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Abstract

Background: Ferroptosis, an iron-dependent form of cell death, plays a crucial role in the progression of various cancers, including
colon adenocarcinoma (COAD). However, the multi-omics signatures relevant to ferroptosis regulation in COAD diagnosis remain to
be elucidated. Methods: The transcriptomic, miRNAomic, and methylomic profiles of COAD patients were acquired from the Cancer
GenomeAtlas (TCGA). Ferroptosis activity in these patients was determined, represented by a ferroptosis score (FS), using single-sample
gene set enrichment analysis (ssGSEA) based on the expression of ferroptosis-related genes. Results: Results showed that the COAD
patients with high-FS displayed favorable survival outcomes and heightened drug sensitivity. They also exhibited an up-regulation of
genes involved in immune-related pathways (e.g., tumor necrosis factor signaling pathway), suggesting a correlation between immunity
and ferroptosis in COAD progression. Furthermore, three survival prediction models were established based on 10 CpGs, 12 long
non-coding RNAs (lncRNAs), and 14 microRNAs (miRNAs), respectively. These models demonstrated high accuracy in predicting
COAD survival, achieving areas under the curve (AUC)>0.7. The variables used in the three models also showed strong correlations at
different omics levels and were effective at discriminating between high-FS and low-FS COAD patients (AUC>0.7). Conclusions: This
study identified different DNA methylation (DNAm), lncRNA, and miRNA characteristics between COAD patients with high and low
ferroptosis activity. Furthermore, ferroptosis-related multi-omics signatures were established for COAD prognosis and classification.
These insights present new opportunities for improving the efficacy of COAD therapy.
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1. Introduction
Colon adenocarcinoma (COAD), a prevalent malig-

nant cancer globally [1,2], continues to exhibit an upward
trend in both incidence and mortality rates [3,4]. A major
obstacle in COAD diagnosis and therapy is its pronounced
heterogeneity at different molecular levels [5,6]. Early de-
tection and intervention are crucial, as they substantially
enhance patient survival prospects [1,7]. Consequently, the
need for research focused on the identification of diagnostic
and classification biomarkers for COAD remains critical.

Ferroptosis, characterized as an oxidative and iron-
dependent form of regulated cell death, plays a signif-
icant role in the development of various cancers, such
as breast cancer, hepatocellular carcinoma, and COAD
[8–12]. Emerging evidence suggests a strong associa-
tion between ferroptosis and various molecular factors, in-
cluding messenger RNA (mRNA), long non-coding RNA
(lncRNA), microRNA (miRNA), along with epigenetic
modifications like DNA methylation (DNAm), in tumor
progression [13–15]. Alterations in the expression of
ferroptosis-related mRNA genes have been instrumental

in cancer prognosis prediction, including COAD [9,12,
16]. However, a comprehensive exploration of ferroptosis-
associated signatures, particularly in relation to COAD
classification and diagnosis, at other molecular levels has
not yet been fully explored.

In this study, transcriptomic, miRNomic, methylomic,
and clinical data of COAD patients were obtained from the
Cancer Genome Atlas (TCGA). The ferroptosis score (FS)
of each COAD patient was calculated based on the expres-
sion of 20 ferroptosis-associated genes using single-sample
gene set enrichment analysis (ssGSEA). The COAD pa-
tients were then classified into either high-FS or low-FS
subtypes, with the high-FS group demonstrating better sur-
vival probability and heightened sensitivity tomultiple anti-
cancer drugs. Additionally, 1065 differentially expressed
mRNAs (DE-mRNAs), 324 differentially expressed lncR-
NAs (DE-lncRNAs), 91 differentiallymethylated CpG sites
(DMCs), and 39 differentially expressed miRNAs (DE-
miRNAs) were identified between the high-FS and low-FS
COAD groups. Notably, the up-regulated protein-coding
mRNAs in the high-FS COAD patients were enriched in
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immune-related pathways. Three ferroptosis-related signa-
tures comprising 10 DMCs, 12 DE-lncRNAs, and 14 DE-
miRNAs were constructed using the least absolute shrink-
age and selection operator (LASSO) Cox regression model,
yielding a high degree of accuracy in the prediction of
COAD prognostic outcomes. Further mixOmics analysis
revealed that the ferroptosis-related multi-omics features
displayed excellent performance in COAD classification.

2. Methods
2.1 Data Collection and Preprocessing

RNA-seq (HTSeq-Counts/log2(FPKM+1)), Illumina
Human Methylation 450K BeadChip (HM450, β-value),
miRNA-seq (log2(TPM)), and clinical data of COAD and
normal samples were downloaded from the TCGA database
using the UCSC Xena platform (https://xena.ucsc.edu/).
The transcriptome dataset included 446 COAD samples
and 39 normal samples, the methylome dataset included
297 COAD samples and 18 normal samples, and the miR-
NAome dataset included 425 COAD samples and seven
normal samples. The expression levels of mRNAs, lncR-
NAs, and miRNAs were transformed into FPKM and TPM
values. Gene expression microarray data for COAD were
downloaded from the Gene Expression Omnibus (GEO)
database (GSE39582) [17]. The matrix of each dataset was
normalized using the ‘normalize.quantiles’ function in the
R “preprocessCore” (v1.64.0) package (https://bioconduct
or.org/).

2.2 Inferred FS

In total, 288 ferroptosis-related genes, including
drivers, suppressors, and markers were obtained from the
FerrDb database [18]. Among them, genes with relation-
ships between expression and COAD survival were identi-
fied using univariate Cox survival analysis. The ssGSEA
function in the R package “GSVA” (v1.50.0) (https://bioc
onductor.org/) was used to calculate the enrichment scores
of gene sets positively or negatively associated with COAD
survival [19]. The FS, representing the ferroptosis level in
each COAD sample, was defined as the difference in en-
richment scores between positive and negative components.

2.3 Sensitivity Analysis of Drug Reactions in COAD
Patients

Cancer cell line drug sensitivity data (IC50) were
downloaded from the Genomics of Drug Sensitivity in
Cancer database (GDSC, https://www.cancerrxgene.org/)
[20,21]. The drug sensitivity score of each COAD patient
was estimated using the R package “oncoPredict” (v0.2)
(https://cran.r-project.org/) based on gene expression data
[22]. Drugs with a mean predicted sensitivity value≤0.5 in
patients were retained. Differences in response sensitivity
for each drug between the two groups were tested using Stu-
dent’s t-test. Correlations between ferroptosis scores (FSs)

and estimated drug sensitivity scores were determined using
Pearson correlation analysis. A p-value< 0.05 was consid-
ered statistically significant.

2.4 Survival Analysis
Survival differences between the two groups were cal-

culated using the Kaplan-Meier method and log-rank test in
the R package “survival” (v3.5-7) (https://cran.r-project.o
rg/). Samples were classified into two subgroups based on
the median FS or risk score values.

2.5 DE-mRNA, DE-lncRNA, DMC, and DE-miRNA
Analyses

DE-mRNAs and DE-lncRNAs were identified using
the R package “DESeq2” (v1.42.0) (https://bioconductor.o
rg/) based on the thresholds: |log2Fold-change|>1 and ad-
justed p < 0.01 between the tumor and normal groups and
|log2Fold-change|>0.5 and adjusted p< 0.01 between the
high-FS and low-FS COAD subgroups. DE-miRNAs were
identified using the R package “limma” (v3.58.1) (https:
//bioconductor.org/) based on the thresholds: adjusted p <
0.01 between the tumor and normal groups and adjusted p
< 0.01 between the high-FS and low-FS COAD subgroups.
DMCs were also identified using the R package “limma”
based on the thresholds: |methylation difference| >0.2 and
adjusted p < 0.01 between the tumor and normal groups
and |methylation difference| >0.1 and adjusted p < 0.01
between the high-FS and low-FS COAD subgroups.

2.6 Biological Function Enrichment Analysis
Gene Ontology (GO) and Kyoto Encyclopedia of

Genes andGenomes (KEGG) pathway enrichment analyses
were performed for the DE-mRNAs using DAVID (https:
//david.ncifcrf.gov/tools.jsp) [23]. A Benjamini-Hochberg
(BH)-adjusted p-value < 0.05 was considered statistically
significant.

2.7 Construction of Multi-Omics Prognostic Signatures
LASSO Cox regression model analysis was used for

variable selection with the “glmnet” R package. Multivari-
ate analysis based on the Cox proportional hazards regres-
sion model was used to calculate the coefficients of the
selected variables and construct the prognostic signatures.
Receiver operating characteristic (ROC) curves and area
under the ROC curves (AUC) were used to evaluate the
effectiveness of the prognostic model with the “survival-
ROC” R package (v1.0.3.1) (https://cran.r-project.org/).

2.8 Discriminant Analysis
The “mixOmics” R package was employed to select

key variables within the three -omics data signatures that
effectively differentiate between the high-FS and low-FS
COAD subgroups according to the provided instructions
(http://mixomics.org/) [24]. In brief, the continuous quan-
titative values of variables, such as the expression levels
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Table 1. Clinical characteristics of COAD patients.
Characteristic Number (%) HR (95% CI) p-value

Age 1 (1–1) 0.041
<60 125
>60 309

Sex 1.6 (0.95–2.5) 0.074
Female 207
Male 239

Stage 2.1 (1.6–2.8) 3 × 10–7

Stage I 76
Stage II 171
Stage III 126
Stage IV 62

HR, hazard ratio; CI, confidence interval.

of lncRNAs and miRNAs and methylation levels of CpGs,
within the three signatures served as input data for the
“mixOmics” package (v6.26.0) (https://bioconductor.org/).
Supervised analysis and feature selection with sparse Par-
tial Least Square-Discriminant Analysis (sPLS-DA) were
performed to identify specific variables of different molec-
ular types critical for discriminating the high-FS and low-
FS groups. All statistical analyses were performed using
the R program (v4.3.1) (https://cran.r-project.org/).

3. Results
3.1 COAD Typing Based on Inferred Ferroptosis Activity

Table 1 displays the clinical information of the 446
COAD patients and 39 normal samples. Survival analy-
sis showed that age and pathological stage of the COAD
patients were both associated with COAD survival (p <

0.05). Univariate Cox regression analyses identified eight
ferroptosis-related genes with a positive association and 12
with a negative association between their expression and
COAD survival (p < 0.05). The FS index of ferroptosis
activity was estimated based on the expression of the 20
ferroptosis-related genes using ssGSEA (see Materials and
Methods). Results showed that the FSs ranged from -0.87 to
0.65 (Supplementary Fig. 1). The young group (age <60
years) had higher FSs compared to the old group (age >60
years), but no significant differences in FSs were found be-
tween the male and female samples (Fig. 1A,B). Notably,
FSs were lower in patients at the late pathological stage, in-
dicating an association between FSs and tumor progression
(Fig. 1C). The COAD patients were then divided into two
subgroups according tomedian FSs. Kaplan-Meier survival
analysis indicated that the high-FS patients showed good
survival (p = 0.00011) (Fig. 1D), as validated by multivari-
ate Cox regression analysis after correcting for age, sex, and
pathological stage (Fig. 1E).

To explore the potential association between FSs and
COAD treatment precision, the drug sensitivity score of
each patient was calculated using the R package “onco-
Predict” based on drug sensitivity data from the GDSC

database. In total, 11 agents showed sensitivity differ-
ences between the high-FS and low-FS COAD subgroups,
with high drug sensitivity in the high-FS patients (Fig. 2A).
Among these drugs, several have been used in COAD ther-
apy, such as camptothecin, vinblastine, and staurosporine
[25–27]. Based on further correlation analysis, 10 of
the anti-cancer drugs exhibited significant associations be-
tween sensitivity and FSs (Fig. 2B).

3.2 Identifying DE-mRNAs between High- and Low-FS
COAD Subgroups

Next, changes in protein-coding mRNA expression
were analyzed between the two COAD subgroups. In to-
tal, 1065 DE-mRNAs exhibited differences between the
COAD patients and normal samples, as well as between
the high-FS and low-FS COAD subgroups (see Materi-
als and Methods). Functional enrichment analysis of the
DE-mRNAs was conducted to explore differences in bi-
ological functions and signaling pathways between the
two subgroups. Notably, GO analysis identified 376 up-
regulated DE-mRNAs enriched in the inflammatory re-
sponse, chemokine-mediated signaling pathway, and im-
mune response (Fig. 3A), and 689 down-regulated DE-
mRNAs enriched in the Wnt signaling pathway, lipid
metabolism, and cell adhesion (Fig. 3B). Furthermore,
KEGG pathway analysis revealed that the up-regulated DE-
mRNAs were mainly enriched in immune-related path-
ways, such as the TNF signaling pathway, chemokine sig-
naling pathway, and cytokine-cytokine receptor interaction
(Fig. 3C), while down-regulatedDE-mRNAswere enriched
in the cell adhesion molecule, chemical carcinogenesis, and
cAMP signaling pathways (Fig. 3D). Therefore, these find-
ings highlight the close association between ferroptosis and
immune processes in tumor progression.

3.3 Building Ferroptosis-Related Multi-Omics Signatures
for COAD Survival Prediction

Ferroptosis-related mRNA signatures associated with
COAD prognosis were determined utilizing expression
data of identified DE-mRNAs from the TCGA database.
LASSOCox regression analysis was performed on the 1065
DE-mRNAs, with 12 DE-mRNAs selected to build a risk
model (risk-score(mRNA)). Subsequently, the multivariate
Cox model was used to calculate the coefficients, as fol-
lows:

Risk − score (mRNA)

= (0.5975) × ATP6V 1B1 + (−0.4779) × FZD3 + (0.8540) × GABRD

+ (−0.2871) × GPR15 + (0.8738) × LRRN4 + (−0.8904) × MS4A15

+ (−2.1418) × NRG1 + (0.2937) × NSMF + (0.1770) × PCOLCE2

+ (0.2700) × PHACTR3 + (0.5333) × PLAC1 + (0.2952) × RSPO4

The risk score for each COAD patient was then cal-
culated, with median values used to categorize patients into
high- and low-risk groups. Kaplan-Meier analysis revealed
a significantly poorer prognosis in the high-risk group com-
pared to the low-risk group (Fig. 4A). The ROC curves in-
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Fig. 1. Association between ferroptosis scores (FSs) and colon adenocarcinoma (COAD) overall survival. (A–C) FS differences in
patients of different age, sex, and pathological stage. (D) Kaplan-Meier survival curve of high- and low-FS patients. (E) Forest plot of
association between FSs and COAD survival in multivariate Cox proportional hazards model. **, p < 0.01, ***, p < 0.001.

dicated AUC values for the risk score model at 1, 3, and
5 years of 0.833, 0.799, and 0.835, respectively (Fig. 4B).
Additionally, an independent gene expression microarray
dataset of COAD from the GEO database was analyzed
to validate the prognostic value of the 12-DE-mRNA sig-
nature. This analysis confirmed that COAD patients with
a low risk score demonstrated better survival, with AUCs
of 0.582 at 3 years and 0.592 at 4 years (Fig. 4C,D). In
addition, we also observed that the patients with high FS
presented good survival in this independent COAD cohort
(Supplementary Fig. 2).

To further explore the ferroptosis-related regulatory
features associated with COAD prognostic outcomes, 91
DMCs, 324 DE-lncRNAs, and 39 DE-miRNAs were iden-
tified displaying differences between COAD patients and
normal samples, as well as between the high-FS and low-

FS COAD subgroups (see Methods). A subset of 132 high-
FS and 160 low-FS COAD patients with transcriptomic,
miRNAomic, and methylomic data were selected for subse-
quent analyses. LASSO Cox regression analysis was then
performed on the 91 DMCs, 324 DE-lncRNAs, and 39 DE-
miRNAs to identify the most predictive features for COAD
prognosis. In total, 10 DMCs, 12 DE-lncRNAs, and 14
DE-miRNAs were selected as variables for the risk score
models at different molecular levels (i.e., risk-score(DNAm),
risk-score(lncRNA), and risk-score(miRNA)). The coefficients
of the selected DMCs, DE-lncRNAs, and DE-miRNAs
were recalculated in each multivariate Cox model, lead-
ing to the construction of three risk prediction models
(Supplementary Fig. 3), detailed as follows:
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Fig. 2. Drug sensitivity between high- and low-FS COAD subgroups. (A) Differences in predicted drug sensitivity between high- and
low-FS subgroups (*, p < 0.05). (B) Correlations between FSs and predicted sensitivity values of anti-cancer drugs in COAD patients.

Risk − score ( DNAm )

= (−1.6307 × cg 00987461) + (0.995 × cg 02415779)

+ (−1.3444 × cg 03616722) + (1.1853 × cg 06120945)

+ (1.4154 × cg 14192291) + (0.8314 × cg 15507690)

+ (−0.8891 × cg 18693345) + (1.1020 × cg 21308365)

+ (−1.5025 × cg 21494776) + (0.5229 × cg 25588389)

Risk − score ( lncRNA )

= (−0.46348 × AC016831.7) + (0.51557 × ATP2A1_AS1 )

+ (1.26266 × CCDC144NL_AS1) + (−1.69841 × RP11_109J4.1)

+ (0.33265 × RP11_1143G9.5) + (0.35439 × RP11_353N14.2)

+ (−0.36330 × RP11_386I14.4) + (0.41455 × RP11_60A8.1)

+ (0.08611 × RP11_638I8.1) + (0.69306 × RRP4_673M15.1)

+ (0.14529 × RP5_1059L7.1) + (0.55365 × RP5_884M6.1)

Risk − score (miRNA )

= (0.49643 × hsa_let_7e ) + (−0.24373 × hsa_mir_144 )

+ (0.24081 × hsa_mir_146a ) + (0.20736 × hsa_mir_147b )

+ (0.37224 × hsa_mir_16_1 ) + (0.26853 × hsa_mir_217 )

+ (−0.07030 × hsa_mir_223 + (0.13606 × hsa_mir_3074 )

+ (0.14476 × hsa_mir_33b ) + (−0.37786 × hsa_mir_3615)

+ (−0.31860 × hsa_mir_3677 ) + (−0.18818 × hsa_mir_375)

+ (0.05530 × hsa_mir_577 ) + (0.20584 × hsa_mir_625)

The risk score of each COAD patient was then cal-
culated at three molecular levels using the three differ-
ent datasets. According to the median values of the risk
scores inferred by each molecular signature (i.e., DNAm,
lncRNA, and miRNA), the COAD patients were catego-
rized into high- and low-risk groups (Fig. 5A,E,I). Kaplan-
Meier analyses revealed significantly poorer prognosis for

patients in the high-risk group than those in the low-risk
group for each -omics data type (Fig. 5B,F,J). Supplemen-
tary Fig. 4 presents the vital statuses of COAD patients
classified into the high- and low-risk groups, as determined
by the signatures from the three -omics-level datasets. The
risk score models from the three datasets were then used
to predict patient survival status at 1, 3, and 5 years. ROC
curve analysis showed that the AUC values for the DNAm
risk score model were 0.725, 0.718, and 0.774 at 1, 3, and
5 years, respectively (Fig. 5C); the AUC values for the
lncRNA risk score model were 0.797, 0.739, and 0.773 at
1, 3, and 5 years, respectively (Fig. 5G); and the AUC val-
ues for the miRNA risk score model were 0.717, 0.721,
and 0.707 at 1, 3, and 5 years, respectively (Fig. 5K). In
addition, heatmaps presented the methylation and expres-
sion level changes of the 10 DMCs, 12 lncRNAs, and 14
miRNAs within corresponding prediction models along-
side their respective risk scores (Fig. 5D,H,L). Notably, a
significant proportion of molecular features, including 8
DMCs, 11 lncRNAs and 8 miRNAs, demonstrated statis-
tically significant correlations between their methylation
and expression levels and the associated risk cores (p <

0.05; Supplementary Table 1). These findings suggest
that ferroptosis-related multi-omics features are effective in
predicting COAD prognostic outcomes.
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Fig. 3. Functional enrichment analyses of differentially expressed mRNAs (DE-mRNAs) between high- and low-FS COAD sub-
groups. (A,B) GO enrichment analysis of up-regulated and down-regulated DE-mRNAs in COAD patients with high-FS. (C,D) Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of up-regulated and down-regulated DE-mRNAs in COAD patients
with high-FS.

3.4 Ferroptosis-Related Multi-Omics Features Associated
with COAD Typing

To explore the potential of ferroptosis-related multi-
omics features as biomarkers for COAD classification, the
“mixOmics” R package was used to integrate three omics
datasets. This integration encompassed 292 samples with
corresponding RNA-seq, HM450, and miRNA-seq data,
and included the previously identified 10 DMCs, 12 DE-
lncRNAs, and 14 DE-miRNAs. Results showed that the
high-FS and low-FS COAD subgroups were distinguish-

able based on the first and second components of themodels
for the DNAm, lncRNA, and miRNA datasets, with AUC
values of 0.77, 0.76, and 0.80, respectively (Fig. 6A). The
loading weights of each selected variable on each com-
ponent and each dataset are presented in Fig. 6B. In ad-
dition, the Circos plot showed significant correlations be-
tween and within variables at different -omics levels (r =
0.2) (Fig. 6C). These results indicate that the multi-omics
signatures can classify COAD patients into two subtypes
based on their ferroptosis activity.
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Fig. 4. Predictive efficacy of ferroptosis-related mRNA signatures in COAD patients from The Cancer Genome Atlas (TCGA)
and Gene Expression Omnibus (GEO) databases. (A,B) Survival and receiver operating characteristic (ROC) curves of the 12-DE-
mRNA signature in COAD patients from the TCGA. (C,D) Survival and ROC curves of the 12-DE-mRNA signature in COAD patients
from GSE39582.

4. Discussion

Ferroptosis, an iron-dependent form of programmed
cell death, is characterized by intracellular accumulation
of lipid peroxidation [28]. Mounting evidence has shown
that ferroptosis plays an important role in the pathogene-
sis of various diseases, especially tumors [29]. An increase
in ferroptosis activity has also been shown to suppress the
progression of various cancers, such as COAD [30]. There-
fore, ferroptosis-related regulatory features at multi-omics
levels could potentially be harnessed for cancer diagnosis,
classification, and treatment.

In this study, the ferroptosis activity (viz., FS) of each
COAD patient was estimated using ssGSEA based on the

expression of 20 ferroptosis-related genes linked to COAD
survival, many of which are implicated in tumor pathogen-
esis. GPX4, a well-known oncogene that inhibits ferrop-
tosis in cancer cells [31], showed a negative association
with COAD survival (p < 0.05), while FBXW7, a critical
tumor suppressor gene [32], exhibited a positive associa-
tion with COAD survival (p < 0.05). Further analyses also
revealed that the estimated FSs were positively associated
with COAD survival and negatively associated with COAD
pathological stage. These observations suggest the exis-
tence of a close relationship between ferroptosis and COAD
development.

Enrichment analysis was further conducted to explore
the biological functions of protein-coding mRNA genes

7
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Fig. 5. Construction of ferroptosis-related multi-omics signatures (10 differentially methylated CpG sites (DMCs), 12 DE-
lncRNAs, and 14 DE-miRNAs) in COAD patients. (A–D) Risk score plot, survival curve, ROC curve, and heatmap plot of 10-DMC
signatures. (E–H) Risk score plot, survival curve, ROC curve, and heatmap plot of 12-DE-lncRNA signatures. (I–L) Risk score plot,
survival curve, ROC curve, and heatmap plot of 14 DE-miRNA signatures. In this panel, figures (C,G,K) show predictive performance
of three molecular signatures for COAD survival.

that exhibited differential expression between the high- and
low-FS COAD subgroups. Results showed that the up-
regulated DE-mRNAs were enriched in the TNF signaling,
chemokine signaling, and cytokine-cytokine receptor in-

teraction pathways, while the down-regulated DE-mRNAs
were enriched in the cell adhesion molecule, chemical car-
cinogenesis, and cAMP signaling pathways. Several of
these pathways, especially those related to immunity, are
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Fig. 6. Discriminant analysis of COAD patients. (A) ROC curves of three molecular signatures (viz., DNAm, lncRNA, and miRNA)
discriminating between high- and low-FS patients. Plot suggests that variables (i.e., markers) selected by sparse Partial Least Square-
Discriminant Analysis (sPLS-DA) on components 1 and 2 in each of the signatures can discriminate high-FS samples from low-FS
samples. (B) Loading weight plots of variables selected by sPLS-DA on components 1 and 2 in each signature. Variables are ranked
according to their loading weight (most important at bottom to least important at top). Colors indicate group for which a particular
variable has a higher value than the other group. (C) Circos plot of positive or negative correlations between selected variables from
three signatures (presented by brown and black links, respectively). Plot represents correlations greater than 0.2 between variables of
different molecular types. Outer lines show levels of each variable in the two groups (i.e., high-FS vs. low-FS).

correlatedwith ferroptosis and cancer development. For ex-
ample, CD8+T cells can release TNF and interferon gamma
(IFN-γ) to drive ferroptosis activity and tumor cell death
[33]. In addition, chemokines and cytokines, which are
closely related to inflammation, can affect ferroptosis and
tumor progression [34,35]. These findings suggest a com-
plex interplay between ferroptosis and the tumor immune
microenvironment in the pathogenesis of COAD.

Ferroptosis-related multi-omics signatures at the
DNAm, lncRNA, and miRNA levels were identified to pre-
dict COADprognosis, yielding 10DMCs, 12DE-lncRNAs,

and 14 DE-miRNAs, respectively. The ROC and AUC re-
sults demonstrated the potential of these signatures in pre-
dicting COAD survival (AUC >0.7). Notably, patients
with high-risk scores derived from the three -omics sig-
natures displayed significantly poorer survival. Moreover,
mixOmics analysis revealed that variables from the three
-omics datasets were internally correlated and effectively
discriminated between the high-FS and low-FS COAD sub-
groups (all AUC >0.7). A ferroptosis-associated 12-DE-
mRNA signature was also constructed based on the tran-
scriptomic data of COAD patients from the TCGA. Al-
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though its predictive accuracy was slightly lower (AUC
≈ 0.6) in an independent COAD cohort, possibly due to
differences in platforms (RNA-seq vs. microarray), it still
supported the relationship between the identified molecular
features and COAD prognosis. Collectively, these results
suggest that the multi-omics signatures are valuable mark-
ers for prognostic assessment and molecular classification
in COAD patients.

5. Conclusions
Multiple significant methylation sites, lncRNAs, and

miRNAs associated with ferroptosis activity were iden-
tified, demonstrating potential as biomarkers for COAD
prognosis and classification. These ferroptosis-related
multi-omics signatures offer novel clinical perspectives for
COAD diagnosis and therapy. Additionally, this study
identified a potential relationship between ferroptosis and
the immune response, revealing a possible interplay in the
development of COAD.
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