowest in the pancreas, hematopoietic cells, lym-
phoid tissues and brain. It was decreased in tumors such
as gliomas, lymphomas, breast cancer, prostate cancer, and
retinoblastoma, most likely related to the methylation status
of its promoter region [50].

While MGMT protein expression detection meth-
ods mainly include immunofluorescence and immunohis-
tochemistry (IHC), the latter predominates. In the early
1990s, Belanich et al. [51] used immunofluorescence
method to detect the expression of MGMT protein in 99
cases of glioma tissues and found that patients with high
MGMTprotein expression were less sensitive to BCNU, re-
sulting in shorter overall survival and progression-free sur-
vival. This was subsequently demonstrated in astrogliomas
[51]. With various tumor types, there are differences in the
expression of the MGMT protein as identified by the IHC
approach and the prognosis of the tumor. A report of 73
cases of patients with newly diagnosed GBM utilized im-
munohistochemical methods to analyze MGMT protein ex-
pression as an auxiliary for TMZ and radiation treatment of
GBM. In patients with detected prognostic markers, it was
found that lowMGMT protein expression in patients (15%)
compared with patients with high expression of MGMT
protein, overall survival and PFS were significantly im-
proved. This suggests that MGMT protein expression is an
independent and a positive prognostic factor in GBM pa-
tients [52]. MGMT immunohistochemistry expression has
been demonstrated to be substantially correlated with vari-
ous glioma grades and subtypes [53] including lymphomas,
thymic tumors, and pituitary tumors [54–56].

Other investigations have reached the opposite con-
clusion. Aanchal et al. [57] collected the tissues of pa-
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tients with meningeal hemangiopericytoma from 2002 to
2011. Immunohistochemistry was used to detect expression
of MGMT protein and methylation-specific PCR (MSP)
was adopted to detect MGMT promoter methylation. In
investigating the relationship between MGMT expression
and the prognosis of patients with meningeal hemangioper-
icytoma, they found no significant correlation between
MGMT protein expression and progression-free survival
[57]. In esophageal and gastrointestinal neuroendocrine tu-
mors, MGMT protein expression level was also shown to
have no specific correlation with prognosis, whereas in pan-
creatic neuroendocrine tumors, colorectal cancer and sali-
vary gland carcinoma, patients with lowMGMT protein ex-
pression had a poorer prognosis [58–61]. A recent study
found that decreased MGMT expression in pancreatic neu-
roendocrine tumorswas associatedwith a higher risk of pro-
gression [62]. The reasons for these discrepancies may be
related to tumor type, the number of patients studied, indi-
vidual differences, tissue size, medication differences, and
diagnostic staining.

3.3 Effect of MGMT Enzyme Activity on Prognosis of
Different Tumors

The enzyme activity of MGMT varies with different
tissues, individuals and individual stages. In normal tis-
sues, MGMT enzyme activity in the liver was highest, and
lowest in brain tissue. While MGMT activity was highest
in liver, ovarian, and colon tumors, it was still very low
in gliomas, which may have contributed to the sensitivity
of glioma cells to TMZ therapy. The activity varied ac-
cording to the classification of gliomas, being lowest in as-
trocytomas and malignant gliomas, with an average of 111
fmol/mg, and up to 270 fmol/mg in non-glioma brain tu-
mors, such as meningiomas [63]. MGMT activity in tumor
tissues was higher than that in corresponding normal organ
tissues, but in the testes and liver, the activity of tumor tis-
sues was lower than that in normal tissues. There is minimal
research examining the connection between MGMT activ-
ity and tumor prognosis. Early research has suggested that
elevated MGMT activity may reduce the effectiveness of
alkylated anticancer medications and have an adverse ef-
fect on patient prognosis [64,65].

4. Effect of MGMT on Tumor Therapy
MGMT is a DNA repair that inhibits the cross-linking

of double-stranded DNA through alkylated agents, reverses
the alkylation of guanine O6 position, repairs DNA dam-
age caused by drugs (such as alkylating agents), and leads
to resistance to alkylated drugs [66]. It is also involved in
the resistance of DNA to alkylated anticancer drugs such
as TMZ, which has been studied extensively to overcome
these therapeutic difficulties.

4.1 Targeting MGMT to Increase the Sensitivity of TMZ
Therapy in Tumors

Although previous clinical trials have enhanced the
therapeutic effect of TMZ by reducing MGMT protein ex-
pression, certain trials did not achieve clinical benefits [67].
A growing number of studies have focused on increasing
the sensitivity of tumors (especially GBM) to TMZ treat-
ment by targeting MGMT through various axes. Geng et
al. [68] found that exosome-mediated circWDR62 pro-
moted TMZ resistance and progression in glioma by tar-
geting the Mir-370-3p/MGMT axis, suggesting that exo-
somal circWDR62 in human serum may be a therapeutic
target for glioma. Zhou et al. [69] found that cyanidin-
3-o-glucoside promoted the treatment of MGMT-induced
glioma cell resistance through the potential signaling mech-
anism of miR-214-5p-mediated inhibition of TMZ resis-
tance in LN-18/TR cells. Other studies have demonstrated
that the lncRNA UCA1/miR-182-5p/MGMT axis regu-
lates the sensitivity of glioma cells to TMZ through the
MGMT-related DNA damage pathway [69,70]. In addi-
tion to gliomas, other tumors that have been studied include
melanoma, lymphoma, and ovarian cancer [71–73].

Other potential targets have been investigated. The
MGMT substrate analogue, O6-benzylguanine, was a spe-
cific inhibitor of MGMT, which binds the benzoyl group to
the 145th cysteine residue in the active center of MGMT
protein, preventing the binding of the latter to DNA. It
effectively reduces the ability of MGMT to repair alkyl-
adduct DNA and inhibits MGMT activity. However, it has
never been used clinically due to its side effects [74]. Pinto
et al. [75] designed a hybrid drug that covalently binds
BG residues to the interacting part of DNA (6-chloro-2-
methoxy-9-aminoacridine) and found that compound 19a
inhibits MGMT activity without inducing significant levels
of DNA damage, providing a new therapeutic opportunity
for GBM patients with TMZ resistance.

Numerous studies have investigated MGMT and tu-
mor medication resistance by manipulating additional up-
stream and downstream signaling pathways in addition to
the use of the aforementioned inhibitors. A study from
China found that BanxiaXiexin decoction regulatesMGMT
expression through IL6/JAK/ STAT3-mediated PDL1 ac-
tivity, which affects the sensitivity of gastric cancer cells
to drugs. As a result, inhibiting MGMT offers a fresh ap-
proach to treating gastric cancer [76]. Additionally, it has
been demonstrated that MGMT has a role in the chemosen-
sitivity of cisplatin in gastric cancer [77]. MAPK/ERK
inhibitor (U0126) combined with TMZ can be used in
patients with advanced hepatocellular carcinoma as the
former can block the MAPK/ERK signaling pathway to
down-regulate MGMT expression and increase the sen-
sitivity of HCC cells to TMZ [78]. MGMT was in-
volved in the resistance process of dacarbazine treatment in
uveal melanoma, but TRIM72 increased the sensitivity of
dacarbazine treatment by ubiquitination and degradation of
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Table 1. A collection of anti-tumor agents targeting MGMT.
Compound Mechanism Tumor type Ref

circWDR62 Targeting miR-370-3p/MGMT axis promotes TMZ re-
sistance

glioma Geng et al. [68]

Cyanidin-3-O-glucoside Down-regulation of β-catenin and MGMT by miR-
214-5p inhibited TMZ resistance

glioma cell Zhou et al. [69]

lncRNA UCA1 lncRNA UCA1/miR-182-5p/MGMT axis modulates
glioma cell sensitivity to TMZ

glioma cell Cheng et al. [70]

lncRNA POU3F3 lncRNA POU3F3/miR-650 axis upregulates MGMT
expression to promote drug resistance

melanoma Wu et al. [71]

miR-370 miR-370 inhibited MGMT expression and increased
sensitivity to TMZ

primary central nervous sys-
tem lymphoma

Li et al. [72]

MCL1 HDACis combined with PaTrin-2 overcomes resis-
tance via the MGMT-DUB3-MCL1 axis

ovarian cancer Wu et al. [73]

NCT503 Modulation of Wnt/β-catenin axis reduces MGMT ex-
pression to overcome drug resistance

glioblastoma Jin et al. [80]

Tubeimoside-I (TBMS1) Induced apoptosis in GBM cells through reducing
MGMT expression and inhibiting the EGFR induced
PI3K/Akt/mTOR/NF-κB signaling pathway

glioblastoma multiforme Tang et al. [81]

GNA13 GNA13/PRKACA/MGMTmodulates glioma sensitiv-
ity to TMZ

glioma Liu et al. [82]

Pyrvinium pamoate The AKT/GSK3β/β-catenin signaling axis regulates
MGMT expression

glioblastoma Li et al. [83]

DEC1 Control TMZ resistance via the SP1-MGMT axis glioma cell lines Lv et al. [85]

METTL3 SilencingMeTTL3-mediated inhibition of total methy-
lation improves TMZ resistance

glioblastoma cell lines Shi et al. [84]

Banxia xiexin decoction Influence the drug sensitivity of GC cells by regulating
the expression of MGMT

gastric cancer cells Feng et al. [76]

Cisplatin (DDP) Inhibits MGMT-mediated autophagy suppression to
decrease chemosensitivity in GC

gastric cancer Lei et al. [77]

U0126 Downregulate MGMT expression via blocking
MAPK/ERK pathway increased sensitivity to TMZ

hepatocellular carcinoma
cells

Li et al. [78]

Acridine-O6-
benzylguanine hybrids

Compound 19a inactivates MGMT to increase TMZ
sensitivity

glioblastoma cell lines Franco et al. [75]

TMZ, temozolomide; GBM, Glioblastoma; GC, guanine-cytosine.

MGMT [79]. NCT503, Tubeimoside-I, GNA13, Pyrvini-
umpamoate, DEC1, METTL3, MMR have been confirmed
to increase the sensitivity of GBM to TMZ treatment by reg-
ulating MGMT [80–86], as summarized in (Table 1, Ref.
[68–73,75–78,80–85]).

4.2 Immunotherapy Combined with Alkylating Agents for
Tumor Treatment

In recent years, immunotherapy has gained popularity
as a cancer treatment option, although certain clinical trials
have not produced positive outcomes. In phase 3 trials of
TMZ plus nivolumab in newly diagnosedMGMT promoter
methylated GBM, radiation therapy (RT) + TMZ plus the
immune checkpoint inhibitor nivolumab did not improve
survival [87]. Absent longer OS was seen compared to RT

plus TMZ in a further phase 3 study of TMZwith nivolumab
in GBM patients lacking MGMT methylation [88].

4.3 Treatment of MGMT Promoter Non-Methylated GBM

Different randomized trials have shown that GBM pa-
tients with MGMT promoter methylation were associated
with significantly higher survival when treated with com-
bined radiotherapy and TMZ. Even when disease relapses,
TMZ was increasingly beneficial for GBM patients with
MGMT promoter methylation [89]. However, TMZ ther-
apy was ineffective and had a dismal prognosis for MGMT
non-methylated individuals.

Barazzuol et al. [90] found at the cytological level
that PARP2, an important enzyme involved in DNA repair,
and its inhibitor ABT-888, when used in combination with
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X-ray and TMZ, could enhance radio sensitivity and chem-
ical sensitivity in MGMTmethylated cell lines as well as in
MGMT non-methylated cell lines. These findings suggest
that ABT-888, in combination with traditional chemother-
apy and radiation, has the clinical potential to enhance the
currently recommended course of treatment for GBM, par-
ticularly for individuals who lackMGMTmethylation [90].
Jue et al. [91] tested the PARP inhibition of veliparib (ABT-
888) in a group of patient-derived cell lines and patient-
derived xenograft models, which confirmed that the use
of veliparib and RT was an effective treatment for GBM
patients with non-methylated MGMT promoter. In a ran-
domized phase II trial involving patients with newly diag-
nosedMGMT-unmethylatedGBM,Veliparib treatment was
generally well tolerated, although there was insufficient
proof for a therapeutic benefit [92]. In addition to the use
of PARP inhibitors, Meclofenamate, a nonsteroidal anti-
inflammatory drug, as a gap junction inhibitor, could en-
hance the vulnerability of GBM cells to lomustine induced
cell death. However, it did not depend on the methylation
status of the MGMT promoter, which provides a new ther-
apeutic possibility for GBM patients without MGMT pro-
moter methylation [93]. Also, miRNA has been shown to
increase the sensitivity ofMGMTpromoter non-methylated
GBM patients to TMZ. Kirstein et al. [94] found that miR-
NAs may be a promising and innovative treatment to im-
prove TMZ sensitivity and increase progression-free and
long-term survival in MGMT non-methylated GBM pa-
tients.

The survival benefit of a 70% degree of resection
threshold in GBM patients with non-methylated MGMT
promoter supports the maximization of safe resection rather
than the “all or nothing” approach, according to research by
Katsigiannis et al. [95]. Based on a study of 175 newly di-
agnosed patients with primaryGBM [96], MGMTpromoter
methylation combined with complete resection was an in-
dependent predictor for improved overall and PFS in newly
diagnosed isocitrate dehydrogenase (IDH) wild-type GBM.
These studies suggest that the effect of the scope of surgical
resection on the prognosis of GBM patients may be related
to the methylation level of the MGMT promoter.

Themost widely used prognostic procedures for GBM
exclude individuals older than 70 as it is perceived that
older patients have a decreased tolerance to surgery and
chemotherapeutic treatments and have a poorer progno-
sis [97,98]. When older GBM patients over 70 years old
were combined with MGMT promoter non-methylation,
the treatment was more difficult. Yuen et al. [99] ana-
lyzed the historical evidence-based data of GBM treatment
in older patients and proposed that for these patients with
MGMT promoter methylation, single-dose TMZ may be
considered, while for older patients with MGMT promoter
non-methylation, subfractionated radiotherapy alone may
be sufficient (Table 2, Ref. [90,91,93–95,99,100]).

Moreover, MGMT expression may affect the
chemotherapy drugs and lessen their therapeutic effect. At
the same time, chemotherapy drugs also affect MGMT
expression. Numerous investigations have revealed that
MGMT methylation or activity in patients with GBM al-
tered after receiving chemotherapy and that the expression
of MGMT in certain patients with recurrence was different
from that of the initial tumor. No mechanisms have been
elucidated in these phenomena or in correlating with the
selectivity of chemotherapeutic agents to cells with high
MGMT expression [101].

5. New Progress in Other Aspects of MGMT
There have been many other aspects of research on

MGMT, such as the effect of MGMT promoter methyla-
tion status combined with other genes on tumor prognosis
or treatment, along with the update of MGMT methylation
detection methods.

In addition to the single factor of MGMT promoter
methylation status affecting tumor prognosis, the combina-
tion with other genes can also affect tumor prognosis, es-
pecially for GBM patients. According to certain studies,
GBM patients’ tumors had OS and PFS that were consid-
erably greater than those of patients with wild-type IDH1
GBM tumors that had an unmethylated MGMT promoter
[102,103]. In addition to IDH1 mutation, some researchers
have studied the effect of TERT promoter mutation status
and MGMT promoter methylation status of different pat-
terns on the prognosis of GBM, but the results have been
conflicting. Some studies have suggested that TERT pro-
moter mutation combined with MGMT promoter methyla-
tion can prolong overall survival and progression free sur-
vival [104,105]. The prognosis of GBM with MGMT pro-
moter methylation and TERT wild-type was found to be su-
perior to that of other subtypes in another study [106]. This
discrepancy might be brought on by various MGMT pro-
moter methylation detection techniques employed in vari-
ous laboratories, individual variations, or sample size.

Methylation-specific PCR, pyrosequencing, ormethy-
lation arrays are recommended for detecting MGMT pro-
moter methylation assays according to the European Asso-
ciation of Neuro-Oncology guidelines while the European
Society for Medical Oncology does not recommend im-
munohistochemistry to determineMGMT promoter methy-
lation status [107]. Earlier studies have shown that IHC
assays are not recommended for evaluating MGMT sta-
tus [108]. Subsequently, pyrosequencing has also been
proven to be an ideal choice for detecting MGMT pro-
moter methylation status, with a recommended biological
cutoff of 10% or 21% of the receiver operating character-
istic [109–111]. In addition, it has recently been found
that pyrosequencing (PSQ) to evaluate the percentage of
MGMT promoter methylation is very important for pre-
dicting the volume response and prognosis of patients with
residual tumor GBM [112]. Other methods used to detect
MGMT promoter methylation include Lab-on-Chip com-
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Table 2. MGMT non-methylated GBM treatment.
Treatment Mechanism Tumor type Ref

Veliparib (ABT-888) induced apoptosis and decreased cell proliferation in a
PDX of MGMT unmethylated GBM

glioblastoma Jue et al. [91]

ABT-888 might be significant in MGMT-unmethylated patients
less benefit from TMZ

glioblastoma Barazzuol et al. [90]

Meclofenamate reinforces the antitumoral effects of chemotherapeu-
tic agent lomustine, independent of MGMT promoter
methylation status

glioblastoma Schneider et al. [93]

miRNAs enhance TMZ sensitivity in MGMT unmethylated pa-
tients

glioblastoma Kirstein et al. [94]

70% extent of resection
threshold

benefit for survival of patients with MGMT unmethy-
lated GBM

glioblastoma Katsigiannis et al. [95]

Chemotherapy drugs combination of carelizumab, anlotinib, and oxitinib glioblastoma Wang et al. [100]

hypofractionated radia-
tion therapy (hRT)

hRT alone can be considered elderly patients with
newly diagnosed
glioblastoma

Yuen et al. [99]

PDX, patient-derived xenograft.

patible isothermal amplification, two-probe quantification
of MSP, and methylation quantification of endonuclease re-
sistant DNA [113–115]. IHC assays for MGMT protein or
enzyme activity have also been used as a proxy for methy-
lation status, especially in resource-limited settings, where
PCR technology is lacking [116]. The MGMT promoter
methylation, methylation site preference, and cut-off value
could not be determined using a conventional approach, re-
gardless of the detection method used.

The identification of methylation locations and thresh-
old values continue to be established, despite evidence link-
ing MGMT promoter methylation status to therapy and
prognosis in GBM patients. Research has found that a cut-
off of 9% for 74–78 CpG sites is better than a higher cutoff
of 28% or 29% [110]. As theMGMT promoter methylation
detection PSQ threshold depends on the average methy-
lation CpGs threshold, the recommended value was 10%,
which was divided into “transition zone” or “gray area”, as
it might confer some sensitivity to TMZ treatment [117].
IHC has proved to be a robust method for predicting the
prognosis of patients in the gray area defined by PSQ [118].

Various researchers have turned their attention to ra-
diomics imaging methods based on nuclear magnetic res-
onance imaging, trying to establish a preoperative, non-
invasive MGMT promoter methylation detection [119].
Extreme Gradient Boosting feature selection model, ge-
netic algorithm based packaging model, machine learn-
ing, intravoxel incoherent motion (IVIM) and dynamic sus-
ceptibility contrast (DSC), and T2-weighted image have
all been proven to be effective in evaluating MGMT pro-
moter methylation in GBM patients [120–124]. Patients
can combine imaging prediction with surgical specimen
detection. This combination can more precisely predict
MGMT methylation levels and let patients choose a more

effective treatment strategy. There have been other stud-
ies that used patient body fluids to detect MGMT promot-
ers’ methylation status, such as peripheral blood and cere-
brospinal fluid [125,126].

6. Conclusions
In its capacity as a DNA repair enzyme, MGMT is

independently involved in DNA damage repair and is cru-
cial for the emergence and growth of malignancies. In the
early stage of tumor development, the transfer methyl group
of MGMT avoids gene mutations of oncogenes and tumor
suppressor genes such as K-ras, P53 and PTEN, and plays
an anti-tumor role. MGMT performs a function in transfer-
ring the methyl group to protect the body throughout tumor
formationwhen chemotherapymedications, primarily alky-
lated chemotherapeutic agents, are used. While MGMT in-
creases the protective effect on cells, it also produces drug
resistance, which may affect the patient’s prognosis.

Although there are numerous studies on the influence
of MGMT promoter methylation, protein expression, en-
zyme activity and gene polymorphism on tumor prognosis
and treatment, the results have been controversial. Prob-
lems to be solved, especially for GBM patients, include the
lack of consensus on the selection of MGMT methylation
detection methods, the selection of methylation sites, and
the determination of cut-off values. The use of different
methods and standards in various laboratories can lead to
inconsistent results. In addition, TMZ resistance caused by
MGMT is still the key to the treatment of GBM, and the de-
velopment of more targeted drugs that could be combined
with TMZ or inhibit MGMT expression is also critical, es-
pecially for older patients who are more than 70 years old,
as within this vulnerable group, it is urgent to develop more
effective treatment regimens.
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