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Abstract

Background: Considering the remarkable heterogeneity of biological features of renal cell carcinoma (RCC), the current clinical classi-
fication that only relies on classic clinicopathological features is in urgent need of improvement. Herein, we aimed to conduct DNA
methylation modification patterns in RCC. Methods: We retrospectively curated multiple RCC cohorts, comprising TCGA-KIRC,
TCGA-KICH, TCGA-KIRP, and E-MTAB-1980. DNA methylation modification patterns were proposed with an unsupervised clus-
tering algorithm based on 20 DNA methylation regulators. Immunological features were characterized using tumor-infiltrating immune
cells and immunomodulators. Sensitivity to immuno- or targeted therapy was estimated with submap and Genomics of Drug Sensi-
tivity in Cancer (GDSC). DNA methylation score (DMS) was developed with principal component analysis. Results: Three DNA
methylation modification patterns were conducted across RCC patients, namely C1, C2 and C3. Among them, C3 displayed the most
remarkable survival advantage. The three patterns presented in agreement with immune phenotypes: immune-desert, immune-excluded,
and immune-inflamed, respectively. These patterns displayed distinct responses to anti-PD-1 and targeted drugs. DMS enabled the
quantification of DNA methylation status individually as an alternative tool for prognostic estimation. Conclusions: The DNA methy-
lation molecular patterns we proposed are an innovative complement to the traditional classification of RCC, which might contribute to
precision medicine.
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1. Introduction
Renal cell carcinoma (RCC) accounts for 2% of all

cancer cases across the globe [1]. In estimation, there are
approximately 431,000 newly diagnosed RCC cases and
179,000 death cases globally in 2020 [2]. RCC is primarily
divided into three histopathological types: clear cell RCC
(ccRCC), papillary RCC (pRCC), as well as chromophobe
RCC (chRCC) [3]. ccRCC represents the leading hetero-
geneous subtype, accounting for 75% of all RCC patients
[4]. Meanwhile, pRCC, which can be subdivided into type
1 pRCC (basophilic) and type 2 pRCC (eosinophilic), and
chRCC separately account for about 15% and 5% of all pa-
tients [4]. More than half of RCC cases are accidentally
diagnosed during imaging as other diseases and there are
no clinically reliable RCC-specific screening tools [5]. The
five-year survival rate of localized cases is high follow-
ing surgery. However, more than 30% of cases occur lo-

cal or distant spread once diagnosed. Patients with metas-
tases present high resistance to conventional chemother-
apy. Novel therapeutic strategies have been developed,
including tyrosine kinase inhibitors, mTORC1 inhibitors,
immunotherapy, and multiple kinase inhibitors, with a re-
sponse rate of 35% [6]. Nevertheless, resistance to the
above treatment is frequent and most cases still die from
RCC.

RCC pathogenesis has the features of diverse biologi-
cal disorders involving epigenetic and genetic changes, and
DNA methylation abnormality is regarded as a key event
for cancer initiation and progression [7]. DNA methyla-
tion is primarily mediated by three writers (DNMT1, and
DNMT3A/B), three erasers (TET1–3), as well as fourteen
readers (MBD1–4, ZBTB33, ZBTB38, ZBTB4, UHRF1,
UHRF2, MECP2, UNG, TDG, NTHL1, and SMUG1).
Dysregulated DNA methylation regulators are indispens-
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able for tumorigenesis, including RCC [8]. For instance,
expression of DNMT1, and DNMT3A/B is elevated in
RCC tissues [9]. DNMT1 facilitates the proliferation and
invasion of RCC cells [10]. DNMT3A that is recruited
by HOXA5 promotes the increase of DNA methylation
of slug, thereby hindering EMT and metastases of RCC
[11]. DNMT3B can interact with NEDD8-modified pro-
teins [12]. Suppression of TET1 alleviates proliferation
and metastases of RCC cells [13,14]. TET2 inhibits VHL
loss-induced RCC through down-regulating HIF pathway
[15]. TET3 is an independent predictor of poor survival
in RCC [16]. MBD2 associates with undesirable progno-
sis and confers an oncogenic role in the malignant devel-
opment of RCC [17]. MBD3 controls epigenetic modula-
tion on EPAS1 promoter in cancer [18]. MBD4 expres-
sion is elevated following oxidative stress and is associ-
ated with the malignant transformation of kidney epithelial
cells [19]. MECP2 decreases the proliferative, migrative,
and invasive capacities of RCC cells [20]. Finally, UHRF1
facilitates RCC progression via epigenetic modulation of
TXNIP [21]. Nevertheless, the overall impact of known
DNAmethylation modifiers upon RCC prognosis and ther-
apeutic response is still ill-defined. Here, we determined
DNAmethylation modification patterns in RCC through an
unsupervised clustering algorithm by profiling the expres-
sion of 20 DNAmethylation regulators. Three patterns pre-
sented diverse clinical andmolecular features and therapeu-
tic responses. Additionally, we developed a scoring sys-
tem for quantifying DNA methylation status individually,
which acted as an alternative tool for predicting prognosis
and immunotherapeutic response.

2. Materials and Methods
2.1 Data Acquisition

The expression matrix andmutational data, along with
clinicopathological information of the RCC patients were
curated from the Cancer Genome Atlas (TCGA) project
via Genomic Data Commons (GDC; https://portal.gdc.can
cer.gov/) and the ArrayExpress project (https://www.ebi.
ac.uk/arrayexpress/). We employed the following in our
study: TCGA-kidney renal clear cell carcinoma (KIRC)
cohort (containing 538 ccRCC tumor samples and 72 non-
tumor samples) from the TCGA project (discovery cohort);
TCGA-kidney chromophobe renal cell carcinoma (KICH)
(containing 64 chRCC tumors and 24 non-tumors); TCGA-
kidney renal papillary cell carcinoma (KIRP) (containing
286 pRCC tumors and 32 non-tumors) cohort from the
TCGA project; and E-MTAB-1980 (n = 101) cohort from
the ArrayExpress project (verification cohorts). RNA-seq
transcriptome count matrix of TCGA cohorts was con-
verted to transcripts per kilobasemillion (TPM)matrix. Mi-
croarrays of the E-MTAB-1980 dataset were retrieved from
the ArrayExpress project, and subsequently background-
corrected and normalized with a robust multiarray analy-
sis method using the affy package (version 2004, Lyngby,

Denmark) [22]. In total, TCGA somatic mutations (n =
336) and copy number variations (CNVs; n = 589) were
acquired. DNA methylation data of RCC patients from
HumanMethylation450 were also curated from the TCGA
database via GDC data portal.

2.2 Mutation and CNV Analysis
The mutation annotation format (MAF) of somatic

mutational profiling was utilized for mutation analysis with
the maftools package (version 3.17) [23]. Tumor muta-
tional burden (TMB) refers to the amount of somatic, cod-
ing, base substitution as well as indel mutation/megabase in
the genomic data utilizing non-synonymous and code trans-
fer indels at the detection limit of 5% [24].

2.3 Protein-Protein Interaction (PPI)
The analyses of DNA methylation regulators were

conducted based on the STRING (https://string-db.org/)
[25]. The PPI network data were processed with the Cy-
toscape tool (version 2023.3.10.0, University of California,
Berkeley, CA, USA) [26].

2.4 Drug Sensitivity Analysis
Targeted therapy response prediction was carried out

with the pRRophetic algorithm [27] according to the Ge-
nomics of Drug Sensitivity in Cancer (GDSC) (https://ww
w.cancerrxgene.org/) [28]. The half maximal inhibitory
concentration (IC50) was calculated with ridge regression
analysis, with an assessment of prediction reliability via
ten-fold cross-validation [29].

2.5 Evaluation of the Immunological Features
Immunological features were evaluated according to

the infiltration level of tumor-infiltrating immune cells,
the expression of immune checkpoints, and the expres-
sion of immunomodulators. Single sample gene set enrich-
ment analysis (ssGSEA) was run to estimate the infiltration
levels of immune cells. Estimation of STromal and Im-
mune cells in MAlignant Tumours using Expression data
(ESTIMATE) was adopted to quantify the overall infiltra-
tion of immune and stromal [30]. The expression of im-
mune checkpoints PD-1 and PD-L1 was measured in each
specimen. The information of immunomodulators con-
taining MHC I and II molecules, receptors, chemokines,
immune-stimulators, and immune-inhibitors was curated
from Charoentong et al. [31].

2.6 Functional Enrichment Analysis
Gene Set Enrichment Analysis (GSEA) was car-

ried out to identify gene sets that were significantly en-
riched in each specific group [32]. Only gene sets with
false discovery rate (FDR) <0.05 and nominal p-value
< 0.05 were regarded as significant enrichment. The
“c2.cp.kegg.v7.1.symbols” gene set from the Molecular
Signatures Database (MSigDB; https://www.gsea-msigdb.
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org/gsea/msigdb) [33], was employed as a reference gene
set. Gene Ontology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) enrichment analysis was
presented to uncover the molecular functions and path-
ways with the “clusterProfiler” package (version 3.17) [34].
Gene set variation analysis (GSVA) may detect subtle path-
way activity alterations over a sample population compared
with corresponding algorithms [35]. GSVA package (ver-
sion 3.17) was adopted to determine the activity of the 50
hallmark gene sets in each RCC specimen based on the ref-
erence gene set curated from MSigDB.

2.7 Unsupervised Consensus Clustering Analysis

Unsupervised consensus clustering analysis of prog-
nostic DNA methylation regulators that were determined
with a univariate cox regression model was conducted uti-
lizing the ConsensusClusterPlus package (version 4.3) [36].
Principal component analysis (PCA) was performed on ex-
pression profiling of prognostic DNA methylation regula-
tors to uncover the remarkable distinction in diverse DNA
methylation patterns. Utilizing the ggplot2 package (ver-
sion 3.4.3), PCA results were presented using the first two
principal components.

2.8 Immunotherapeutic Response Estimation

Tumor immune dysfunction and exclusion (TIDE),
as well as subclass mapping (SubMap; https://cloud.gene
pattern.org/gp) algorithms, were employed to estimate the
immunotherapeutic response. TIDE mainly assesses two
distinct tumor immune escape mechanisms, namely ab-
normal tumor-infiltrating cytotoxic T lymphocytes (CTLs)
and excluded CTLs via immunosuppressors [37]. SubMap
algorithm was adopted for comparing similar expression
profiling, which was utilized for predicting the possibility
of therapeutic response to anti-CTLA-4 or anti-PD-1 in-
hibitors [38]. The annotation information of 47 patients
with melanoma was curated from Roh et al. [39].

2.9 Differentially Expressed Genes (DEGs) Correlated to
DNA Methylation Modification Patterns

DEGs between three DNA methylation modification
patterns were selected by using the limma tool (version
3.0.1. 2016) [40]. The p-value derived from multiple test-
ing was corrected with the Benjamini–Hochberg method.
The screening criteria of DEGs were adjusted p< 0.05 and
|fold-change| >1.5.

2.10 Dimension Reduction and Generation of DNA
Methylation Score (DMS)

Feature selection of DEGs was carried out using the
Boruta algorithm [41]. The characteristic DEGs were fur-
ther screened with univariate cox regression analysis based
on p< 0.05. Genomic clusters of DNAmethylationmodifi-
cation were clustered following the expression profiling of
the above genes using the ConsensusClusterPlus package.

Thereafter, PCA was carried out and principal component
(PC) 1 was extracted to serve as the signature score. The
DMS was defined following the formula: DMS =

∑
PC1i

+
∑
PC2i, where i represents the expression of gene i.

The approach focused the score on the set with the largest
block of well-correlated (or uncorrelated) genes in the set,
while down-weighting contributions from genes that are not
tracked with other set members.

2.11 Establishment of Prognostic Nomogram and
Assessment of Predictive Efficacy

To improve the predictive accuracy of the DMS and
offer a quantitative method for clinicians to predict over-
all survival (OS) along with disease-specific survival (DSS)
outcomes, a nomogrammodel was conducted following the
integration of independent prognostic indicators utilizing
the rms package (version 6.7-0) [42]. The predictive effi-
cacy was assessed through calibration. The calibration was
determined utilizing calibration curves, which graphically
depicted the agreement between the nomogram-estimated
survival probabilities and the observed probabilities.

2.12 Cancer Cell Line (CCL) Data
Drug sensitivity profiling of Cancer Cell Line En-

cyclopedia (https://portals.broadinstitute.org/ccle/) was re-
trieved from the Cancer Therapeutics Response Portal
(CTRP; https://portals.broadinstitute.org/ctrp) and PRISM
dataset (https://depmap.org/portal/prism/). Both datasets
contain the area under the curve (AUC) value as an eval-
uation index of drug sensitivity. Candidate drugs were
screened with the above approaches, which were further
verified with the Connectivity map (CMap; https://clue.io/
cmap) [43].

2.13 Statistical Analysis
Continuous variables are displayed as median and

quartiles, or mean ± standard deviation (SD), which de-
pend on the distribution pattern (normal or non-normal) of
each variable. Additionally, categorical code variable is ex-
pressed as frequency and proportion. Comparison of two
groups was executed via student’s t-test or Wilcoxon test,
with the Kruskal-Wallis test for multiple groups. The asso-
ciation between variables was estimated through Pearson or
Spearman correlation test according to the distribution pat-
terns of indicators. The survival significance of variables
was assessed through uni- and multivariate cox regression
models using the survival package. Kaplan-Meier curves
of OS, disease-free survival (DFS), DSS, and progression-
free survival (PFS), as well as corresponding log-rank
tests, were conducted with the survival package. Time-
dependent receiver operating characteristic curves (ROCs)
were adopted to evaluate the predictive performance with
the time ROC package (version 1.76.0). All statistical tests
were carried out using R software (version 3.5.1), with a
two-tailed p-value < 0.05 for statistical significance.
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3. Results
3.1 Multi-Omics Landscape of DNA Methylation
Regulators in RCC

This study systematically reviewed published liter-
ature and gathered 20 DNA methylation regulators [44]
(Fig. 1A). Most regulators except MECP2, TET1, UNG,
and ZBTB4 presented remarkable increased expression in
tumor compared with non-tumor specimens (Fig. 1B). For
CNVs, ZBTB38, MBD4, and MECP2 displayed remark-
ably increased frequencies of amplifications, while TET2
and MBD3 had remarkably increased frequencies of dele-
tions (Fig. 1C). The PPI network illustrates the widespread
interactions among regulators (Fig. 1D).

3.2 Prognosis and Immune Features of DNA Methylation
Regulators

Subsequent analysis revealed the remarkable interac-
tions and prognostic DNA methylation regulators, as de-
picted in Fig. 1E. TET2,MBD1,MBD2,MECP2, ZBTB33,
ZBTB38, and ZBTB4 acted as protective factors while
DNMT1, DNMT3A, DNMT3A, SMUG1, and UHRF1
acted as risk factors for RCC patients’ OS. Considering the
roles of these regulators on RCC progression, the associ-
ations between drug sensitivity and their expression were
estimated. In Fig. 1F, ZBTB4, ZBTB38, and SMUG1 were
positively correlated to IC50 values in most small molecu-
lar compounds except 17-AAG and Trametinib while the
opposite data were found for the other regulators, indi-
cating that most regulators except ZBTB4, ZBTB38, and
SMUG1 were positively linked to high sensitivity to most
small molecular compounds. Additionally, we evaluated
the roles of DNA modification regulators in immune cell
infiltration. In Fig. 1G, most regulators presented positive
correlations to most immune cells, indicating the prominent
roles of DNA methylation in modulating immune cell in-
filtration. Considering the relatively higher expression of
UHRF1 in tumors and its unfavorable prognostic signifi-
cance, we evaluated the role of UHRF1 in RCC patients’
survival outcomes. In both TCGA-KIRC and the E-MTAB-
6094 cohorts, KIRC patients with UHRF1 up-regulation
displayed poorer OS outcomes than those with UHRF1
down-regulation (Supplementary Fig. 1A,B). Moreover,
we noted that high UHRF1 expression was strongly linked
to KIRC patients’ DFS (Supplementary Fig. 1C), DSS
(Supplementary Fig. 1D), and PFS (Supplementary Fig.
1E) outcomes. In both TCGA-KICH (Supplementary Fig.
1F) and TCGA-KIRP (Supplementary Fig. 1G) cohorts,
UHRF1 up-regulation indicated undesirable OS outcomes
for KICH and KIRP patients. Consistent with KIRC pa-
tients, UHRF1 presented a remarkably enhanced expression
in KICH and KIRP tumors compared with non-tumor tis-
sues (Supplementary Fig. 1H). The roles of UHRF1 in
tumor immunological features and immunotherapeutic ef-
ficacy were further evaluated. In Supplementary Fig. 1I,
we observed that patients with UHRF1 up-regulation dis-

played higher PD-L1 and PD-1 expression compared with
those with its down-regulation. GSEA results demonstrated
that UHRF1 was remarkably linked to apoptosis, cell cycle,
Th1/Th2/Th17 cell differentiation, B/T cell receptor, and
chemokine pathways, demonstrating the role of UHRF1 in
modulating tumor immunity (Supplementary Fig. 1J).

3.3 DNA Methylation Modification Patterns with Diverse
Clinical Features, Molecular Mechanisms, and Molecular
Subtypes

Through unsupervised consensus clustering analysis,
we stratified KIRC cases into three DNA methylation pat-
terns under the expression of prognostic DNA methylation
modifiers (DNMT3B, MBD1, MBD2, MECP2, SMUG1,
TET2, UHRF1, ZBTB33, ZBTB38, and ZBTB4), namely
C1 (n = 79), C2 (n = 245) and C3 (n = 206), as depicted
in Fig. 2A. PCA uncovered a prominent difference on the
transcriptome profiles of three DNA methylation modifi-
cation patterns (Fig. 2B). Compared with C1 and C2, C3
presented remarkable survival advantage (Fig. 2C; median
OS (years) for C1~3: 5.2 versus 6.4 versus not calcu-
lated). The accuracy of such clusters was proven in the
E-MTAB-6094 (Supplementary Fig. 2A–C). We also in-
vestigated the clinical features across distinct patterns. In
Fig. 2D, no significant differences in age, sex, grade, and
stage were found among the three patterns. To uncover
the biological behaviors underlying each DNA methyla-
tion modification pattern, we estimated the activity of the
known hallmarks of gene sets with GSVA. In Fig. 2E, the
C1 pattern displayed remarkable activation of oncogenic
pathways (like TNFα signaling via NFκB, P53 pathway,
MYC targets V2) and metabolism pathways (like fatty acid
metabolism, xenobiotic metabolism, bile acid metabolism,
cholesterol homeostasis, and glycolysis), as well as the in-
activation of immune pathways. The C2 pattern was char-
acterized by the activation of oncogenic pathways (like
TFGβ signaling, Hedgehog signaling, hypoxia, Notch sig-
naling, KRAS signaling, and PI3K-Akt-mTOR signaling),
immune-associated pathways (like IL2-STAT5, inflamma-
tion, and complement) and stromal activation pathways
(like angiogenesis). Additionally, the C3 pattern presented
the activation of immune activation pathways such as al-
lograft rejection and the inactivation of oncogenic path-
ways. We also observed the interactions of DNA methyla-
tion modification patterns with known KIRC subtypes and
immune subtypes (Fig. 2F). Survival analysis uncovered the
survival difference among immune subtypes, in which the
S1 subtype presented the worst survival outcomes, while
the S3 subtype showed a remarkable survival advantage
(Fig. 2G). Following patients stratified by immune subtypes
and DNA methylation modification patterns, we noted that
C2 patients had a more favorable prognosis than others in
the S3 subtype (Fig. 2H).
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Fig. 1. Multi-omics landscape, prognosis, and immune features of DNA methylation modifiers in renal cell carcinoma (RCC).
(A) The location of 20 DNA methylation modifiers in the human chromosomes. (B) Boxplot displays the expression of these DNA
methylation regulators in tumors and non-tumor tissues in the TCGA-KIRC cohort. Ns, no significance; *p-value < 0.05; ***p-value
< 0.001. (C) The distribution of copy number variation (CNV) frequencies of amplification (red dot) and deletion (green dot) of the
regulators in the TCGA-KIRC cohort. (D) The protein-protein interaction (PPI) network of DNAmethylation modifiers via the STRING
database (https://string-db.org/). The size of the circle indicates the number of regulators that interact with others. (E) The interaction and
prognostic implication across the above regulators in the TCGA-KIRC cohort. The size of the circle shows p-values derived from log-
rank tests. The orange line indicates a positive association with p-value < 0.05 while the blue line indicates a negative association with
p-value< 0.05. The red point represents a risk factor of overall survival (OS) while the black point suggests a favorable factor of OS. (F)
Heatmap displays the associations between DNA methylation regulator expression and sensitivity to small molecular compounds. The
red circle represents a positive association while the blue circle indicates a negative association. The black border suggests a p-value ≤
0.05 while the grey border suggests a p-value> 0.05. (G) Heatmap displays the interactions of DNAmethylation modifiers with immune
cell infiltration across TCGA-KIRC cases. Red indicates a positive association while blue indicates a negative association. *p-value <
0.05; **p-value < 0.01.
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Fig. 2. DNA methylation modification patterns with distinct clinical features, molecular mechanisms, and molecular subtypes.
(A) Unsupervised consensus clustering for determining DNA methylation modification patterns in TCGA-KIRC cohort, namely C1,
C2, and C3. (B) Principal component analysis (PCA) depicts the prognostic DNA methylation regulator expression that distinguishes
three DNA methylation subtypes in the TCGA-KIRC cohort. (C) Kaplan-Meier curves of OS for patients in C1, C2, and C3 patterns
across TCGA-KIRC cases. (D) The distribution of clinical characteristics (age, gender, grade, and stage) among three DNA methylation
modification patterns in the TCGA-KIRC cohort. (E) Heatmap displays the activity of the 50 hallmark gene sets in three patterns in the
TCGA-KIRC cohort. (F) The interactions of DNA methylation modification patterns with known KIRC subtypes and immune subtypes
across TCGA-KIRC cases. (G) Kaplan-Meier curves of OS for patients in S1–S6 immune subtypes in TCGA-KIRC cohort. (H) Kaplan-
Meier curves of OS for patients stratified by immune subtypes and DNA methylation modification patterns in TCGA-KIRC cohort.

3.4 Transcriptomic, Methylation, Mutation, and CNV
Characteristics of DNA Methylation Modification Patterns

Further analysis showed that most DNA methylation
modifiers except SMUG1, MBD3, NTHL1, DNMT3B, and

UHRF1 presented increased expression in C2, followed
by C3 (Fig. 3A). Additionally, these DNA methylation
regulators contain widespread methylation and mutation
across RCC specimens. In Fig. 3B, VHL, PBRM1, SETD2,

6

https://www.imrpress.com


Fig. 3. Transcriptomic, methylation, mutation and CNV characteristics, immune landscape, and therapeutic response across
DNA methylation subtypes. (A) The heatmap depicts the mRNA expression, methylation levels, and mutation of DNA methylation
modifiers across three DNA methylation subtypes among TCGA-KIRC cases. (B) The landscape of the somatic mutational genes across
three patterns in the TCGA-KIRC cohort. The upper panel shows the mutation frequencies of genes and the lower panel displays the
frequencies of CNV types. The distribution of tumor mutational burden (TMB) is shown at the top of the panel. (C) Barplot shows
FGA, FGL, or FGG across three patterns in the TCGA-KIRC cohort. (D) The violin diagram shows TMB, cancer testis antigens (CTA)
score, single nucleotide variant (SNV) neoantigens, and intratumor heterogeneity in three patterns. Ns, no significance; *p-value< 0.05;
****p < 0.0001. (E) The heatmap visualizes the infiltration levels of immune cells across distinct patterns. (F) The heatmap displays
the expression of chemokines, immuno-inhibitors, immuno-stimulators, MHC I molecules, MHC II molecules, other MHC molecules,
and receptors in three patterns. (G) Response to immunotherapies (anti-PD-1 or anti-CTLA4) across three patterns in accordance with
tumor immune dysfunction and exclusion (TIDE) and SubMap algorithms. (H) Estimation of response to axitinib, pazopanib, sorafenib,
and sunitinib across three patterns. Ns, no significance; *p-value < 0.05; **p-value < 0.01; ***p-value < 0.001; ****p < 0.0001.
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Fig. 4. Construction of DNA methylation modification genomic clusters and generation of DNA methylation score (DMS) sig-
nature. (A) Identification of differentially expressed genes (DEGs) among three DNA methylation subtypes for TCGA-KIRC cases.
(B,C) Functional annotation of DEGs using (B) Gene Ontology (GO) and (C) Kyoto Encyclopedia of Genes and Genomes (KEGG)
enrichment analyses. (D) Unsupervised consensus clustering analysis for determining three DNA methylation modification genomic
clusters in the TCGA-KIRC cohort. (E) Heatmap depicts the expression patterns of DEGs in distinct DNA methylation modification
patterns and genomic clusters, along with diverse clinicopathological features in the TCGA-KIRC cohort. (F) Kaplan-Meier curves of
OS for cases in three DNA methylation modification genomic clusters in TCGA-KIRC cohort. (G) The distribution of DMS across three
DNA methylation subtypes. ****p-value < 0.0001. (H) The distribution of DMS across three DNA methylation modification genomic
clusters. ****p-value < 0.0001. (I) Kaplan-Meier curves of OS for low or high DMS patients in TCGA-KIRC. (J) Receiver operating
characteristic curves (ROCs) at 3-, 5- and 10-year OS in the above cohort.

BAP1, and mTOR ranked the first five mutational genes
among RCC. The remarkable amplification and deletion
were displayed in Fig. 3B. In particular, 5q35.1 amplifi-

cation, 3p25.3 deletion, and 3p22.2 deletion widely oc-
curred across RCC patients. Among three patterns, C2
displayed the lowest fraction of genome altered, lost, and
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gained (FGA, FGL, and FGG; Fig. 3C). We also noted that
C3 had a relatively high TMB and single nucleotide variant
(SNV) neoantigens; C2 had a relatively low cancer testis
antigens (CTA) score; and C1 presented a relatively high
intratumor heterogeneity (Fig. 3D).

3.5 Distinct Responses to Immunotherapy and Target
Therapy across DNA Methylation Modification Patterns

Following quantification of infiltration levels of im-
mune cells, we observed that the C1 pattern presented low
infiltration of immune cells and high tumor purity, while
C2 and C3 had relatively high infiltration levels of immune
cells but C2 presented increased stromal score (Fig. 3E).
Additionally, low expression of immunomodulators was
found in C1, while their high expression was observed in
C2 and C3 (Fig. 3F). Hence, three patterns were consis-
tent with the three classical immune phenotypes: immune-
desert, immune-excluded, and immune-inflamed, respec-
tively. Utilizing TIDE and submap algorithms, this work
estimated the expression profiling of three DNA methyla-
tion modification patterns with an existing cohort includ-
ing 47 melanoma individuals who experienced anti-PD-1
or anti-CTLA-4 immunotherapy. A significant association
was found when comparing the expression profiling of the
C3 pattern with PD-1-response patients following p-value
correction with Bonferroni (Fig. 3G). This indicated that
RCC patients in C3 might respond to anti-PD-1. Addi-
tionally, the difference in targeted drug sensitivity among
the three patterns was estimated. In Fig. 3H, C2 presented
the highest sensitivity to axitinib and pazopanib; C3 dis-
played the highest sensitivity to sorafenib; and C1 showed
the highest sensitivity to sunitinib.

3.6 Establishment of DNA Methylation Modification
Genomic Clusters

For an in-depth investigation of the biological behav-
iors involving each DNAmethylation modification pattern,
we identified 1440 DNA methylation modification pattern-
relevant DEGs (Fig. 4A). Surprisingly, these genes pre-
sented enrichment of biological processes prominently cor-
related to kidney development and renal system develop-
ment (Fig. 4B). Additionally, these genes were remark-
ably linked to tumorigenic pathways like PI3K-Akt, pro-
teoglycans in cancer, EGFR tyrosine kinase inhibitor re-
sistance, ECM-receptor interaction, Rap1, MAPK, cGMP-
PKG, Notch, RCC, and TGF-β pathways (Fig. 4C). Above
data proved that DNAmethylation might play a nonnegligi-
ble role in RCC pathogenesis. For in-depth validation of the
modulation mechanisms, we conducted unsupervised clus-
tering analysis according to the characteristic DNA methy-
lation modification pattern-relevant DEGs that were deter-
mined with Boruta and univariate cox regression analysis.
As a result, TCGA-KIRC cases were classified as three
DNA methylation modification genomic clusters, namely
cluster A, B, and C (Fig. 4D). Intriguingly, we noted that

DNAmethylation modification pattern-relevant DEGs pre-
sented remarkably high expression in cluster A, followed by
cluster C (Fig. 4E). Meanwhile, these DEGs were promi-
nently down-regulated in cluster B. Survival analysis un-
raveled that, patients in genomic cluster C presented the re-
markable survival advantage in comparison to cluster A and
B (Fig. 4F).

3.7 Generation of DMS signature in RCC
With the PCA algorithm, we developed a DMS signa-

ture based on characteristic DNAmethylation modification
pattern-relevant DEGs. Particularly, there was a remark-
able agreement in DMS between DNA methylation modi-
fication patterns (Fig. 4G) and genomic clusters (Fig. 4H).
According to the median value of DMS, we classified pa-
tients in the TCGA-KIRC cohort into high and low DMS
groups. Survival analysis demonstrated that the low DMS
group displayed significantly undesirable OS outcomes in
comparison to the high DMS group (Fig. 4I). ROC curves
proved that DMS possessed a high accuracy in prediction
of 3-, 5- and 10-year OS outcomes (Fig. 4J).

Verification of the Prognostic Implication of DMS in RCC
Survival analysis from the E-MTAB-1980 cohort

demonstrated that high DMS was remarkably linked to bet-
ter OS versus low DMS (Fig. 5A). We also observed that
patients with high DMS presented a prominent advantage
in DFS (Fig. 5B), DSS (Fig. 5C), and PFS (Fig. 5D) in
TCGA-KIRC cohort. ROC curves at 3-, 5- and 10-year
OS proved the well-predictive efficacy of DMS in the E-
MTAB-1980 (Fig. 5E). Additionally, our data confirmed
that DMS could be accurately predictive of RCC patients’
DFS (Fig. 5F), DSS (Fig. 5G), and PFS (Fig. 5H) outcomes
in TCGA-KIRC cohort.

3.8 Establishment of a Nomogram for Predicting ccRCC
Patients’ OS and DSS Outcomes

Following uni- and multivariate cox regression mod-
els, age, grade, and stage acted as independent risk fac-
tors of OS, while DMS served as an independent protec-
tive factor of OS in ccRCC (Fig. 6A). Through the com-
bination of these independent prognostic factors, we es-
tablished a nomogram for predicting ccRCC patients’ 1-
, 3- and 5-year OS probabilities (Fig. 6B). The calibra-
tion curves proved that the nomogram could accurately pre-
dict ccRCC patients’ OS outcomes (Fig. 6C–E). Addition-
ally, the desirable efficacy was externally proven in the E-
MTAB-1980 (Supplementary Fig. 3A–E). We also noted
that stage, grade, and DMS were independently linked to
patients’ DSS (Fig. 6F). Based on them, a nomogram was
developed for the prediction of DSS outcomes (Fig. 6G).
The calibration curves under 1-, 3- and 5-year DSS con-
firmed the favorable prediction performance of the nomo-
gram (Fig. 6H–J).
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Fig. 5. Verification of the prognostic value of DMS for RCC. (A) Kaplan-Meier curves of OS for high and low DMS groups in
the E-MTAB-1980 cohort. (B–D) Kaplan-Meier curves of (B) disease-free survival (DFS), (C) disease-specific survival (DSS), or (D)
progression-free survival (PFS) for high and low DMS groups in the TCGA-KIRC cohort. (E) ROC curves at 3-, 5- and 10-year OS in
the E-MTAB-1980 cohort. (F–H) ROC curves at 3-, 5- and 10-year (F) DFS, (G) DSS, or (H) PFS in TCGA-KIRC.

3.9 Association of DMS with Clinical Features, Molecular
Subtypes, Biological Processes, and Immune Cell
Infiltration

In Fig. 7A, most C2 patients were found to present
higher DMS. Additionally, we investigated the distribution
of DMS across known KIRC subtypes and immune sub-
types. As a result, KIRC subtype 1 displayed increased
DMSwhile most patients in immune subtype S2 had higher
DMS. We also noted that high DMS was linked to survival
and early stage and grade. The difference in the activity
of hallmark pathways was evaluated between high and low
DMS patients. As depicted in Fig. 7B, high DMS was pos-
itively linked to immune activation processes (such as IL2-
STAT5, complement, and IL6-JAK-mTOR pathways) and
stromal activation processes (like angiogenesis), while low
DMS presented negative correlations to tumorigenic path-
ways such as DNA repair, oxidative phosphorylation, MYC
targets v2, p53 pathway, and mTORC1 signaling, indica-
tive of the survival advantage of high DMS patients. We
also observed the heterogeneity in immune cell infiltrations
for high and low DMS populations. In Fig. 7C, most im-
mune cells presented higher infiltration levels in high DMS
patients.

3.10 Discovery of Candidate Drugs with Higher
Sensitivity for Low DMS Patients

The CTRP and PRISM projects that contained the ex-
pression profiling and drug sensitivity data of diverse can-
cer cell lines were employed for determining the candi-
date drugs with higher sensitivity for low DMS patients.
Differential drug response analysis between high and low

DMS groups was presented for identifying drugs with
reduced estimated AUC values in the low DMS group.
Consequently, this work selected seven CTRP-derived
agents (BRD-K97651142, brivanib, CR-1-31B, methotrex-
ate, oligomycin A, ouabain, and SR-II-138A) and seven
PRISM-derived compounds (Vincristine, BIBU-1361, ro-
midepsin, flumethasone, halobetasol-propionate, VLX600,
and ingenol-mebutate), as depicted in Fig. 7D. Above drugs
presented reduced estimated AUC values in low DMS
group, indicating that they might exert therapeutic effects
on RCC patients with low DMS. Despite this, the above
analysis cannot support the conclusion that these drugs
had therapeutic effects on RCC. Hence, we conducted a
multiple-perspective analysis to investigate the treatment
potential of these drugs in RCC. Firstly, we adopted CMap
analysis for identifying drugs with RNA expression pro-
filing opposite to RCC-specific expression profiling (e.g.,
RNA expression increased in RCC tissues but reduced fol-
lowing treatment with specific drugs). Four drugs con-
taining brivanib (FGFR inhibitor), BIBU-1361 (EGFR in-
hibitor), ouabain (ATPase inhibitor), and vincristine (Tubu-
lin inhibitor) displayed CMap score <–15, indicating that
they might possess potential therapeutic effects in RCC
(Fig. 7E). Additionally, fold-change differences of the RNA
expression of candidates’ drug targets between tumors and
non-tumor tissues were estimated and higher increased
fold-change was indicative of higher potential of candidate
drugs in RCC therapy. Moreover, we comprehensively re-
viewed published literature in search of experimental and
clinical evidence of candidate drugs in the treatment of
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Fig. 6. DMS in combination with clinicopathological features in clear cell RCC (ccRCC) patients’ OS and DSS. (A) Uni- and
multivariate analyses for the association of DMS and clinicopathological features with patients’ OS in TCGA-KIRC cohort. (B) The
nomogram integrated independent prognostic factors in predicting patients’ OS in the TCGA-KIRC cohort. (C–E) The calibration dia-
gram of this nomogram. The x-axis displays the model-estimated OS and the y-axis displays the observed OS. (F) Uni- and multivariate
cox regression models for the association of DMS and clinicopathological features with patients’ DSS in TCGA-KIRC cohort. (G) Con-
struction of the nomogram for prediction of patients’ DSS through combination with independent prognostic factors in TCGA-KIRC
cohort. (H–J) The calibration diagram of this nomogram. The x-axis displays the model-estimated DSS and the y-axis displays the
observed DSS.
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Fig. 7. Association between DMS and clinicopathological characteristics, known molecular subtypes, signaling pathways, im-
mune cell infiltration, and sensitivity to small molecular compounds. (A) The heatmap depicts the interactions of DMS with known
molecular subtypes and characteristic features in TCGA-KIRC. (B) The activity of hallmark pathways corresponding to DMS across
RCC patients in the TCGA-KIRC cohort. (C) The heatmap displays the infiltration levels of immune cells corresponding to DMS across
RCC patients in the TCGA-KIRC cohort. (D) Differential drug response analysis of seven Cancer Therapeutics Response Portal (CTRP)-
derived drugs and seven PRISM-derived drugs. A lower estimated AUC value on the y-axis of boxplots implies higher sensitivity to a
specific drug. ***p-value< 0.001. (E) Identification of the most promising drugs for low DMS patients according to the evidence from
multiple sources. Four agents are displayed on the left of the diagram.

RCC. As a result, brivanib and vincristine possessed ro-
bust clinical and experimental evidence, which might be
regarded as the most promising therapeutic drugs for RCC
patients with low DMS.

4. Discussion
The work conducted a global analysis of 20 DNA

methylation modifiers in RCC at multi-omics levels. As
biotechnological advances, innovative omics approaches
are constantly emerging, which help us access multi-layer
information to characterize distinct molecular layers [45].
Most regulators except MECP2, TET1, UNG, and ZBTB4
were remarkably up-regulated in RCC. Additionally, these
regulators occurred widespread CNVs in RCC. Neverthe-
less, the functions of DNA regulators in RCC lack ade-
quate experimental evidence. There were widespread in-

teractions among them and most were remarkably linked
to RCC prognosis, drug sensitivity, and immune cell infil-
tration, indicative of the roles of DNA methylation regu-
lators in RCC progression. Specifically, we proved that
UHRF1 was highly expressed in RCC and contributed to
undesirable survival outcomes. Previous evidence shows
that UHRF1 triggers RCC progression by epigenetic mod-
ulation of TXNIP [21], via modulation of p53 ubiquitina-
tion and p53-dependent cell apoptosis in ccRCC [46]. Our
discovery also showed that UHRF1 was positively linked
to tumor immunity, which deepened the understanding of
UHRF1 function in RCC.

DNA methylation has emerged as a diagnostic tool
for classifying tumors [47]. DNA methylation modifica-
tion patterns have been conducted only in lung adenocar-
cinoma [48] and gastric cancer [44]. Herein, we estab-

12

https://www.imrpress.com


lished three DNA methylation subtypes in RCC follow-
ing the expression profiling of 20 DNA methylation mod-
ifiers with an unsupervised clustering approach. C3 dis-
played a remarkable survival advantage compared with C1
and C2. RCC has the features of mutations in target genes
related to metabolic pathways and metabolic reprogram-
ming including distinct processes like aerobic glycolysis,
and fatty acids metabolism. We noted the remarkable ac-
tivation of metabolic pathways in C1. The key mutated
genes that modulate RCC initiation and progression con-
tain genes related to cellular oxygen sensing (like VHL),
epigenetic modification (PBRM1, SETD2, and BAP1), as
well as growth factor signaling (mTOR) [49]. We found
that the above key genes possess the most frequent muta-
tions in RCC, confirming the tumorigenic roles of thesemu-
tated genes in RCC. Further analysis uncovered three pat-
terns presented high consistency with immune phenotypes:
immune-desert, immune-excluded, and immune-inflamed,
respectively [3]. DNA methylation status may influence
the cellular phenotype and remodel the tumor microenvi-
ronment, which allows tumor cells to overgrow and escape
from immunosurveillance [50,51]. Our submap analysis in-
dicated that C3 patients more possibly responded to anti-
PD-1. Hence, this classification might be applied to de-
termining the immunotherapy options. Additionally, while
C2 was sensitive to axitinib and pazopanib, C3 was sensi-
tive to sorafenib and C1 was sensitive to sunitinib, showing
the widespread difference in targeted drug response among
three patterns.

In accordance with DNA methylation modification-
relevant DEGs, we conducted a DMS signature with a PCA
approach [52–54]. It could quantitively evaluate the DNA
methylation status in RCC. Additionally, based on exter-
nal verification, DMS could accurately predict RCC pa-
tients’ survival outcomes. For facilitating clinical appli-
cation, we also conducted a prognostic nomogram model
that integrated DMS and conventional clinicopathological
characteristics for the prediction of patients’ OS and DSS
outcomes. Due to the unfavorable prognosis of low DMS
patients, brivanib and vincristine which possessed robust
clinical and experimental evidence were determined to rep-
resent promising therapeutic drugs for low DMS patients.

Nevertheless, there are still limitations in our analysis.
First, the number of cohorts was limited. Second, due to a
lack of RCC immunotherapy cohorts, we failed to validate
the immunotherapeutic response of diverse DNA methy-
lation subtypes for RCC patients. Third, our conclusions
were drawn from in silico analysis. Thus, experimental and
clinical exploration will need to be conducted to promote
the clinical usage of these conclusions.

5. Conclusion
Collectively, this study constructed novel DNA

methylation modification patterns in RCC. Molecular and
clinical features comparisons among three patterns offered

a unique perspective on RCC initiation and progression.
The specific DMS signature and relevant nomograms were
effective and intuitive tools for assessing RCC individuals’
survival outcomes. Overall, our findings defined themolec-
ular patterns of RCC according to the expression profiling
of DNA methylation regulators, which might recognize pa-
tients’ heterogeneity and assist in guiding treatment options
and clinical decisions for improving RCC outcomes.
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