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Abstract

Background: Malignant peripheral nerve sheath tumors (MPNSTs) are an aggressive form of sarcomas with a poor prognosis and
limited treatment options. Therefore, new therapeutic targets are urgently needed to identify novel drugs. Methods: Based on the
Gene Expression Omnibus database, an integrated analysis was performed to identify differentially expressed genes (DEGs) in MPNSTs
compared to neurofibromas (NFs). Then functional enrichment analyses, protein-protein interaction (PPI) network construction, and
hub gene selection were conducted. We explored DEG-guided repurposable drugs to treat MPNST based on the Library of Integrated
Network-Based Cellular Signatures (LINCS) database. Furthermore, the binding affinity between predicted drug candidates and the
MPNST-associated hub gene was calculated using molecular docking. Results: We identified 89 DEGs in common with all three
MPNSTs datasets. In the PPI networks, twist family bHLH transcription factor 1 (Twist1) with higher node degrees was further evaluated
as a therapeutic target. Cytochalasin-d, cabozantinib, everolimus, refametinib, and BGT-226 were extracted from the LINCS database,
which showed lower normalized connectivity scores (–1.88, –1.81, –1.78, –1.76, and –1.72, respectively) and was considered as drug
candidates. In addition, the results of molecular docking between the five drugs and Twist1 showed a binding affinity of –6.61, –
7.03, –7.73, –3.94, and –7.07 kcal/mol, respectively. Conclusions: Overall, our results describe the importance of Twist1 in MPNST
pathogenesis. Everolimus was also found to be a potential therapeutic drug for MPNSTs.

Keywords: malignant peripheral nerve sheath tumors; twist family bHLH transcription factor 1; molecular docking; everolimus

1. Introduction
Malignant peripheral nerve sheath tumors (MPNSTs)

are highly invasive cancers that account for approximately
10% of all soft tissue sarcoma; 50% of such tumors are as-
sociated with neurofibromatosis type 1 (NF1). These sar-
comas generally have poor clinical outcomes, and are the
leading cause of mortality and morbidity in adults with
NF1. Complete surgical resection is still the main treatment
method forMPNSTs due to the limited effectiveness of both
chemotherapy and radiotherapy. However, a full resection
may not be possible due to tumor size and location in many
patients [1,2].

Several amplified genes that are important for the
pathogenesis of MPNST have been identified. For ex-
ample, the expression of epidermal growth factor receptor
(EGFR) and erbB2 is stronger in MPNSTs than in neurofi-
bromas (NFs). Holtkamp et al. [3] valuated the effects of
erlotinib and trastuzumab drugs targeting EGFR and erbB2
in MPNST cell lines, and EGFR and erbB2 have emerged
as potential targets for the treatment of patients with MP-
NSTs. The progressive amplification of MET was found
in the case of MPNST. NF1 ablated mice exhibit a strong
MPNST phenotype without additional mutations, which are

consistently sensitive to the highly selective MET inhibitor
capmatinib [4]. Frequent platelet-derived growth factor
receptor alpha (PDGFRα) mutations in MPNST are typ-
ically associated with the co-amplification of KIT Proto-
Oncogene (c-KIT). The tyrosine kinase inhibitor imatinib
can inhibit the proliferation of MPNST cell lines in vitro,
and it is known that imatinib can targetPDGFRα and c-KIT.
PDGFRα is a candidate for targeted therapy of MPNST
[5]. Furthermore, the insulin-like growth factor 1 receptor
(IGF1R) pathway is also a potential therapeutic target for
MPNST patients. Inhibition of IGF1R in MPNST cell lines
using small interference RNAs or IGF1R inhibitors leads to
a significant decrease in cell proliferation, invasion, andmi-
gration [6]. Although these targeted drugs have proven to
be effective in treatingMPNSTs, there are currently no U.S.
Food and Drug Administration (FDA)-approved drugs for
the treatment of MPNSTs. Therefore, a better understand-
ing of the initiation and progression is needed to identify
new therapeutic strategies.

In this study, we screened druggable targets via in-
tegrated bioinformatics analysis and predicted therapeutic
drugs forMPNSTs using the Library of IntegratedNetwork-
Based Cellular Signatures (LINCS) database, which identi-
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fies the connection between gene expression profiles and
FDA-approved drugs. Furthermore, molecular docking
was used in the search for matching predicted potential
drugs and screened targets. Our finding expands the current
understanding of MPNST progression and identifies poten-
tial therapeutic drugs for NF1-related MPNSTs.

2. Materials and Methods
2.1 Data Collection and DEG Acquisition

The gene expression profiles of the microarray
datasets GSE41747, GSE66743, and GSE141439 were ob-
tained for analysis from the Gene Expression Ominbus
(GEO) database at the National Center for Biotechnology
Information (http://www.ncbi.nlm.nih.gov/geo/). Bioinfor-
matics analyses of the data from online databases were car-
ried out by R 4.1.1 software (R Foundation for Statisti-
cal Computing, Vienna, Austria). We performed differen-
tial expression analysis using the limma package (https://bi
oconductor.org/packages/release/bioc/html/limma.html) to
determine differentially expressed genes (DEGs) with the
criteria of |log2FC| >1 and p < 0.05 and created volcano
plots of the DEGs [7]. A Venn diagram and heatmap of
DEGs were generated using the online database SangerBox
website (http://sangerbox.com/tool.html).

2.2 Protein-Protein Interaction Network Construction,
Gene Ontology, and Kyoto Encyclopedia of Genes and
Genomes Pathway Analysis of DEGs

Search Tool for the Retrieval of Interacting Genes
(STRING, https://string-db.org/) is an online tool for eval-
uating the information on protein-protein interaction (PPI)
[8]. We use the STRING to find possible relations among
the DEGs. The Gene Ontology (GO) and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway enrich-
ment analyses of the DEGs were conducted with the online
database SangerBox website.
2.3 PPI Network Module Analyses and Identification of
Hub Genes

PPI network and module analyses were visualized us-
ing Cytoscape version 3.7.2 (Institute for Systems Biology,
Seattle, WA, USA), and subsequent hub gene identification
of the modules was performed [9]. First, the Cytoscape
Molecular Complex Detection (MCODE) plug-in was used
to identify the most important modules in the PPI networks.
The criteria for selection were set as follows: MCODE
score >3, number of nodes >4. Next, we use the Cyto-
Hubba plug-in of Cytoscape to filter hub genes from the PPI
network with the EcCentricity, BottleNeck, and Closeness
rankingmethods [8]. The top 10 genes were considered hub
genes.
2.4 Prognosis Analysis and Differential Expression of
Twist Family bHLH Transcription Factor 1 in Pan-Cancer

We used the Kaplan-Meier method and Cox propor-
tional hazards (CoxPH) regression model to explore the
overall survival (OS) of patients with high and low Twist

family bHLH transcription factor 1 (Twist1) expression in
39 cancer types. Hazard ratios (HRs) with 95% confidence
intervals (CIs) and log-rank p values were reported. p <

0.05 was considered statistically significant. The online
database SangerBox website (http://sangerbox.com/tool.h
tml) was used to analyze the expression of Twist1 in differ-
ent cancers and normal tissues [10]. The expression profiles
of Twist1 in different cancer and normal cell lines were ob-
tained from the BioGPS database (http://biogps.org) [11].

2.5 Mutation Profiles

The c-BioPortal for Cancer Genomics (http://cbioport
al.org) is a publicly available database for exploring mul-
tidimensional cancer genomics datasets [12]. The genetic
alteration of Twist1 in different cancers was analyzed by
the c-BioPortal database [13].

2.6 MPNST-Associated Drug Prediction

We use The Connectivity Map, which is designed to
identify biological pathways and expression modules by
querying the gene lists of up- and down-regulated genes to
rank small molecules, drugs and genes. A so-called connec-
tivity score was used to evaluate the correlation between the
drugs and input genes; a positive score indicates an induce-
ment effect of the compound on the gene signatures, while
a negative score reflects an inverse impact of a compound
on the gene signatures. The L1000 database of the LINCS
project includes 476,251 gene expression signatures gath-
ered from 72 cell lines stimulated by 27,927 small molecule
compounds. We identified the potential compounds based
on the connectivity score (–2 to 2).

2.7 Molecular Docking Between MPNST Candidate Drugs
and Hub Genes

The 3D structure files of the compounds were down-
loaded from PubChem (https://pubchem.ncbi.nlm.nih.gov
/). The crystal structures of target proteins were retrieved
from the RCSB Protein Data Bank (PDB) (https://www.rc
sb.org/). AutoDockTools 1.5.7 software (Molecular Graph-
ics Laborary, The Scripps Research Institute, La Jolla, CA,
USA) was used to prepare the required files, converting lig-
ands and receptors structures from PDB file format to Pdbqt
format. All water molecules were detached for predocking
preparation, and then Kolmman charges and polar hydro-
gen atoms were added to the compounds using Autodock-
Tools. Molecular docking calculations were performed
by AutoDockTools. The docking results were expressed
as binding affinity values of the obtained receptor/ligand
complex (kcal/mol) according to hydrogen bonds, electro-
static, and hydrophobic interactions. PyMOL 2.6.0 soft-
ware (PyMOL Molecular Graphics System, Schrödinger,
LLC, Shanghai, China) was used to visualize the 3D struc-
tures of the protein and major receptor/ligand interaction
in terms of hydrogen bonds binding to the key amino acid
residues.
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Fig. 1. Identification of overlapping DEGs. (A–C) Differential expression of genes between MPNST tissues and neurofibroma tissues
in the microarray datasets (GSE41747, GSE66743, and GSE141439). (D) Venn diagram showing DEGs across the three datasets, with an
overlap of 34 upregulated gene. (E) Venn diagram showing DEGs across the three datasets, with an overlap of 55 downregulated genes.
(F) The heat map of overlap upregulated and downregulated genes. The columns and rows in the heat map represent GEO datasets and
genes. MPNST, malignant peripheral nerve sheath tumors; DEGs, differentially expressed genes; GEO, Gene Expression Ominbus.

2.8 Statistical Analysis

The primary statistical analyses were performed in R
4.1.1 software. The normality test was performed with the
Shapiro-Wilk test. The Kaplan-Meier curve was drawn to
compare time to event distribution, and Univariate Cox re-
gression analysis was used to evaluate the correlations be-
tween the DEGs and OS. All hypothetical tests were two-
sided, and p < 0.05 was considered statistically significant
with the following thresholds: *p< 0.05, **p< 0.01, ***p
< 0.001.

3. Results
3.1 Identification of Overlapping DEGs in MPNST

Microarray datasets (GSE41747, GSE66743, and
GSE141439) were retrieved from the GEO database to
identify the DEGs between MPNST and NF samples
(Fig. 1). There was a total of 80 samples, including
43 MPNST and 37 NF (GSE41747: 6MPNST/26NF;
GSE66743:30MPNST/8NF; GSE141439: 7MPNST/3NF).
Finally, 1037 DEGs with upregulation and 1694 DEGs with
downregulation were identified in the GSE41747 dataset
(Fig. 1A). 1080 DEGs with upregulation and 1371 DEGs

with downregulation were identified in the GSE66743
dataset (Fig. 1B). Additionally, 1032 DEGs with upregu-
lation and 1648 DEGs with downregulation were identified
in the GSE141439 dataset (Fig. 1C). We identified 89 com-
mon DEGs among the three GEO datasets, including 34 up-
regulated genes and 55 downregulated genes (Fig. 1D–F).

3.2 Functional Enrichment Analyses

The GO enrichment analysis showed that biological
process (BP) terms were related to the cellular process,
single-organism process, metabolic process, and biologi-
cal regulation. GO_cellular component (GO_CC) analysis
showed enrichment in macromolecular complexes, mem-
branes, and membrane-enclosed lumen. GO_molecular
function (GO_MF) analysis showed enrichment in catalytic
activity, DNA binding transcription factor activity, and
structural molecular activity (Fig. 2A). The KEGG path-
ways were significantly enriched in antifolate resistance,
proteoglycans in cancer, viral carcinogenesis, and the hy-
poxia inducible factor 1 (HIF-1) signaling pathway, which
involved in multipe mechanism of tumorgenesis and related
to occurrence and development of MPNSTs (Fig. 2B,C).
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Fig. 2. Functional enrichment analyses of DEGs. (A) GO_MF analysis showed enrichment in catalytic activity, DNA binding tran-
scription factor activity, and structural molecular activity. (B–C) The KEGG pathways were significantly enriched in antifolate resistance,
proteoglycans in cancer, viral carcinogenesis, and the HIF-1 signaling pathway, which involved in multipe mechanism of tumorgenesis
and related to occurrence and development of MPNSTs. GO_MF, GO_molecular function; KEGG, Kyoto Encyclopedia of Genes and
Genomes.

3.3 PPI Network Construction, Module Selection, and
Identification of Hub Genes

The PPI network was constructed on STRING, which
contained 287 nodes and 848 edges. The most significant
module was obtained in the PPI network of the upregulated
and downregulated genes using Cytoscape MCODE plug-
in. It was enriched in viral carcinogenesis, proteoglycans in
cancer, and necroptosis (Fig. 3A).

Then, using the CytoHubba plugin of the Cytoscape,
the top 10 hub genes were identified in the whole PPI
network ranked in terms of different algorithm, includ-

ing Twist1, HIST1H4C, SOX11, ACTA2, SOX4, H2AFZ,
HIST1H2BD,HIST1H2BG,HIST1H2BK, and RPGR by the
EcCentricity method; ACTA2, Twist1, HIST1H4C, H2AFZ,
RPGR,MYH11, TAGLN, BBS2, PPP1R12B, and SOX11 by
the BottleNeck method; and ACTA2, HIST1H4C, Twist1,
H2AFZ, MYH11, TAGLN, CNN1, LMOD1, HIST1H2BD,
andHIST1H2BK by the Closeness method (Table 1). Based
on the high score of Twist1 in various algorithms and combi-
nation with pan-cancer analysis, we selected it as the target
gene.
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Fig. 3. Prognostic value and differential expression of Twist1 across pan-cancer. (A) The protein-protein interaction network and
hub genes. (B) Twist1 expression in different cancer cell lines extracted from the BioGPS database. (C) Twist1 expression in pan-cancers
compared with normal tissues in the GEPIA database. (D) The correlation between the Twist1 expression and prognosis in pan-cancer.
(E) High Twist1 expression was also associated with poor OS time in MPNST.

3.4 Prognostic Value and Differential Expression of Twist1
across Pan-Cancer

We analyzed Twist1 expression in various cancer
cell lines and normal tissues extracted from the BioGPS
database. The results revealed that Twist1 expression in-
creased not only in almost all cancer cells but also signif-
icantly varied among different cancer cell lines (Fig. 3B).
Subsequently, we examined the expression levels of Twist1
in pan-cancer using the online database SangerBox. The ex-
pression of Twist1was significantly increased in adrenocor-
tical carcinoma (ACC), lower grade glioma (LGG), cholan-

giocarcinoma (CHOL), lung adenocarcinoma (LUAD),
acute myeloid leukemia (LAML), stomach adenocarci-
noma (STAD), head and neck squamous cell carcinoma
(HNSC), testicular germ cell tumors (TGCT), kidney renal
clear cell carcinoma (KIRC), lung squamous cell carcinoma
(LUSC), rectum adenocarcinoma (READ), glioblastoma
multiforme (GBM), pancreatic adenocarcinoma (PAAD),
prostate adenocarcinoma (PRAD), and uterine carcinosar-
coma (UCS) (Fig. 3C). These results suggested that Twist1
is overexpressed in tumor tissues.
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Table 1. Top 10 genes screened by the cytoHubba plugin of Cytoscape.
EcCentricity method BottleNeck method Closeness method

Name Score Name Score Name Score

TWIST1 0.25 ACTA2 18 ACTA2 10.11667
HIST1H4C 0.25 TWIST1 18 HIST1H4C 10
SOX11 0.2 HIST1H4C 18 TWIST1 9.25
ACTA2 0.2 H2AFZ 3 H2AFZ 8.816667
SOX4 0.2 RPGR 2 MYH11 8.783333
H2AFZ 0.2 MYH11 2 TAGLN 8.783333
HIST1H2BD 0.2 TAGLN 2 CNN1 8.283333
HIST1H2BG 0.2 BBS2 1 LMOD1 8.283333
HIST1H2BK 0.2 PPP1R12B 1 HIST1H2BD 8.15
RPGR 0.166667 SOX11 1 HIST1H2BK 8.15

The univariate Cox regression analysis was used to
investigate the correlation between Twist1 expression and
prognosis, and a forest plot was drawn via R package “sur-
vival” (Fig. 3D) and Kaplan-Meier survival curves for tu-
mors with significantly affected OS. High expression of
Twist1 was associated with poor OS time in LGG (n = 474,
p = 3.3× 10−38, HR = 1.61 [1.49, 1.73]), KIPAN (n = 855,
p = 3.4 × 10−8, HR = 1.22 [1.14, 1.30]), KIRP (n = 276, p
= 4.7 × 10−6, HR = 1.49 [1.26, 1.76]), MESO (n = 84, p =
5.2× 10−4, HR = 1.34 [1.14, 1.59]), UVM (n = 74, p = 9.4
× 10−4, HR = 1.33 [1.12, 1.57]), BLCA (n = 398, p = 4.8
× 10−3, HR = 1.11 [1.03, 1.19]), PAAD (n = 172, p = 6.8×
10−3, HR = 1.18 [1.05, 1.33]), KIRC (n = 515, p = 0.01, HR
= 1.17 [1.04, 1.32]), SKCM (n = 97, p = 0.01, HR = 1.31
[1.07, 1.62]), GBM (n = 144, p = 0.02, HR = 1.15 [1.03,
1.28]), and THCA (n = 501, p = 0.02, HR = 1.52 [1.09,
2.10]). Furthermore, high Twist1 expression was also asso-
ciated with poor OS time in MPNSTs (Fig. 3E). Together,
these data suggested that Twist1 expression was associated
with prognosis in most cancers, including MPNSTs.

3.5 Twist1 Genomic Alterations in Different Cancer
Groups

The results demonstrated that Twist1 genomic alter-
ations occurred in 1.5% of patients (Fig. 4A). The frequency
of Twist1 gene alterations was higher in different cancer
types, especially in the type of amplification (Fig. 4B).

3.6 MPNST-Associated Drugs
Overlapping DEGs between MPNST and NF were

used to search for drugs that could revert their expression
signatures using the LINCS Query tool. Drug-gene combi-
nations were ranked by search score. Drugs with low scores
correspond to higher reversal potency and more significant
potential for application. Finally, we selected five drugs
(cytochalasin-d, cabozantinib, everolimus, refametinib, and
BGT-226).

3.7 Molecular Docking Simulation

To know the interaction between predicted five drugs
and Twist1, the molecular docking simulation study was
performed by the AutoDockTools software. At the same
time, we selected selumetinib, a classic mitogen-activated
protein kinase (MAPK) inhibitor, as the reference drug for
drug identification. The binding energy of cytochalasin-
d, cabozantinib, everolimus, refametinib, BGT-226, and
selumetinib with Twist1 was –6.61, –7.03, –7.73, –3.94,
–7.07, and –6.22 kcal/mol, respectively (Table 2, Fig. 5).
The molecular docking results revealed that everolimus in-
teracted with Twist1 via two H-bonds in close proximity of
2.1 Å and 2.2 Å with ARG-423 and TYR-430 residues, re-
spectively.

4. Discussion
Only 8–13% of NF1 patients develop MPNSTs. The

genetic alteration fromNFs toMPNST formation is unclear
[14]. Cyclin-dependent kinase inhibitor 2A (CDKN2A)/p16
and polycomb repressive complex 2 (PRC2) gene muta-
tions drive the transformation from NFs to MPNST [15–
20]. p16 is a tumor suppressor protein encoded by the
CDKN2A gene, which inhibits cyclin D-dependent pro-
tein kinases from entering the S phase of the cell cycle,
thereby maintaining retinoblastoma protein (Rb) in a low-
phosphorylated state and preventing its isolation from E2F
transcription factor. Loss of p16 expression and homozy-
gous deletion of theCDKN2A gene in NFsmay be related to
their transformation to MPNSTs [15]. The core PRC2 com-
plex comprises four components: EZH1/2, SUZ12, EED,
and PbAp46/48 [21]. Lee et al. [17] identified loss-of-
function somatic alterations of the /textitPRC2 components
(EED or SUZ12) in MPNSTs. MPNSTs with PRC2 inac-
tivation have been shown consistent and complete loss of
trimethylation at lysine 27 of histone H3 (H3K27me3). The
introduction of the missing PRC2 component in a PRC2-
deficient MPNST cell line restored H3K27me3 levels and
reduced cell proliferation.
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Fig. 4. GZMAGenomic Alterations in different cancer groups analyzed by the cBioPortal database. (A) Twist1 genomic alterations
occurred in 1.5% of patients. (B) The Twist1 gene alterations frequency was higher in different cancer types, especially in the type of
Amplification.

Some individuals with NF1will developMPNSTs that
arise due to the malignant transformation of plexiform neu-
rofibroma (pNF) [22]. In the transition from NFs to MP-
NSTs, a recently identified tumor is called Atypical neu-
rofibromatosis neoplasms of uncertain biological potential
(ANNUBP), which is hypothesized to be precursor lesions
of MPNSTs [23]. However, the molecular mechanism un-
derlying the transformation from pNF to MPNSTs is still
unknown. In this study, we first identified DEGs between
MPNSTs and NFs using three independent GEO databases.
In total, 34 upregulated DEGs and 55 downregulated DEGs
were revealed. Bioinformatics analysis revealed that the
upregulated genes are mainly involved in proteoglycans in
cancer, and viral carcinogenesis, and the HIF-1 signaling
pathway. To identify the hub genes involved in the progres-

sion from NFs to MPNSTs, we constructed a PPI network,
and Twist1was identified as a hub gene in the progression of
MPNSTs. Further analysis revealed that higher expression
of Twist1 correlated with shorter survival time in MPNSTs
as in pan-cancer. Thus it may be a potential biomarker for
the prognosis of MPNSTs.

Cutaneous NFs are the most prevalent tumour in NF1
patients. Plexiform NFs, defined as NFs involving multiple
peripheral nerve fascicles, are less frequent but lead to se-
rious consequences. Malignant transformation develops in
5–10% of NF1 patients, typically in a plexiform NFs sub-
type [24]. The neural crest transcription (SOX9) is found
to be a biomarker of MPNSTs, which is possibly a thera-
peutic target in NF1. Interestingly, <30% of cells in most
cutaneous NFs are SOX9 positive; plexiform NFs contain

7
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Fig. 5. Molecular docking profile of drug candidate with Twist1. (A) cytochalasin-d. (B) cabozantinib. (C) everolimus. (D) refame-
tinib. (E) BGT-226. (F) selumetinib.

an average of 50% of SOX9 positive cells, while in MPN-
STs, >70% of cells are SOX9 positive. This may indicate
a potential evolutionary relationship among the three types
of tumors [25,26].

It appears that plexiform NFs have a higher abil-
ity to evolve into MPNSTs than cutaneous NFs. But so
far, it is still unknown whether there is a molecular dif-
ference between cutaneous NFs and plexiform NFs. In
the GSE41747 dataset we used to analyse, transcripts that
passed the ANOVA failed to distinguish the two NF sub-
types [25,26]. The explanation is that cutaneous and plexi-
form NFs cells may be essentially the same but exposed to
different tumor microenvironments. In addition, the other
two datasets we used (GSE66743 and GSE141439) did not
specify whether NFs were cutaneous NFs or plexiform NFs
[27,28], so our analysis did not distinguish the two types of
NFs. Due to the different potential of developing MPNSTs
of two types of NFs, it is necessary to conduct gene differ-
ential analysis between different types of NFs andMPNSTs
in future studies.

Twist1, a transcription factor and member of the ba-
sic helix-loop-helix protein family, is known to stimulate

epithelial-mesenchymal transition (EMT) and promote tu-
mor invasion and metastasis. Dysregulation of Twist1 is
associated with the loss of epithelial markers, such as E-
cadherin, and alpha/gamma-catenins, and the activation of
mesenchymal markers, such as N-cadherin, suggesting that
Twist1 promotes the EMT [29]. Twist1-induced EMT is
clinically associated with distant cancer metastasis and poor
prognosis in multiple tumor types. Twist1 transcription
factors mediate EMT target genes involved in cell migra-
tion and invasion [30], multidrug resistance [31–33], cancer
stems cell self-renewal [34,35], immune surveillance [36],
and apoptosis [37].

Our study revealed that the expression of Twist1
was significantly higher in GBM, LGG, LUAD, PRAD,
STAD, HNSC, KIRC, LUSC, READ, PAAD, TGCT, UCS,
LAML, ACC, and CHOL, consistent previous reports [29,
38–56]. Twist1 might be a significant diagnostic and prog-
nostic biomarker predicting poor prognosis, which has al-
ready been demonstrated in breast cancer [39], bladder can-
cer [57], esophageal squamous cell carcinoma [58], cervical
cancer [59], head and neck cancer (HNC) [60], melanoma
[61], colorectal cancer [62], hepatocellular cancer [63,64],
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Table 2. The results of molecular docking between drug candidates with Twist1.
Ligand Receptor PDB ID Binding Affinity (Kcal/mol) Amino Acid Residue Bonding Length Interaction

cytochalasin-d Twist1 2MJV –6.61 ARG-423 2.0° Hydrogen bond
GLN-416 2.0° Hydrogen bond
PHE-454 3.1° Hydrogen bond

cabozantinib Twist1 2MJV –7.03 ALA-455 3.5° Hydrogen bond
ASP-337 3.5° Hydrogen bond
ASP-459 3.2° Hydrogen bond
MET-457 2.9° Hydrogen bond

everolimus Twist1 2MJV –7.73 ARG-423 2.1° Hydrogen bond
TYR-430 2.2° Hydrogen bond

refametinib Twist1 2MJV –3.94 GLU-460 2.1° Hydrogen bond
HIS-341 2.0° Hydrogen bond
LYS-349 1.9° Hydrogen bond

BGT-226 Twist1 2MJV –7.07 LYS-378 2.5° Hydrogen bond
SER-401 2.2° Hydrogen bond

selumetinib Twist1 2MJV –6.22 ASP-459 2.2° Hydrogen bond
GLN-340 2.0° Hydrogen bond
GLN-416 2.8° Hydrogen bond
GLU-460 2.4° Hydrogen bond
HIS-341 2.0° Hydrogen bond
LYS-349 1.7° Hydrogen bond

PDB, Protein Data Bank.

nasopharyngeal cancer [51], and ovarian cancer [65,66].
The widespread involvement of Twist1 in human cancer
suggests that inhibition of Twist1 is a promising therapeu-
tic strategy for the prevention and treatment of cancer. We
also showed that Twist1 expression was linked to clinical
prognosis in multiple cancers. In addition, high expression
levels of Twist1 had a significant association with poor OS
inMPNSTs. Twist1 is highly expressed inMPNSTs and has
low expression in normal adult tissues, making it an promis-
ing therapeutic target for drug development. Therefore, the
application of Twist1 inhibitor has great clinical value for
the treatment of MPNSTs, with few side effects.

We used LINCS datasets to identify novel MPNSTs
drugs based on the overlapping DEGs. Finally, we se-
lected five drugs (cytochalasin-d, cabozantinib, everolimus,
refametinib, and BGT-226) with lower scores regarding
their potential as drugs. To further predict the five drugs
that might be direct Twist1 inhibitors, the molecular dock-
ing analysis was performed using the AutoDockTools and
PyMOLsoftware. The results showed that everolimus in-
teracting with Twist1 has lowest binding energy, making
everolimus an optimal potential drug.

The mammalian target of rapamycin (mTOR), which
involve in the growth and proliferation of tumor cells and
play a role in the switch between cell catabolism and an-
abolism, is dysregulated in many types of tumors [67].
This explains the potential use of mTOR inhibitors in on-
cology. Everolimus is a new mTOR inhibitor, which in-
hibits the growth and angiogenesis of tumor cells by con-
tinuously inhibiting mTOR. Everolimus blocking the bind-

ing of the raptor to mTOR can restore control of the acti-
vated PI3K/AKT/mTOR signalling pathway. Everolimus
has been approved for treating advanced breast cancer with
positive hormone receptors and negative human epider-
mal growth factor receptor 2 [68], advanced renal cell
carcinoma after targeted treatment of vascular endothelial
growth factor [69], and advanced neuroendocrine tumors of
pancreatic, gastrointestinal or pulmonary origin [70,71]. In
addition, it can be used to control the growth of subependy-
mal giant cell astrocytoma, renal angiomyolipoma, and
hamartoma in tuberous sclerosis complex (TSC) [72]. It
can also be used for immunosuppression after heart or kid-
ney transplantation [73].

Interestingly, Twist1 promotes energy metabolism re-
programming (EMR) of glucose metabolism in breast can-
cer cells by activating the PI3K/AKT/mTOR pathway.
EMR is crucial for the survival of cancer cells, as it
can increase cancer proliferation, migration, and invasion
[74]. In addition, previous studies have confirmed that
Twist1 promotes tumor invasion and metastasis by induc-
ing EMT, and multiple signals that induce EMT often con-
verge in the PI3K/AKT/mTOR signalling pathway. Xue
et al. [75] found that complete EMT phenotype and mor-
phological changes require PI3K/AKT mediated Twist1
phosphorylation in breast tumor cells. Twist1 may be a
PI3K/AKT/mTOR signalling pathway member. Based on
our research, everolimus could be a potential therapeutic
drug for MPNSTs. The results of molecular docking show
that everolimus has the lowest binding energy with Twist1,
indicating that it may play an anti-tumor role by targeting
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Twist1 in addition to targeting mTOR. Another possible ex-
planation is that it indirectly regulates Twist1 phosphory-
lation by targeting PI3K/AKT/mTOR pathway. However,
our study results have not been experimentally validated
and further experiments are needed.

This study is the first to systematically investigate the
potential role of Twist1 in MPNSTs, which may be a key
gene related to the occurrence and progression of MPNSTs.
In addition, through molecular docking, everolimus, a po-
tential target drug for MPNSTs, has a clear binding site and
good binding ability with Twist1. It is expected to provide
new ideas and insights for exploring the treatment strategies
and therapeutic drugs of MPNSTs.

5. Conclusions
Overall, our results describe the importance of Twist1

in MPNST pathogenesis. everolimus was also found to be
a potential therapeutic drug for MPNSTs. These findings
require further experimental studies for confirmation.

6. Limitation
This study had limitations. First, we have not per-

formed further experiment methods to verify the functional
roles of Twist1. Therefore, functional experiments includ-
ing cell proliferation, migration, gain- and loss-of-function
assays, should be conducted in the future. Second, although
we have identified the clinical significance of Twist1 inMP-
NSTs in three independent datasets, verification in large
clinical samples is still needed.
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