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Abstract

Background: Highly pathogenic H5Nx viruses cause avian influenza, a zoonotic disease that can infect humans. The vaccine can
facilitate the prevention of human infections from infected poultry. Our previous study showed that an H5 cleavage-site peptide vaccine
containing the polybasic amino acid RRRK could protect chickens from lethal infections of the highly pathogenic H5N6 avian influenza
virus. Methods: Chickens immunized with the various polybasic amino combinations (RRRK, RRR, RR, R, RK, and K) of H5 cleavage-
site peptides were challenged with highly pathogenic H5N6 avian influenza viruses. The challenged chickens were monitored for survival
rate, and viral titers in swabs and tissue samples were measured in Madin-Darby canine kidney (MDCK) cells using the median tissue
culture infectious dose 50 (log10 TCID50/mL). Results: Most H5 cleavage-site vaccines containing various combinations of polybasic
amino acids protected chickens from lethal infection. Chickens immunized with the RK-containing peptide combination of the H5
cleavage site were not protected. Conclusions: The polybasic amino acids (RRRK) of H5 cleavage cleavage-site peptide vaccines are
important for protecting chickens against HP H5N6 avian influenza virus. The H5 cleavage cleavage-site peptide containing RK did not
protect chickens against the virus.
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1. Introduction
The highly pathogenic (HP) H5Nx viruses belong

to the influenza A virus group of the family Orthomyx-
oviridae and contain enveloped RNA genomes [1]. Their
genomes consist of eight segments that encode 10 pro-
teins: polymerases—polymerase basic proteins 1 and 2, and
polymerase acidic protein; two major surface proteins—
hemagglutinin (HA) and neuraminidase; matrix proteins
M2 and M1; non-structural proteins NS1 and NS2; and the
nucleocapsid protein [1–3].

The influenza A virus has caused previous human pan-
demics: the H1N1, H2N2, H3N2, and H1N1 pandemics
in 1918, 1957, 1968, and 2009, respectively [1]. HP
H5Nx avian influenza viruses are considered potential pan-
demic viruses because they have infected numerous poultry
flocks, including chickens and ducks inmany countries, and
are endemic to wild birds [4–11].

To control the outbreak of HP H5Nx viruses, conven-
tional inactivated vaccines were developed to protect poul-
try [12,13]. Vaccine efficacy is related to neutralizing an-
tibodies against the HA protein on the surface of avian in-
fluenza viruses.

Various methods were used to develop vaccines
against HPH5Nx avian influenza viruses for poultry. Plant-
derivedH5 hemagglutinin antigens protected chickens from
the lethal infections of HP H5N1 avian influenza viruses
[14]. Newcastle disease virus expressing H5 hemagglu-

tinin protein protected chickens from the HP H5N2 avian
influenza viruses [15]. TheH5/H7 trivalent inactivated vac-
cines protected chickens, ducks, and geese from the infec-
tions of HP H5N1, H5N8, and H7N9 viruses [16].

Our previous study showed that an H5 cleavage-
site polybasic peptide vaccine (RRRK-containing cleavage
peptide) protected chickens against the HP H5 viruses [17].
In this study, we investigated the role of each amino acid of
RRRK in its action against the HPH5 avian influenza virus.

2. Materials and Methods
2.1 Viruses and Cells

HP avian influenza virus,
A/waterfowl/Korea/S57/2016 (H5N6) (clade 2.3.4.4.),
containing the polybasic amino acids (RRRK) at the HA
cleavage site, was employed in this study. Madin–Darby
canine kidney (MDCK) cells (American Type Culture
Collection, VA, USA) were used for viral amplification.
The MDCK cell line was validated by STR profiling and
tested negative for mycoplasma. Cells were all cultured in
a humidified incubator at 37 ℃ and 5% CO2. MDCK cells
were maintained in a minimal essential medium (MEM)
(Sigma, MO, USA) supplemented with 10% fetal bovine
serum and antibiotic–antimycotic solution (Sigma-Aldrich,
MO, USA). All studies on HP avian influenza viruses were
performed within a Korean government-certified biosafety
level 3 laboratory facility.
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Table 1. Cleavage-site peptides used for vaccine study.
Peptide sequences Peptide names

KLH-TGLRNSPLRERRRKR/GLFGAIAGFIEGGWQ RRRK-containing peptide
KLH-TGLRNSPLRERRRR/GLFGAIAGFIEGGWQ RRR-containing peptide
KLH-TGLRNSPLRERRR/GLFGAIAGFIEGGQ RR-containing peptide
KLH-TGLRNSPLRERR/GLFGAIAGFIEGGWQ R-containing peptide
KLH-TGLRNSPLRERKR/GLFGAIAGFIEGGWQ RK-containing peptide
KLH-TGLRNSPLREKR/GLFGAIAGFIEGGWQ K-containing peptide
KLH-TGLRNSPLRER/GLFGAIAGFIEGGWQ RRRK(-) peptide
KLH, keyhole limpet hemocyanin.

2.2 Synthesis of H5 Cleavage-Site Peptide Antigen

Synthesized H5 cleavage-site peptides were obtained
from Peptron Co. (Daejeon, South Korea) and labeled with
keyhole limpet hemocyanin. The synthesized peptides are
listed in Table 1.

2.3 Chicken Vaccination with Peptides Containing
Polybasic Amino Acids and Sera Collection from
Immunized Chickens

Fertilized eggs (from white leghorns) were obtained
from local farms and hatched in the laboratory. The hatched
chicks were grown for 2 weeks before utilization for the
vaccine study. Chickens (n = 13 per group) were intramus-
cularly inoculated with 300 µL containing 5.0 µg of key-
hole limpet hemocyanin-labeled H5 cleavage-site peptide
and 30% oil (SEPPIC, Courbevoie, France). Booster doses
were administered to the immunized chickens 3 weeks after
the first dose.

2.4 Antibody Titer Measurement of the Collected Chicken
Sera

Immunized chicken sera were collected a week after
administration of the second dose to measure antibody in-
duction.

Enzyme-linked immunosorbent assay (ELISA)
was performed to determine antibody titers with
bovine serum albumin (BSA)-labeled peptides: BSA-
TGLRNSPLRERRRKR/GLFGAIAGFIEGGWQ,
BSA-TGLRNSPLRERRRR/GLFGAIAGFIEGGWQ,
BSA-TGLRNSPLRERRR/GLFGAIAGFIEGGQ, BSA-
TGLRNSPLRERR/GLFGAIAGFIEGGWQ, BSA-
TGLRNSPLRERKR/GLFGAIAGFIEGGWQ, BSA-
TGLRNSPLREKR/GLFGAIAGFIEGGWQ, and BSA-
TGLRNSPLRER/GLFGAIAGFIEGGWQ.

The wells in the immunoplate were coated with 100
µL of peptide (4 µg/mL) in coating buffer, incubated
overnight at 4 °C, and then washed three times with PBS–
tween 20 (0.05%). The wells were blocked with 100 µL of
1% BSA in PBS (pH 7.4) for 2 h at room temperature and
then 100 µL of diluted chicken sera in PBS (1:100) was
added. The plates were incubated for 1 h at room temper-
ature. The wells were washed five times and 100 µL of
horseradish peroxidase-conjugated rabbit anti-chicken an-

tibody (Sigma-Aldrich) diluted in PBS (1:5000) was added.
The plates were incubated for 1 h at room temperature. The
wells were washed five times with PBS–Tween 20 (0.05%)
and 100 µL of 3,3′,5,5′-tetramethylbenzidine substrate so-
lution (Thermo Fisher Scientific, Waltham, MA, USA) was
added. The wells were incubated for 30 min at room tem-
perature. The reaction was stopped with 50 µL of 2.5 M
sulfuric acid. Optical density (OD) was measured at 450
nm using an ELISA spectrophotometer (ThermoFisher Sci-
entific, Waltham, MA, USA).

2.5 Challenging Peptide-Immunized Chickens with HP
H5N6 Virus

The vaccinated chickens were intranasally infected
with 1 mL (105 TCID50/mL) of H5N6 virus. The tracheas
and cloacae of infected chickens were swabbed with PBS
(pH 7.4) for 10 days post-infection before the viral titers
were determined via log10 TCID50/mL (log10 tissue cul-
ture infectious dose 50) usingMDCK cells. Chickens (three
per group) were euthanized 2 days after infection, and tis-
sues (lungs and brains) were collected in PBS (pH 7.4) to
measure viral titers.

2.6 Measuring Viral Titers Using log10 TCID50/mL
Confluent MDCK cells were treated with trypsin–

EDTA (Sigma-Aldrich) and seeded in a tissue culture plate
(96 wells) with MEM containing 10% fetal bovine serum
and 1× Antibiotic–Antimycotic Solution (Sigma-Aldrich).
The cells were washed with warm PBS (pH 7.4) before
inoculation with collected samples (tracheal and cloacal
swabs, and lung and brain tissues). Samples were 10-fold
diluted in MEM containing 1.5% BSA prior to inoculation.
Prepared samples were inoculated into cells (four wells per
diluted sample) for 5 days in a humidified incubator (37 °C,
5% carbon dioxide). Cells were observed for cytopathic ef-
fects. The viral titer (log10 TCID50/mL) was determined
using the method described by Muench and Reed [18].

2.7 Statistical Analysis
Student’s t-test using IBM SPSS Statistics version 20

software (IBM Corp., Armonk, NY, USA) was performed
to analyze statistical significance. Statistical significance
was based on p-values less than 0.05.
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Fig. 1. Antibody titers in chickens immunized with H5 cleavage-site peptides containing different combinations of polybasic
amino acids. Sera were collected from the intramuscularly immunized chickens (n = 13 per group)—with two doses (5.0 µg per dose)
of oil-adjuvanted HLA-labelled peptides—4 weeks after the vaccination. Antibody titers were measured via ELISA using BSA-labelled
peptides. **p < 0.01. ELISA, enzyme-linked immunosorbent assay; BSA, bovine serum albumin.

3. Results
3.1 Antibody Induction in Chickens Immunized with H5
Cleavage Peptide Antigens

Fig. 1 shows the antibody titers measured using
ELISA in sera (n = 10 per group) collected from chickens
vaccinated with two doses of H5 cleavage-site peptide con-
taining RRRK. Antibodies were similarly induced in chick-
ens immunized with H5 cleavage-site peptides containing
diverse combinations of polybasic amino acids (Table 1),
including peptides containing RRRK, RRR, RR, R, RK, K,
and RRRK(-), with a mean OD range of 0.51–0.54. The
mean OD value for the sera from PBS-mock vaccinated
chickens was 0.12.

3.2 Survival Rate of Chickens Vaccinated with H5
Cleavage Peptide Antigens

We aimed to determine the role of individual amino
acids of RRRK in protecting chickens from HP avian in-
fluenza viral infections. Chickens immunized with most
combinations of polybasic amino acids survived when in-
tranasally challenged with the HP H5N6 virus (Fig. 2). All
the immunized chickens with H5 cleavage-site peptides, in-
cluding RRRK-, RRR-, RR-, R-, and K-containing pep-
tides survived, whereas all chickens immunized with RK-
containing peptide died 6 days post-infection. All chickens
immunized with RRRK(-) peptide and PBS-mock did not
survive (Fig. 2).

3.3 Viral Titers of Immunized Chickens Infected with HP
H5N6 Virus

No viruses were detected in the tracheal (Fig. 3A) and
cloacal swabs (Fig. 3B) of chickens immunized with H5
cleavage-site peptides, including RRRK-, RRR-, RR-, R-
, and K-containing peptides. In contrast, high viral titers
were detected in tracheal and cloacal swabs in the chickens
immunized with RK-containing peptide in the range of 2.0
to 4.5 TCID50/mL (Fig. 3A,B). In addition, similar viral
titers were detected in the chickens immunized with either
RRRK(-) peptide or PBS-mock in the range of 1.5 to 5.0
TCID50/mL (Fig. 3A,B).

The infected chickens (n = 3 per group) were eutha-
nized to collect the lungs and brains 2 days post-infection to
measure tissue viral titers. No virus was detected in either
the lung or brain tissues of the chickens immunized with
H5 cleavage-site peptides, including RRRK-, RRR-, RR-,
R-, and K-containing peptides (Table 2), whereas high vi-
ral titers were detected in both the lung and brain tissues
of chickens immunized with the RK-containing peptide, in
a range of 3.0 to 3.5 TCID50/mL (Table 2). Similar viral
titers were detected in the lungs and brain tissues of chick-
ens immunized with either RRRK(-) peptide or PBS-mock
in the range of 3.5 to 4.5 TCID50/mL (Table 2).

4. Discussion
HP H5Nx avian influenza viruses continue to infect

poultry flocks, resulting in significant economic losses in
the poultry industry. In addition, these viruses can infect
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Fig. 2. Mortality of the immunized chickens with H5 cleavage-site peptides containing different combinations of polybasic amino
acids. The immunized chickens (Fig. 1) were intranasally challenged with 1 mL (105 TCID50/mL) of A/Waterfowl/Korea/S57/2016
(H5N6). The challenged chickens were monitored for survival rate.

Fig. 3. Viral titers in swabbed samples in the challenged chickens. Swabs in tracheas (A) and cloacae (B) in the challenged chickens
(Fig. 2) were performed in a 2-day interval until 10 days p.i. Viral titers in the swabbed samples were measured using Madin-Darby
Canine Kidney (MDCK) cells by log10 TCID50/mL. The limit of detection was 1 TCID50/mL. **p < 0.01.

humans and are considered potential pandemic pathogens.
We developed a vaccine based on HA cleavage-site pep-
tides containing polybasic amino acids to protect poultry
from infections caused by the HP H5 virus.

This study was performed to determine the potential
protective role of individual polybasic amino acids in chick-
ens immunized against the HP H5N6 virus. Our results
showed that most combinations of polybasic amino acids
in the cleavage-site peptide provided complete protection
against the HP H5N6 virus in immunized chickens. The

RK-containing H5 cleavage-site peptide vaccine did not
protect immunized chickens against the virus. The develop-
ment of broad-spectrum protection strategies against H5Nx
infections has been attempted. The herpesvirus of turkeys
was developed as a vector expressing the HA antigen of the
HP H5N1 virus [19]. Layers vaccinated with this vector 2
weeks prior to infectionwith variousHPH5N1 viruseswere
fully protected, with reduced shedding of the viruses. New-
castle disease virus vectors encoding H7 or H5 HA were
shown to provide complete protection in chickens against
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Table 2. Viral titers in lungs and brains of the challenged chickens.
Vaccine antigens Mean viral titers in lungs (log10 TCID50/0.1 g) Mean viral titers in brains (log10 TCID50/0.1 g)

RRRK-containing peptide - -
RRR-containing peptide - -
RR-containing peptide - -
R-containing peptide - -
RK-containing peptide 3.0 ± 0.5 3.5 ± 0.5
K-containing peptide - -
RRRK(-) peptide 3.5 ± 0.25 4.0 ± 0.25
PBS-mock 4.0 ± 0.5 4.5 ± 0.5
-: under detection limit, 1 TCID50/0.1 g. Tissues (lungs and brains) were collected from the challenged chickens (n = 3 per group)
(Fig. 2) 2 days after the challenge, and viral titers in them were measured using MDCK cells by log10 TCID50/mL.

HP H7N9 or H5N1 viruses [20]. A chimeric QH/KJ re-
combinant virus vaccine encoding the HA-1 part of the HP
virus A/chicken/China/QH/2017 (H5N6) (clade 2.3.4.4.),
and HA-2 part of the HP virus A/chicken/China/KJ/2017
(H5N1) (clade 2.3.2.1.) completely protected immunized
chickens against HP H5N6 and HP H5N1 viruses [21].

Our study showed that the H5 cleavage-site peptide
containing the RK combination of polybasic amino acids
(RRRK) did not protect immunized chickens from HP
H5N6 virus infection. The lack of protection of chick-
ens from the vaccine with RK-containing peptides may be
due to the absence of antibody induction, which could bind
to polybasic amino acids (RRRK) of the HP H5N6 virus.
However, the underlying mechanism requires further inves-
tigation.

Keyhole limpet hemocyanin (KLH)was used for stim-
ulating the immune response of H5 cleavage-site peptide
vaccines. It is assumed that KLH could stimulate CD4+
T lymphocytes, resulting in the production of various cy-
tokines. The produced cytokines might help B lymphocytes
to produce peptide-specific antibodies involved in protect-
ing chickens from infections of the HP H5 avian influenza
virus. If KLH alone is used for the vaccine, it might not
protect chickens from the lethal infections of HP H5 avian
influenza viruses since it may not induce the H5 cleavage-
site-specific antibodies.

Polybasic amino acids are a determining factor for
HP avian influenza viruses. The deletion of these amino
acids for making infectious live attenuated vaccine is nec-
essary to prevent reversion to HP avian influenza viruses.
Our cleavage-site peptide containing polybasic amino acids
could not be a source for HP reversion since the peptide
could not contribute to the creation of a recombinant virus.
The previous study to make fowlpox vaccine viruses co-
expressing avian influenza H5 and chicken IL-15 deleted
the polybasic amino acids in the H5 cleavage site [22].

We used homologous BSA-conjugated peptides to
measure antibody titers. Further study may need to include
heterologous BSA-conjugated peptides to find out the dif-
ference in antibody levels.

5. Conclusions
The polybasic amino acids (RRRK) of H5 cleavage

cleavage-site peptide vaccines are important for protecting
chickens against HP H5N6 avian influenza virus. The H5
cleavage cleavage-site peptide containing RK did not pro-
tect chickens against the virus.
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