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Abstract

Background: Colorectal cancer liver metastasis (CRLM) and hepatocellular carcinoma (HCC) are both high incidence tumors in China.
In certain poorly differentiated cases they can exhibit comparable imaging and pathological characteristics, which impedes accurate
clinical diagnosis. The use of protein-based techniques with tissue slides offers a more precise means to assess pathological changes
and has the potential to assist with tumor diagnosis. Methods: A simple in situ protein digestion protocol was established for protein
fingerprint analysis of paraffin-embedded tissue slide samples. Additionally, machine learning techniques were employed to construct
predictive models for CRLM and HCC. The accuracy of these models was validated using tissue slides and a clinical database. Results:
Analysis of differential protein expression between CRLM and HCC groups reliably identified 977 proteins. Among these, 53 were
highly abundant in CRLM samples and 57 were highly abundant in HCC samples. A prediction model based on the expression of six
proteins (CD9, GSTA1, KRT20, COL1A2, AKR1C3, and HIST2H2BD) had an area under curve (AUC) of 0.9667. This was further
refined to three proteins (CD9, ALDH1A1, and GSTA1) with an AUC of 0.9333. Conclusions: Tissue slide proteomics can facilitate
accurate differentiation between CRLM and HCC. This methodology holds great promise for improving clinical tumor diagnosis and for
identifying novel markers for challenging pathological specimens.
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1. Introduction The early detection and diagnosis of CRC liver metas-

The liver is the primary metabolic organ in the body tasis (CRLM) is important for improving patient outcome
and also a frequent site of tumor occurrence. In addition to ~ and increasing the likelihood of successful treatment [2,
primary liver cancer (hepatocellular carcinoma, HCC), liver ~ 910].  Certain blood markers such as myeloperoxidase

tumors often originate from other tissues and are therefore ~ (MPO), carcinoembryonic antigen (CEA), and carbohy-

known as secondary liver cancers. The liver’s unique phys- drate antigen (CA) 19-9 can potentially indicate the exis-

iology, characterized by a high blood supply, makes it an  tence of CRLM [5]. However, these markers are not ex-
ideal site for tumor colonization [1-3]. Colorectal cancer ~ clusive to CRLM and are not sufficiently accurate [11,12].
(CRC) is the most common of the different primary tumor ~ While CEA is commonly employed to predict CRC, its sen-
types that metastasize to the liver. More than half of all ~ Sitivity as a biomarker for CRLM is unsatisfactory [11].

high-grade CRC cases exhibit liver metastases, even after The insufficient specificity and sensitivity of the current

removal of the primary tumor [4,5]. In certain cases, the ~ biomarkers necessitates the discovery of novel biomarkers

histological characteristics of poorly differentiated cancer ~ [13]- Although transcriptome analysis Of tumor ti'ssue is
cells pose a challenge in terms of distinguishing between considered to be the gold stapdard for dlstlngulshlng .be-
primary and metastatic tumors [6,7]. While medical history ~ tWeen CRLM and HCC and is recommended for clinical

can help to exclude certain tumor types, there are instances ~ Us¢, rapid pathological testing based on histology has the

where the primary tumor is not obvious, thereby making the advantage of being conducted in-hospital. This helps with
diagnosis more challenging. Distinguishing between liver ~ the prompt selection of a treatment plan for postoperative
metastases from CRC and HCC is critical for determining ~ Patients. However, in some poorly differentiated cases,

the appropriate treatment option and thus achieving better there is still a lack of accurate immunohistochemical mark-
patient survival [8]. ers that can accurately differentiate HCC from CRLM in

routine pathological tests.
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Due to their extended storage, formalin-fixed paraffin-
embedded (FFPE) tissue slices often closely resemble the
original clinical diagnostic sample [14]. Hence, they are
very appropriate for the discovery of novel biomarkers. The
field of FFPE proteomics involves the study of proteins ex-
tracted from FFPE tissue samples. This research area has
gained considerable importance in recent years [15-17].
Improved techniques for sample preparation, as well as ad-
vances in mass spectrometry-based proteomics, have sig-
nificantly increased the accuracy and sensitivity of protein
analysis from FFPE samples. In addition, accessible com-
putational platforms for big data analysis and artificial in-
telligence (Al) technologies can improve proteomic profil-
ing and biomarker screening, thereby advancing the transla-
tional application of proteomics data in the field of precision
medicine [13]. In previous studies, we developed a rapid
proteomics and glycomics method to analyze tissue samples
[14,15]. We now apply this sample preparation method for
rapid proteomics using FFPE tissue slides in order to build
a model for tumor identification using Al.

In this study, we used FFPE slides from CRC, CRLM,
and HCC patients to carry out rapid proteomic analysis.
Subsequently, we conducted differential protein intensity
and functional analyses based on the proteomics results.
A machine learning model was then constructed to sim-
plify the diagnostic model, and immunohistochemistry sub-
sequently used to validate the CRLM and HCC differential
detection markers.

2. Materials and Methods
2.1. Tissue Samples

FFPE tissue specimens from 54 patients who under-
went surgery at the Affiliated Hospital of Jiangnan Univer-
sity were selected for analysis. This study complied with
the basic principles of medical ethics in the Declaration of
Helsinki, and the protocol was approved by the Ethics Com-
mittee of the Affiliated Hospital of Jiangnan University
(NO. LS2021-048). Patients or their relatives were fully in-
formed and signed an informed consent form. Patient IDs
and other personal information were coded in order to pro-
tect patient privacy. The clinicopathological information
associated with these specimens is shown in Supplemen-
tary Table 1. FFPE tissue sections (4 um) from each pa-
tient were stained with hematoxylin/eosin and evaluated by
a pathologist to determine the tumor type and to assess tu-
mor grade. The samples used in the current study consisted
of 22 CRC samples, 19 HCC samples, and 13 CRLM sam-
ples.

2.2 Tissue Slide Treatment

Tissue slides were first baked at 72 °C for 30
min, followed by deparaffinization in xylene (#10023418,
Sinopharm chemical reagent, Shanghai, China), rehydra-
tion through a graded ethanol (#100091192, Sinopharm
chemical reagenta) series, and boiling in a citrate antigen

retrieval solution (#P0086, Beyotime, Shanghai, China) for
protein recovery. They were then washed twice in ddH2O
and dried in vacuo.

2.3 Protein Digestion on Slides

The on-slide tissue digestion protocol was from a pre-
viously published protocol [18]. Tissue slides were kept
in a wet box for the subsequent step. First, tissue was re-
duced with 50 puL of 10 mM dithiothreitol (DTT) solution
(#D0632, Sigma Aldrich; St. Louis, MO, USA) per square
centimeter and incubated at 60 °C for 30 minutes. Subse-
quently, 50 uL of 20 mmol/L iodoacetamide (IAM, #16125,
Sigma Aldrich) was added for alkylation and the slides kept
in the dark at room temperature for 45 min. Next, 120 pL
of digestion buffer (40 mmol/L NH4HCOs3, 10 pg trypsin
(#TRYO001C, sequencing grade, Shengxia; Beijing, China))
was added to the tissue and incubated overnight at 37 °C. Fi-
nally, 60 pL of 40 mmol/L. NH4,HCOj3 was added for 3 min,
and pipette tips were used to collect the peptide fragments
into a 1.5 mL tube. The process was repeated three times
to obtain all of the peptide solution. C18 pipet tips (Zip-
Tip, Millipore Corp; Billerica, MA, USA) were employed
to desalt the peptides.

2.4 Tandem Mass Tag (TMT) Labeling of Peptides

Peptides from the tissue slide were labeled with TMT
reagent according to a previously described protocol [19].
The required volume to obtain 1.5 pg of peptides per
sample was dried in vacuo and resuspended in 50 pL of
100 mmol/L 4-hydroxyethylpiperazine ethanesulfonic acid
(HEPES) buffer (pH 8.5). TMT10plex labeling reagents
(#90309, Thermo Fisher Scientific; MA, USA) were dis-
solved in anhydrous acetonitrile and added to the peptide
sample in a 1:10 peptide/TMT ratio [20]. Samples were
incubated for 2 h (22 °C, 750 rpm) and unreacted TMT
reagent was quenched by incubation with 5 pL of 5% hy-
droxylamine (#467804, Sigma Aldrich) for 35 min. Sam-
ples belonging to the same batch (Supplementary Table 2)
were combined and dried in vacuo.

2.5 LC-MS Analysis

Lyophilized peptides were reconstituted in an aqueous
solution comprised of 2% acetonitrile and 0.1% formic acid
(#1.00029, #5.33002, Sigma Aldrich) and then analyzed by
Orbitrap Fusion Lumos mass spectrometry (Thermo Scien-
tific, San Jose, CA, USA). Each test involved the injection
of 2 ug of mixed TMT samples, with two replicates per-
formed for each proteomics experiment. Samples were then
separated using an EASY-nL.C 1200 system with a C18 col-
umn (75 pm x 25 cm) (Thermo Scientific). Other mass
spectrometry parameters were the same as those of estab-
lished methods used in our laboratory [21,22].
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2.6 Protein Identification and Data Analysis

The tandem mass spectra of peptide samples were
searched against the Uniprot Homo sapiens protein se-
quence database (version: May 2022) using MaxQuant
software (Max-Planck-Institute of Biochemistry, Martin-
sried, Germany, version 2.3.1.0) [23]. The cleavage en-
zyme was set to trypsin/P, allowing for up to two misses,
and the mass tolerances for the precursor ions and MS2
fragment ions were set to 4.5 ppm and 20 ppm, respec-
tively. Fixed modification was set to carbamidomethyla-
tion of cysteine, and variable modifications were set to the
oxidation of methionine and the methylation of lysine [24].
The search was set to reporter ion MS2 using TMT10plex.
All twelve raw files from the six TMT batches were ana-
lyzed in parallel.

The results were visualized using R (version 4.2.3,
https://www.r-project.org/) and packages that included gg-
pubr (version 0.6.0), plotROC (version 2.3.0) [25], ggplot2
(version 3.4.1), and ComplexHeatmap (version 2.15.2)
[26]. Gene Ontology (GO) enrichment was performed us-
ing the R package clusterProfiler (version 4.6.2) [27]. Seu-
rat (version 4.3.0) was used to process the spatial transcrip-
tome and scRNA data [28]. Samples were clustered by un-
supervised clustering based on the abundance of proteins,
using the Ward.D method in the package cluster of R. Stu-
dent’s 7-test was used to evaluate the statistical significance
of differences between groups (*p < 0.05; **p < 0.01; ***p
< 0.001; “ns”, not significant).

2.7 LASSO Regression Analysis

Feature selection was performed by applying least ab-
solute shrinkage and selection operator (LASSO) regres-
sion to the significant proteins identified by the compara-
tive proteomic analysis. In all, 56 samples were randomly
divided into 70% for model training and 30% for model
evaluation. A logistic regression model was fitted with the
clinical diagnosis (CRLM = 1, HCC = 0). Receiver oper-
ating characteristic (ROC) analysis was then applied to the
predicted probability and actual diagnosis, respectively. All
analyses were performed using RStudio (version 2023.03.0,
Posit, Boston, MA, USA) with R (4.2.3). LASSO regres-
sion was performed using the glmnet package (4.1) [29],
and ROC analysis was performed using the plotROC pack-
age (2.3.0) [25].

2.8 Immunohistochemistry

The immunohistochemistry protocol used here was
based on a previous publication [30]. FFPE slides were pre-
baked at 72 °C for 30 min before undergoing deparaffiniza-
tion in xylene and rehydration in a graded series of ethanol.
The slides were then boiled in EDTA 9.0 solution to ob-
tain antigen recovery. Endogenous peroxidase was blocked
in 3% hydrogen peroxide for 15 min, followed by a wash
in PBS. The slides were then incubated overnight at 4 °C
with primary antibodies against CD9 (1:500, #ab263019,
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Abcam, Shanghai, China), ALDHIA1 (1:200, #ab52492,
Abcam), or GSTAT1 (1:400, #14475, Proteintech, Wuhan,
China). They were then washed in PBS and incubated
with secondary antibodies at room temperature for 20 min.
DAB chromogenic solution (#P0203, Beyotime, Shang-
hai, China) was used to visualize the staining according to
the manufacturer’s instructions. Cell nuclei were counter-
stained with hematoxylin, followed by dehydration, hyalin-
ization in xylene, and sealing for microscope viewing.

3. Results

3.1 Sample Processing and Data Processing for FFPE
Proteomics

FFPE tissue slides from 19 HCC patients, 13 CRLM
patients, and 22 CRC patients were used in the proteomics
experiments. The sample preparation workflow is outlined
in Fig. 1A. Tissue samples were carefully examined by
pathology experts to ensure accurate tissue classification
and quality control (Fig. 1B). Following digestion, the pu-
rified peptides were collected, labeled with tandem mass
tags (TMTtags), and then mixed based on a random design
table (Supplementary Table 2). Following protein identi-
fication and quantification using MaxQuant software, data
was combined using the reference channel (TMT 10) and
data normalization was then performed (Supplementary
Fig. 1A,B). A total of 2628 proteins were detected across
all sample replicates. After eliminating proteins with identi-
fication scores <10 and detection rates <70%, 977 reliable
proteins were retained for further analysis (Supplementary
Fig. 2A,B). The abundance ranking of these filtered pro-
teins was compared to all detected proteins, with most of the
selected proteins having high abundance (Supplementary
Fig. 2B).

3.2 Overall Analysis of Proteins Detected by Tissue Slide
Proteomics

To gain insight into the proteins detected in the tis-
sue slide samples, a comprehensive statistical analysis was
conducted for all reliable proteins (Fig. 1C). The overall
protein intensity distribution was similar across the three
sample groups (Fig. 1C), but several significant differences
were apparent (Supplementary Fig. 3). A statistical anal-
ysis was performed on the detected proteins based on their
subcellular localization. Cytoplasmic and nuclear proteins
comprised most of the total protein (Supplementary Fig.
4A,B). A protein functional annotation analysis was per-
formed to analyze the functions of all reliable proteins
detected in the three types of tumor tissue. These pro-
teins were primarily associated with cell focal adhesion,
the transport of vesicles, the junction between cells and
substrate, metabolism pathways such as cadherin binding,
structural constituents of the ribosome, and actin filament
binding (Supplementary Fig. 4C). In cluster analysis, the
CRLM and HCC groups were found to be more similar,
whereas the CRC group was readily distinguishable from
both the CRLM and HCC groups (Fig. 1D).
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Fig. 1. Sample information and sample processing workflow. (A) Workflow for the tissue-slide-based proteomics analysis. (B)

Hematoxylin—eosin (HE) staining of tissue slides for pathological diagnosis. Scale bar: 2 mm (left), 500 pm (right). (C) Correlation

analysis for the three sample groups. Data are presented as a matrix, including correlation dot plot (lower), density distribution (diagonal),

and correlation coefficient with significance markers (upper). The correlation coefficient was calculated by Pearson correlation analysis.

*** denotes p < 0.001. (D) Principal component analysis (PCA) for proteins detected in colorectal cancer (CRC), CRC liver metastasis

(CRLM), and hepatocellular carcinoma (HCC) tissue samples.

A trend cluster analysis was performed to identify pro-
tein differences between the three tumor types (Fig. 2). The
proteins were classified into five clusters based on their in-
tensity. Cluster 3 was comprised of proteins that were high
in HCC but low in CRLM and CRC, with functions primar-
ily focused on protein folding and degradation. Cluster 1
included proteins that were high in CRLM and HCC but
low in CRC, with functions concentrated mainly on small
molecule and energy metabolism pathways. Cluster 5 con-
sisted of proteins that were highest in CRLM, but relatively
low in HCC and CRC, and were primarily associated with
cytoskeletal cell formation and migration. Clusters 2 and 4
proteins were higher in CRC, but relatively low in HCC and
CRLM, with functions mainly concentrated on generating
cytoplasmic proteins and mediating cell adhesion.

3.3 Comparative Proteomic Analysis of CRLM and HCC

Differential protein intensity analysis was performed
between the CRLM and HCC sample groups in order to
identify protein signatures for different tumor types. The
results are plotted as a volcano plot in Fig. 3A. A total of
110 differentially expressed proteins were detected, with
53 that were significantly up-regulated in CRLM and 57
considerably up-regulated in HCC (Fig. 3A). Moreover, re-
sults from the functional annotation analysis revealed that
CRLM-enriched proteins were mainly related to collagen
and participated in epithelial tissue formation, tissue re-
pair, cell migration, and physiological activities such as cell
adhesion and extracellular matrix remodeling (Fig. 3B,D).
Conversely, proteins that were significantly increased in
HCC were primarily associated with cell energy and sub-
stance metabolism, and to the synthesis and metabolism of
organic compounds (Fig. 3C,D).
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To identify proteins that can distinguish CRLM from
HCC, the screening criteria was increased to a fold change
>2.83 (loga (foldchange) >1.5) and an adjusted p-value of
<0.005. This identified 16 proteins, with 10 proteins signif-
icantly increased in CRLM, and 6 significantly increased in
HCC (Fig. 4A). The ROC results showed the proteins that
were increased in CRLM served as positive markers, with
area under curve (AUC) values >0.75. Conversely, by us-
ing proteins that were increased in HCC as negative indi-
cators for the diagnosis of CRLM, the AUC values were
>0.75 (Fig. 4B).

3.4 Development of a Model for Discriminating Between
CRLM and HCC

Detection using multiple proteins was then performed
to increase the accuracy when distinguishing between
CRLM and HCC (Fig. 5A). Protein intensity data from the
selected samples was randomly divided into training and
validation groups at a ratio of 7:3, respectively (Fig. 5B).
A binomial classification LASSO regression model was es-
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tablished for detection. When the lambda value was small-
est (Lambda.min), this indicated the most accurate model,
and six variables were selected for prediction. Ranked
by weight, these were CD9, glutathione S-transferase Al
(GSTAL1), keratin type I cytoskeletal 20 (KRT20), colla-
gen alpha-2(I) chain (COL1A2), aldo-keto reductase fam-
ily 1 member C3 (AKRI1C3), and putative histone H2B
type 2-D (HIST2H2BD) (Fig. 5C,D). When the lambda
value was optimal (Lambda.lse), this indicated the sim-
plest model, and three variables (CD9, GSTA1, and alde-
hyde dehydrogenase 1A1 (ALDH1A1)) were selected for
prediction (Fig. 5C,D). Using the accurate model based on
six proteins, the AUC value of the ROC curve for predict-
ing sample classification was 0.9667, while the simplified
model based on three proteins had an AUC value of 0.9333
(Fig. 5E). The scores obtained using the accurate model to
diagnose CRLM and HCC were very close to the actual
pathological diagnosis. Most of the correct results were still
obtained using the simplified model (Fig. 5F).
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proteins in the CRLM (B) and HCC (C) groups. (D) Cellular component enrichment network for the CRLM and HCC groups.

3.5 Tissue Validation of the Proteins in the Prediction
Model

We have confirmed the identification results of the
marker proteins in the mass spectrometry search re-
sults. The raw mass spectrometry files and search re-
sults have been uploaded to ProteomeXchange database
(PXD042636), with representative spectra shown in Sup-
plementary Fig. 5. To further validate the actual status
of the signature proteins in clinical tumor detection, we
conducted verification using publicly available databases
and pathological tissue samples. We conducted tissue im-
munostaining to validate the CD9, ALDH1A1 and GSTA1

biomarkers (Fig. 6). CD9 showed strong positive staining
in the cancerous region of CRLM, but was negative in HCC.
ALDHI1A1 and GSTA1 showed strong positive staining in
HCC, but did not stain in CRLM (Fig. 6A). We also exam-
ined the CD9, ALDHI1A1, and GSTA1 mRNA level in the
single-cell RNA and spatial transcriptome dataset. The re-
sults of this analysis were consistent with those of immuno-
histochemistry (Fig. 6B, Supplementary Figs. 6,7). Taken
together, these findings demonstrate the CD9, ALDH1A1
and GSTA1 biomarkers can reliably distinguish HCC from
CRLM.

&% IMR Press


https://www.imrpress.com

B CRC ['CRLM EHCC

A . 6 - 504 . 6 . . 75 " .
ns ns ns > ns ns ns
— 4 — — 4 — 4 — 5.0 —
25 = © o5 S A
2 = 2 s g2 S 2 3 25 5
o x© x Q = o} Q Q
= = (&) n 4 o o O
00 0 . 0.0
[0) 0.0 ' 0 0
S |4 | ,
o _2.5$ -2 -25
f{l -2 -2.5
= -4 -2.5) : h : -5.0
g O Q0 O Q0 O Q0 O Q0 O Q0 O Q0 T O Q0
3 \2\0 qu & Q\O 0@/ & Q\O qu & ‘2\00 N \2\0 QQ}/ & \2\0 QQy & Q\O QQy &
.E wxx 75 * ok wxk 75 sk 6 wxk 6 wxx o
Q % . . 50 7 o . o e .
E e 5.0 e — — 35.0 0 4 — e 4 M
N 5 - 5 25 ~ « 3 <
m —
S S25 @) < LTos = _ =
_I _ A = ik o 2 I 2
(@) (@) O (9] = < g o
O O < Q0.0 %) < 0 [
0 0.0 . | 0.0 I o Elil 0
l -25 | 25 . ? -3 |
LENR LN
> -5.0 i
O O O O O O O O O O O O O O O O
Q\QOQ@Q% Q\Ooqy%‘% Q\OO@,%% Q\QOQ@Q% Q\OOQ@\O% Q\OO@}%&* Q\ooqy%% Q\OOQ§§O$
B e CRLM High === HCC High
1.00 1 1.00 4 1.00 4 - 1.001
o 0.751 & 0.751 2 0.751 -7 L 0751
= = . o
0 0.50 or 0504 o 0501 e = 0501
O L7 )
0.251 X 0.251 < 0.251 uc=ossss O 9257
0.00- 0.00- 0.00p —= 0.00 40—
0 0 0.000.250.500.751.00 0.000.250.500.751.00
o 1.00; o 1.001 — 1.001 o 1.001
< 0751 < 0751 < 0.754 < 0.751
S 0507 3 0501 3 0501 3 0507
> @ 0.254 O 0.25- O o2s5q|.-" O 0.251
S 0.00- 0.004—_AUC = 0.8021 0.0042_AUC=07888 ¢ 00+
> 0 0.000.250.500.751.00 0.000.250.500.751.00 0
& o 1.00 — 1.001 1.004 AUC = 0.2366 oo 1.00
n I m ) -
< 0751 < 0.751 O 0.751 . = 0.751
o 0501 & 0507 9 0501 0 0501
& 0.25- O 0.251 < 0.251 O 0.251
0.00 - - - - 0.004; T T T T 0.00 = 0.00
0.000.250.500.751.00 0.000.250.500.751.00 0.000.250.500.751.00 0.000.250.500.751.00
@ 1.00{AUC=02072 . ¢ 1.00{AUC=0.1764 1009 AuC=01457 . ] «— 1909 auc =0.1176 .-
T 0751 O 0.754 _ 0.751 < 0751 ‘
N 0.50- 0 0.50- 8 0501 T 0.50-
X )
9 0251 < 0.25- 0.25 — 0.251
+ 0~00'1—|——l—r o-Oo'ﬁ—l—l—l—r O-Oo'i—l—l—l—r < 0-00'-'—|—|—|—|-
0.000.250.500.751.00 0.000.250.500.751.00 0.000.250.500.751.00 0.000.250.500.751.00
1 - Specificity
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Fig. 6. Validation of the proteins obtained in the prediction model. (A) Immunohistochemical staining of CD9, ALDHIA1 and
GSTAL1 in tissue slides from CRLM and HCC patients. Scale bar: 50 um. (B) Single-cell RNA (scRNA) analysis of CD9, ALDHIA1
and GSTAI in tumor cells from CRLM and HCC (dashed circle). The data are from GSE178318 and GSE149614. The red dot indicates
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4. Discussion

CRC has a high propensity for liver metastasis and
is often difficult to differentiate from HCC, especially in
some poorly differentiated cases. Furthermore, both HCC
and CRLM have a high incidence rate in China, with cases
of dual tumors coexisting. Therefore, it is important to ac-
curately differentiate between these two cancer types for
optimal patient diagnosis and treatment [31,32]. Patients
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with CRLM are usually in advanced stages, and the major-
ity are not suitable candidates for surgery. This presents
a major challenge in the acquisition of fresh tissue sam-
ples for routine proteomic analysis. FFPE samples are an
ideal source for CRLM research since they are commonly
used for tumor detection in pathology departments and have
stable properties with long preservation times. The current
study used FFPE samples for proteomic analysis, allowing
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samples that were already present in the pathology tissue
bank to be used and thus saving time and resources required
for sample collection [33]. Furthermore, characteristic pro-
teins detected in samples obtained from tissue slices are
more suitable in subsequent diagnosis and testing of slice
samples.

After years of development, the sample preparation
techniques used in proteomics and the depth of detection
have undergone significant improvement. The identifica-
tion of more proteins, particularly those present in low con-
centrations, is essential for elucidating biological processes
and tumor metabolism [33-36]. Following tissue fixation
with formaldehyde, biopsies are usually archived in paraf-
fin blocks. Currently, two main factors affect the use of
FFPE slides for large-scale proteomic studies. The first
is limited protein extraction due to poor solubility, and
the second is uncertain protein identification due to pos-
sible unknown peptide modifications. Formaldehyde al-
ters the chemical composition of proteins by causing intra-
and inter-protein cross-links, as well as links between pro-
teins and nucleic acids. Such alterations make protein anal-
ysis by mass spectrometry considerably more challenging
[14,37]. Those modification also have negative effects on
protein digestion by trypsin, and on peptide detection dur-
ing database screening [38]. However, the formation of
some formaldehyde adducts and cross-links was found to
be reversible at elevated temperatures or pressure. Heat
treatment during sample preparation helps to improve de-
tection [39]. For clinical detection, and especially patho-
logical detection, a relatively high abundance of protein
makes it easier to successfully perform tissue immunohis-
tochemistry using specific antibodies. Taking advantage of
tissue slide proteomics, we used on-slide protein sample
reduction, alkylation, and digestion during sample prepa-
ration for mass spectrometry that does not rely on deter-
gents. This significantly reduces the overall sample prepa-
ration time and minimizes sample loss. Using this proto-
col, we reliably identified a total of 977 proteins. Follow-
ing an abundance ranking analysis of these filtered proteins
compared to identified proteins, we concluded the identi-
fied proteins mainly had high abundance. This could be
because no strong detergents or complex sample prepara-
tion methods were used during our mass spectrometry anal-
ysis [40,41]. Current mainstream FFPE proteomics meth-
ods typically use scraping or laser-cutting to transfer tissue
from the glass slides and into centrifuge tubes, followed by
sample preparation methods involving detergent treatment
and enzymatic digestion in solution. Comparison of these
methods showed that a similar number of proteins was de-
tected [42]. The use of strong detergents can more effec-
tively denature proteins and disrupt protein tertiary struc-
tures, which helps to improve the efficiency of subsequent
protein digestion [33]. However, complex sample prepa-
ration processes require high operator proficiency and are
not conducive to automation. Residual detergents can also
affect protein identification by instruments. Our detected
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proteins overlapped with high-abundance proteins reported
by other related research [43], thus demonstrating the reli-
ability of our method for identifying major proteins. More-
over, our approach has the advantages of being compatible
with automated sample preparation processes based on lig-
uid handling stations, as well as sample detection in subse-
quent spatial tissue proteomics based on mass spectrometry
[44].

To differentiate between FFPE CRLM and HCC sam-
ples using proteomics analysis, we conducted a differential
protein-intensity analysis of these two cancer types. The re-
sults showed that enriched proteins in CRLM were mainly
related to the extracellular matrix and to cell movement,
whereas those in HCC were primarily associated with en-
ergy and material metabolism (Figs. 2,3). The results for
CRLM were consistent with the features of tumor metasta-
sis, and the identified collagen-related proteins (COL1A1,
COL1A2, COL4A1, COL4A2, COL5A1, COL5A2) were
previously confirmed as marker proteins of CRLM [43].
Following metastasis of CRC to the liver, the tumor mi-
croenvironment undergoes reshaping. This affects the com-
position of both the extracellular matrix and immune cells,
while reducing the efficacy of targeted therapies such as
CAR-T. Moreover, it has been reported previously that
MUCI13 [45], carcinoembryonic antigen-related cell adhe-
sion molecule 5 (CEACAMS) [46,47], and Ca®*-binding
proteins (S100A6 and S100A11) [48] are highly expressed
in CRLM and can thus be used as diagnostic markers. Sev-
eral highly expressed proteins in HCC, such as heat shock
70 kDa protein 6 (HSPA6) [49], protein disulfide-isomerase
(P4HB), and catalase (CAT) [50] have also been used for the
detection of this cancer type. The above results indicate that
our FFPE rapid proteomic profiling method can be used for
the differential diagnoses of CRLM and HCC.

In the present study we also employed a simple
LASSO regression model for binary classification predic-
tion using 16 selected detection markers. This approach
helped to reduce the number of detection markers, while
still maintaining accuracy and sensitivity. Finally, we built
a simple prediction model using only three variables (CD9,
GSTA1, and ALDHI1AT1). These three biomarkers are typ-
ical proteins found in the primary tissues. For instance,
CD9, also known as tetraspanin-29, is a cell-surface glyco-
protein comprised of four transmembrane regions that mod-
ulate cell adhesion and migration. CD9 has been identified
as a favorable prognostic marker and predictor of metastatic
potential [51]. It is highly expressed in normal colorectal
epithelial tissue and forms tight connections between cells.
This feature is also found in CRLM tissue. In addition,
CD9 is known to be an exosome marker protein and fa-
cilitates the uptake of exosomes by recipient cells [52,53].
CD9 can therefore be used as a positive reference marker
for the diagnosis of CRLM. The ALDH1A1 and GSTA1
enzymes are involved in liver metabolism. ALDHI1A1 is
a member of the aldehyde dehydrogenase family that par-
ticipates in the oxidative pathway of alcohol metabolism in

&% IMR Press


https://www.imrpress.com

the liver [54]. GSTAI facilitates the conjugation of glu-
tathione to electrophilic compounds and is also highly ex-
pressed in the liver [55]. The ALDH1A1 and GSTA1 pro-
teins can therefore be used as negative markers for CRLM,
since the metabolic features of CRC tissue are quite dif-
ferent and hence these markers are typically low in CRLM
(Supplementary Fig. 8).

Moreover, our simple mass spectrometry method can
be used to create a protein fingerprint of tissue samples.
When combined with techniques such as deep learning,
proteomics-based pathology diagnosis should facilitate the
clinical diagnosis of difficult pathological sections, as well
as the identification of novel markers.

5. Conclusions

This research used FFPE tissue slides to carry out
rapid proteomic analysis and thus obtain protein finger-
prints of tumor samples. Machine learning algorithms were
then used to develop a predictive model for the differ-
ential diagnosis of CRLM and HCC. CD9, GSTA1, and
ALDHI1AL1 scores were used in the prediction model, with
ROC analysis showing an AUC of 0.9333. This study de-
scribes a simple method for the protein-based fingerprint-
ing of tissues using high-throughput proteomic techniques,
thereby offering a novel approach for the pathological di-
agnosis of CRLM and HCC.
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