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Abstract

Biotic and abiotic stresses significantly affect plant fitness, resulting in a serious loss in food production. Biotic and abiotic stresses
predominantly affect metabolite biosynthesis, gene and protein expression, and genome variations. However, light doses of stress result
in the production of positive attributes in crops, like tolerance to stress and biosynthesis of metabolites, called hormesis. Advancement in
artificial intelligence (AI) has enabled the development of high-throughput gadgets such as high-resolution imagery sensors and robotic
aerial vehicles, i.e., satellites and unmanned aerial vehicles (UAV), to overcome biotic and abiotic stresses. These High throughput (HTP)
gadgets produce accurate but big amounts of data. Significant datasets such as transportable array for remotely sensed agriculture and
phenotyping reference platform (TERRA-REF) have been developed to forecast abiotic stresses and early detection of biotic stresses.
For accurately measuring the model plant stress, tools like Deep Learning (DL) andMachine Learning (ML) have enabled early detection
of desirable traits in a large population of breeding material and mitigate plant stresses. In this review, advanced applications of ML and
DL in plant biotic and abiotic stress management have been summarized.

Keywords: biotic and abiotic stresses; satellite; unmanned aerial vehicle; smart-phones; artificial intelligence; machine learning; deep
learning; plant phenotyping

1. Introduction
By 2050, it is expected that the world population will

surpass ~10 billion people; hence, crop production must
increase by 25–70% [1]. In order to improve crop yield,
the selection of biotic and abiotic stress-resistant verities
with the deployment of precise and robust tools is needed
[2]. High throughput (HTP) tools integrated with AI to
collect data, and analyze with ML and DL models have
proven very effective (Fig. 1) [3–5]. ML deals with deci-
sion theories, visualization, optimization, and probability to
analyze various combinations of numerous traits based on
guided and unguided instructions (Fig. 1) [6,7]. DL mod-
els include generative adversarial networks (GAN), con-
volutional neural networks (CNN), and multilayer percep-
tron (MLP) [8] for the interpretation of a large dataset via
image detection, tracking, classification, and segmentation
during plant stress monitoring [9]. In serial manners, ML
follows the following four steps: identification, classifica-
tion, quantification, and prediction to identify biotic stress

in plants [10]. To analyze data from both healthy and in-
fected plants, ML uses supervised discriminative models,
an unsupervised model for the data of only healthy plants,
and a simple deviation detection method for contaminated
plants [11]. Unsupervised models are quite useful for quan-
tification and even can be applied to small datasets. ML
precisely predicts infection at the earliest stage.

2. Phenotyping Platforms
In phenotyping, low-throughput methods are in prac-

tice, which need to be replaced by high-throughput, non-
invasive methods [12]. To improve plant phenomics, non-
invasive sensors, imaging techniques, analytical tools, and
sensors have been invented [13]. The development of a
single HTP imaging platform harboring all aforementioned
devices and programs has enabled the precise collection
of biotic and abiotic stress data (Table 1). For exam-
ple, GROWSCREEN FLUORO is being used to measure
chlorophyll fluorescence and leaf growth to analyze biotic
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Fig. 1. Classification of machine and deep learning models. Machine learning models are comprised of unsupervised learning, semi-
supervised, supervised, and reinforcement learning.

and abiotic stress tolerance [14]. HyperART is being em-
ployed in non-destructive quantification of disease sever-
ity and chlorophyll contents of various plants like maize,
rapeseed, barley, and tomato [15]. Similarly, PHENOVI-
SION and PlantScreen™ Robotic XYZ System are being
used to measure drought stress in maize and rice, respec-
tively [16,17]. LemnaTec 3D Scanalyzer system and Phe-
nobox are being employed in the measurement of the ef-
fects of salinity stress on rice, maize, and tobacco [18,19].
PhénoField® is very helpful in measuring the effects of
numerous stresses on wheat [19]. HTP data about plant
height, biomass, radiation use efficiency, leaf, shoot, root,

early vigor, and photosynthesis is being recorded automat-
ically (Fig. 2). CropQuant [20], RootReader3D [21], PHE-
NOARCH [22], Zeppe-lin NT aircraft [7], MVS-Pheno
[23], Field Scanalyzer [24], and GROWSCREEN-Rhizo
[25] are promising HTP platforms for collection of biotic
and abiotic stress resistance data of different crops (Ta-
ble 1).

3. Imaging Techniques
HTP imaging techniques have evolved significantly in

recent years. Remote sensing is being employed to detect
biotic and abiotic stress in plants via satellites (Fig. 2) [26–
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Fig. 2. Schematic diagram of high throughput and automated artificial intelligence-based remote phenotyping platform based
on satellite, unmanned aerial vehicle (UAV), smart phone, control shed, and ground imagery to record plant height, biomass,
radiation use efficiency, leaf traits, herbs and insect identification, early vigor, and photosynthesis.

28]. HTP unmanned aerial vehicles (UAV) are very use-
ful for capturing highly-resolution images with drones and
handheld mobile phones (Fig. 2). Additionally, UAVs in-
stalled with HTP sensors capture photos of crop fields at
once to identify drought stress and insect/pest attack [29].
On the other hand, ground-based imaging platforms can
capture pictures of very small areas to analyze miniature
changes in plant growth (Fig. 2). Notably, ground-based
imaging platforms provide accurate and detailed images at
the level of a single plant, branches, and even single leaf in
a crop [30]. In addition, ground-based imaging platforms
work in an auto-engaged, time-scheduled analysis manner.
All these HTPmethods of data collection generate terabytes
(TB) of data per day, which can only be analyzed with DL
and ML algorithms. A brief overview of available imaging
techniques to investigate biotic and abiotic stresses is given
below.

3.1 Satellite Imagery

Satellites can cover and take images of a big part of
~1000 hectares or even an entire country. These observa-
tion satellites are integrated with multiple sensors to collect
information from the ground (Fig. 2). These sensors don’t
work the same way as thermal, time-of-flight, hyperspec-
tral, multispectral, or RGB ones. Instead, gather data from

the electromagnetic (EM) spectrum at various wavelengths.
These sensors focus on 2–10 of the various bands in the EM
spectrum, specifically the Green (G), Red (R), and Blue (B)
bands. High-resolution RGB images are then produced us-
ing the data gathered from these distinctly necessary bands.
In addition to RGB, bands near-infrared or infrared are also
employed in satellite imagery [31].

3.2 Mobile Cameras/Imaging

Mobile phones are mostly provided with high-pixel
cameras that can capture basic pictures. In order to cap-
ture 3D images, the integration of advanced sensors such
as LiDAR is very useful [32]. Advanced mobile phones
are equipped with high-resolution, influential, and AI com-
puting cameras (Fig. 2). Other portable devices are also
equipped with smart phone technology, which is helpful in
strengthening and expanding the range of sensors. It pro-
vides broad range connectivity and portability as compared
to traditional phenotyping equipment.

3.3 Unmanned Aerial Vehicle (UAV) Imaging

UAV imaging is used for large-scale HTP studies [33].
UAV works on an orthomosaic model to capture numer-
ous images of various patches of the field (Fig. 2), which
are combined into a large single image [34]. The follow-
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Fig. 3. Application of different machine learning-based algorithms. These algorithms work on identification, classification, predic-
tion, quantification, dimensionality reduction, and regression models. SVM, Support Vector Machine; ANN, Artificial Neural Network;
DLA, Deep Learning Application; PCR, Polymerase Chain Reaction; NN, Neural Network; KNN, K-Nearest Neighbour; RF, Random
Forest; BC, Bayesian Classifier; LDA, Linear Discriminate Analysis; QDA, Quadratic Discriminate Analysis; SOM, Self-Organizing
Map; DLA, Deep learning Application; PLS, Partial Least Square; NSC, Nearest Shrunken Centroids; LR, Linear Regression; ML,
Machine Learning.

ing software, Pix4D, QGIS, and Open, are used to capture
orthomosaic pictures with the help of UAVs [35]. Images
taken from the ground are of high resolution as compared
to the images taken from satellites or UAVs. This is an ad-
vantage for the hyperspectral sensors because they work on
low spatial resolution.

3.4 Ground-Based Imaging Platforms

One of the most advanced imaging techniques is the
ground-based imaging platform (Fig. 2). It is very precise
to measure biotic and abiotic stress in plants at very close
ranges [36]. Its proximate values of phenotyping are very
efficient, similar to manually captured pictures [37]. These
ground-based platforms use on-board chips to analyze the
characteristics of each plant organ in an automatic manner
[38].

4

https://www.imrpress.com


Fig. 4. Plant traits improvement via high-throughput phenotyping techniques. These phenotyping techniques are used to instigate
the breeding process by lowering breeding cycles, identifying novel genes, and identifying and mitigating biotic and abiotic stress to
improve crop yield.

3.5 Wavelength Markers for Phenotyping Plant Stress

Images obtained using the mentioned methods require
the use of spectral indices (SIs), such as vegetation indices
(VIs) [39], tomeasure the rate of photosynthesis and canopy
structure [40]. It involves the conduction of various oper-
ational sets working on different layers of the obtained im-
ages. In these operations, a number is assigned to mathe-
matical calculations and wavelengths of spectral references
to indicate comparative profusion of a feature of interest
[41]. In this study, we have summarized how various VIs

are used to deal with different aspects of captured images.
Spectral calculations are measured through various spec-
tral bands for measuring information about vegetation and
decoding features of the images. VI provides a significant
level of information about plant architecture, biomass, phe-
notype, canopy, rate of photosynthesis, and level of stress
[42].
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Fig. 5. Image collection and processing by machine and deep learning-based phenotyping tools.

4. Machine Learning

Big data problems are brought on by the increased
volume of data obtained by HTP platforms in agricultural
practices. In order to invent new and robust technologies,
the demand for the capacity to analyze and comprehend
data is increasing. Mckinsey industry reveals that there is
a 50% increase in data generation every year, a 40-fold
increase since 2001 [43]. Pictures are captured and an-
alyzed using DL and ML to detect various amounts and
types of challenges (Table 2), such as contents of aflatoxin
in maize [44], salinity stress on chickpeas [3], cucumber’s
powdery mildews [45], and rot on wheat leaves [46]. ML
has proven an excellent approach for identifying biotic and
abiotic stresses at an early stage and mitigating them in a
precise way [2].

4.1 Linear Discriminant Analysis
In order to divide the output into two or more classes,

a linear combination of characteristics is used in linear dis-
criminant analysis (LDA). In an experiment, images of cit-
rus orchards were taken through visible near-infrared spec-
troscopy to identify Huanglongbing via different classifica-
tion algorithms like soft independent modeling of classifi-
cation algorithm (SIMCA), quadratic discriminant analysis
(QDA), and LDA [47]. The accuracy obtained via SIMCA
and QDA were 92% and 95%, respectively (Table 2).
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Table 1. Machine learning-based studies in plant stress or identification, classification, quantification, and prediction paradigm.
AI Techniques Algorithms Application Datasets Model plant Stress

Successive Approximation Model
(SAM)

SAM Identification Remote sensing Sugar beet (Beta vulgaris) Pests and disease

Deep Learning Convolutional Neural Networks
(CNN), Alex Net, Google net,
Inception V3, Least PLS-DA, LS-
VSM

Identification 1200 photos taken by camera under
stress and non-stress conditions

Maize, okra, soybean Water tension

SVM and Gaussian processes classi-
fier (GPC)

SVM and Gaussian processes classi-
fier (GPC)

Identification Visible and thermal images Spinach (Spanicia oleraceae) Abiotic stress

Unsupervised Machine Learning Convolutional Neural Networks
(CNN), Alex Net, Google net, PLS-
DA, Least squares support vector
machine, LS-VSM

Identification Hyperspectral images of canopy of
tobacco plants

Tobacco Heavy metal stress

Optic Disc (OD) segmentation OD: 99.61% Recognizes and removes the blood
artery for correct segmentation of
the Optic Disc (OD)

Images Blood artery

OBIA-based classification OBIA-based classification Identification UAV-based RGB images and multi-
spectral image

Sunflower (Helianthus annus) Biotic stress

Deep Learning (Image) CNN Identification 1426 images of rice diseases and
pests from paddy fields

Rice Biotic stress

Unsupervised Machine Learning
(Video Imaging)

Hidden Markov’s model (HMMs) Identification and Classification Chlorophyll fluorescence digital
profiles from Grow Tech Inc.

Phaseolus vulgaris Stressor level groups (Low, medium,
and high stressed) and drought, nu-
trient, and chemical stress

Deep Learning (Image) K-nearest neighbors (KNN) Identification and Classification 1747 smart phone images of arabica
coffee leaves

Arabica coffee Biotic stress, cercospora leaf spot

Unsupervised Machine Learning,
Partial Least Square Regression,
Principal Component Analysis

CNN Identification and Classification Spectral signature of leaf samples
obtained with a visible, near infra-
red spectrometer

Rice Salt stress

ANN variant Artificial Neural Networks (ANN)
variant

Identification RGB images Orchid (Phalaenopsis) Disease

Supervised Machine Learning Relief, Support vector machine Identification and Classification Images from four wheat lines Wheat Salt stress

Deep Learning (Image) Identification and Classification 1575 images (smart phones, compact
cameras, DSLR)

Different plant specimen Biotic stress

Deep Learning Identification and Classification Hyperspectral images Bromus inermis Drought stress

Supervised Machine Learning Identification and Classification RGB leaf images from Kaggle
database

Brinjal leaves Biotic stress
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Table 2. Machine learning-based studies in plant stress or identification, classification, quantification, and prediction paradigm.
AI Techniques Algorithms Application Datasets Model plant Stressor

Deep Learning (Image) Deep convolutional neural network
(DCNN)

Identification, classification,
and quantification

Collection of images of stressed and
healthy soybean leaflets in the field

Soybean (Glycine max L.) Bacterial blight (Pseudomonas
savastanoi), bacterial pustule (Xan-
thomonas axonopodis), sudden
death syndrome (Fusarium vir-
guliforme), Septoria brown spot
(Septoria glycines), Frogeye leaf
spot, chlorosis due to iron de-
ficiency, potassium deficit, and
pesticide damage

KNN, quadratic discriminant analy-
sis (QDA), and linear discriminant
analysis (LDA)

KNN, quadratic discriminant analy-
sis (QDA), and linear discriminant
analysis (LDA)

Identification Spectroradiometer Citrus Disease

Supervised Machine Learning Random Forest (RF), Support Vector
Machine (SVM), KNN

Classification and prediction Real-time tetrahertz time-domain spec-
troscopic data (THz-TDS)

Basil, coriander, parsley baby-
leaf, coffee, pea

Water stress

Supervised Machine Learning RF,Artificial neural network (ANN),
and confident multiple-choice learn-
ing

Classification Multispectral images Maize Water stress

Supervised Machine Learning Confident multiple-choice learning Identification and prediction Gene expression time series datasets Arabidopsis thaliana Heat, cold, salt, and drought

Single Ventricle Interactive Model
(SViM)

SViM Identification Hyperspectral Tomato Water stress

Deep Learning (Image) CNN Classification Images of Sorghum plant shoot from the
Donald. Danforth plant science center

Sorghum plants Nitrogen deficiency

Gaussian mixture model Gaussian mixture model Identification RGB images Wheat (Triticum aestivum L.) Disease

Supervised Machine Learning Decision tree (DT), SVM, Naive
Bayes (NB)

Classification Metabolite and protein content Arabidopsis thaliana Metabolic stress

Supervised Machine Learning SVM Classification Biweekly RBG, stereo, and hyperspec-
tral spatio-temporal images

Sugar beet plants Drought and weed stress, nitrogen
deficiency

Linear discriminant analysis (LDA)
and K-means

Linear discriminant analysis (LDA)
and K-means

Identification and Classifica-
tion

RGB images Clover (Trifolium subterraneum
L.)

Pollution

Supervised Machine Learning Hierarchical models Classification 5916 RGB images, plant introduction
accessories (PI) in different time points

Soybean (Glycine max) Iron deficiency chlorosis

Supervised Machine Learning ANN, CNN, Optimum path stress,
KNN, and SVM

Classification Electrical signal under cold, low light,
and osmotic stimuli

Soybean plants Cold, low light, and osmotic stimuli

k-NN and Bayesian classifier k-NN and Bayesian classifier Classification Fusion of RGB and multispectral image Sugar beet Disease

Supervised Machine Learning RF Classification Hyperspectral dataset acquired from
Indian Agricultural Research Institute
(IARI)

Wheat Water stress
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Table 3. Machine learning-based studies in plant stress or identification, classification, quantification, and prediction paradigm.
AI Technique Algorithms Application Datasets Model plant Stressor

Deep Learning (Image) CNN, SVM Classification 65,184 labeled images from GitHub
resource

Soybean Biotic and abiotic stresses

Supervised Machine Learning MLP and probabilistic neural network
(PNN)

Classification 16 maize and 17 wheat genomic
and phenotypic datasets with differ-
ent trait-environment combinations

Maize and wheat Drought

Bayesian classifier Bayesian classifier Classification RGB images Arabidopsis Disease

Supervised machine Learning Decision tree (DT) and NB Prediction miRNA concentration Arabidopsis thaliana Drought, salinity, cold, and heat

None Preprocessing via segmentation None Preprocessing via segmentation Quantification RGB Images Chili pepper Disease

Supervised Machine Learning Ridge regression, LASSO, elastic net,
RF, reproducing kernel, Hilbert space,
Bayes A and Bayes B

Prediction A set of 29,619 cured single nu-
cleotide polymorphisms. Genotyped
across a panel of 240 maize inbred

Maize Drought stress

Deep Learning CNN Prediction Three maize arid and six wheat
datasets

Maize and wheat Environmental stress

Dirichlet aggregation regression (DAR) Dirichlet aggregation regression (DAR) Prediction Hyperspectral images Barley Abiotic stress

SVM, generalized regression neural network (GRNN) SVM, generalized regression neural net-
work (GRNN)

Prediction Manual severity rating Rice Disease

Supervised machine learning Genomic random regression Prediction Complete genotypes, molecular
markers, and phenotypic traits of
stressed and control groups

Wheat Environmental stress
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4.2 Support Vector Machine (SVM)
SVM creates hyperplanes via maximum separation

from the nearest training example [48]. In this hyper-
plane technique, the maximization of different classes is be-
ing performed with the clear separation of different classes
[49]. SVM is basically used for the segmentation of images
(Table 2). These images can be used to analyze the human
pathogen, namely Salmonella typhimurium, which also af-
fects Arabidopsis [50]. SVM and LDA techniques use ther-
mal and hyperspectral images to identify verticilliumwilt in
Olea europaea [51].

4.3 Logistic Regression
Logistic regression classifies binary variables using

the logistic function. This method uses all the predictors
of odd ratios to classify the dependent variables into two
different classes. Multinomial logistic regression uses out-
puts of more than two values. To identify the strategies of
crop management and the application of pesticides in or-
chard plants, hyperspectral imaging was used to detect the
apple scab at a very early stage [52]. Classification meth-
ods are used in logistic regression to distinguish between
infected and healthy plants. This technique uses hyperspec-
tral band classification algorithms (Table 2) [53].

4.4 Random Forest
The ensemble learning technique is the base of ran-

dom forest (RF) functions (Fig. 3). This divides people into
different nodes of the tree using the tree-building method.
When compared to tree-based classification, the random
forests technique has a number of advantages since it can
handle noise, control model overfitting, and a variety of fac-
tors. Spectro-diameter is employed in this technique to pick
out characteristics of various plant species [54].

4.5 Linear Regression
Most phenomenological research employs linear re-

gression because of its comprehensive data interpretation
and user-friendly interface. It deals with the variation of the
targeted factors. To measure water stress in maize plants, a
regression model was designed between vegetation indices
(VI) and crop water stress index (CWSI), which employ
regression models and multispectral images to accurately
measure drought stress [55]. Another experiment exam-
ined the relationships between leaf stomatal conductance
(gs), stem water potential (ΨSTEM), linear regression, and
Pearson correlations. And thermal indices to calculate wa-
ter availability status. Thermal and multispectral were used
for measurement in a vineyard [56].

The outcome is predicted using numerous explanatory
variables using multiple regression, sometimes referred to
as multiple linear regression (MLR). MLR simulates the
linear relationship between the numerous experimental out-
come components. Hyperspectral images are used to mea-
sure various diseases like powdery mildews by various data

analysis techniques like Fisher linear discriminant analysis
(FLDA), MLR, and PLSR. PLSR performs better than the
MLR model in various aspects, whereas the highest accu-
racy is achieved by FLDA [57]. Various spectral images
and data analysis techniques are used to measure disease-
like bacterial spots in tomato (Table 2). The methods in-
volve data analysis utilizing PLS, SMLR, and correlation
coefficient spectrum analysis. For the measurement and in-
vestigation of the causes of bacterial spots, different types
of predictive models are developed [58].

4.6 Partial Least Square Regression (PLSR)
PLSR can manage collinearity across variables. So,

PLSR is a very powerful technique for modeling numerous
variables at the same time [59]. The best model is devel-
oped by the low values of RMSE and high values of cor-
relation coefficient “r” [60]. The nitrogen concentration in
rice is determined using ground-based hyperspectral imag-
ing and the PLSR model (Table 2). The PLSR model was
designed to link nitrogen contents and rice plant’s pheno-
type [61].

4.7 Dimensionality Reduction
Dimensionality reduction deals with a few numbers of

variables and can explain the whole dataset. It extracts the
latent or useful variables from the dataset, which makes it
accurate for the measurement. Principal Component Anal-
ysis (PCA) is the most common dimensionality lessening
procedure. PCA reduces the dimensionality of data and
extracts the completely independent variables. Principal
Component Score (PCS) uses very few principal compo-
nents to explain the variance of the dataset. In jujube, insect
infestation was identified by stepwise discriminant analysis
with the employment of NIR and visible spectroscopy [62].

5. Deep Learning
DL is the best tool to obtain data with maximum ac-

curacy. Evaluation of data obtained through DL is quite
easy. DL uses layers and neurons in deep networks to in-
terpret data (Fig. 1) [8]. DL has made outstanding advance-
ments in consumer analytics, automated medical diagno-
sis, automated financial management, fraud detection, and
autonomous vehicles [63]. Multiple DL models, such as
GAN, recurrent neural networks (RNN), CNN, and mul-
tilayer perceptrons (MLP), are being widely used in phe-
nomics (Table 3). CNN outperforms all other models for
image analysis [64]. With the advancement in the model’s
algorithms, DL is progressing significantly. For the pur-
pose of training models, it helps in the careful estimation of
complex hyperparameters [65].

6. Applications of High-Throughput Systems
6.1 Improving Crop Productivity

Field HTP saves time and labor for plant breeders to
investigate the potential yield of different cultivars by sow-
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ing the field [66]. Cubist regression was used to measure
plant maturity, seed size, and yield at early stages in 2551
genotypes of soybean (Glycine max) [67]. Similarly, many
lines of wheat and barley were examined for desired traits
at very early stages [68,69]. In breeding programs, remote
sensors are highly useful for the identification of desired
traits as well as biotic and abiotic stress (Fig. 4). Vari-
ous RGB pairings and thermal and multispectral data have
been analyzed to forecast crop yield by DL models [70,71].
These models are also used to estimate grain protein con-
tents [72], measure plant height [73], and manage irriga-
tions [74]. Van Klompenburg et al. [75] performed a re-
view of the ML model and predicted grain yield. LSTM
and CNNs are two examples of the architectures utilized in
DL (Table 3).

6.2 Reference Platform
Transportable Array for Remotely sensed Agriculture

and Phenotyping Reference Platform (TERRA-REF) has
been developed to predict sensor, environmental, genomic,
and phenotyping data to expedite the breeding process and
farm management [76]. TERRA-REF involves ground-
based robotic systems, UAV, satellite remote sensing, and
phenotyping trailers to collect real-time data about agro-
nomic traits and image-based phenotyping. TERRA-REF
also provides a manuscript management section for re-
searchers to register ongoing studies to avoid overlap and
find potential collaborators (https://terraref.org).

6.3 Development of Abiotic Stress Tolerance
To get a high yield, it is quite important to select crops

adaptable to abiotic stresses such as climate change [77].
An updated dataset provides accurate information to miti-
gate the drastic impact of abiotic stressors on the growth and
development of plants. For example, the Eschikon dataset
deals in spatial pictures of beet under deficiency of nitro-
gen, weed stress, and numerous independent and combined
drought conditions [78]. Eschikon dataset was employed
to create a 3D model of the plants that accurately depicted
their height, vegetation indices, canopy cover, agronomic
attributes, biotic stress, abiotic stress (Fig. 5), and devel-
opment of precise tools for computer-based stress identifi-
cation [79]. Infrared thermography is being applied in the
detection of crop water use efficiency [80] and enzyme ef-
ficiency under salinity and drought stress [81–83]. Infrared
thermography revealed that cotton yield, micronaire, and
fiber length were decreased at higher canopy temperatures
[84]. Stomata conductance is influenced by evapotranspira-
tion and canopy temperature; maps of these stressors were
created and utilized to identify phenotypes [85]. Satellites
provide thermal data of water resources by mapping ET
[86].

6.4 Detection and Management of Pathogens and Pests
Pests and pathogens also migrate to different habitats

with the change in environmental conditions [87]. Updated
data about plant phenotype, host-pathogen interaction, and
ecological conditions can be analyzed to provide recom-
mendations for the management and selection of suitable
crops [87]. Numerous datasets, including The Plant Vil-
lage, RoCoLe, and BRACOL, are available to automati-
cally identify pests and pathogens in cassava, apple, and
citrus [30,88,89]. To improve the efficiency of identifica-
tion of pathogens, ML models supported vector machines,
self-attention CNNs, and CNNs-trained have been designed
[90,91].

For early disease detection, a variety of models have
been developed, including combined HTP images from
greenhouses [92], field experiments for quantifying root
rot resilience in lentils, and UAV-collected images (Fig. 5)
[93,94]. In breeding programs, 12 normalized spectral in-
dices have been developed to correlate the severity and
symptoms of diseases. ML and hyperspectral data revealed
early (3rd day of infection) detection of charcoal disease in
soybean with 90% accuracy [95]. Compared to the broad-
cast method, image-based intelligent weed detection sys-
tems have reduced 60% use of herbicides [96]. Numerous
ML and computer vision algorithms-based datasets com-
prised ofmultispectral andRGB images (Table 3) have been
published to precisely identify different weeds [97]. Further
improvement in datasets is required to develop robust tools
that can devise the exact quantity of herbicides.

6.5 Root Phenotyping
Root system architecture (RSA) plays a key role in nu-

trient andwater uptake, stress tolerance, and high yield [98].
In crop breeding, the development of intelligent strategies
for root phenotyping is of prime importance. To replace
soil in order to get rid of pathogens and insects, hydroponic
mediums and transparent gels have been developed, which
are similar to soil-grown plants [21,99–101]. For root phe-
notyping, strong sensors, hyperspectral imaging, magnetic
resonance imaging, and CT scans were used to collect 2D
and 3D images of plants grown in glasshouses [102–106].

6.6 Quantitative Plant Morphology
The yield potential of a plant is influenced by its

morphological characteristics, including its canopy cover,
seeds, number of leaves, and number of blooms [107]. For
measurement of stem segmentation, leaf area estimates, leaf
counting, seed counting, and development stage identifica-
tion, accurate tools based on MLmodels and NNs (Table 3)
have been established [108,109]. DL is being employed to
analyze captured photos for various qualitative and quan-
titative properties, including fruit color, shape, size, and
number (Fig. 4). For the development of dataset pipelines
to measure quantitative traits from captured pictures, vari-
ous phenotyping datasets have been released (Fig. 5), i.e., a
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dataset of hypocotyl of A. thaliana seedlings [110]. Image
time-series growth of A. thaliana was observed for the pre-
diction of presentation, and released dataset for class docu-
mentation [111].

7. Conclusions
Machine Learning is a powerful tool to assemble big

data in terabytes (TB) and is used in the development of
intelligent tools. Progress in HTP has made possible uti-
lization of ML-based tools to perform precision agriculture.
This review provides a precise overview of ML- and DL-
based tools such as SVM and ANN to perform phenotyp-
ing of biotic and abiotic stress. This study also underlined
several new avenues of application of ML techniques in
agriculture. ML-based tools have replaced manual imaging
with real-time automated high-throughput imaging systems
and from individual plants to entire populations in a field.
The application of ML-based intelligent tools has sped up
the breeding process via the early detection of desired traits
and increased yield via the detection of pests and insects at
an early stage. ML and DL have successfully integrated
seamless data analytics with data collection and curation
pipelines. ML has accelerated the breeding process by pro-
viding a common platform, namely TERRA-REF, to avoid
the repetition of research and connect with experts in the
field. ML and DL have resolved fundamental genomics is-
sues and enabled predictive phenomics. The application
of ML- and DL-based tools in precision agriculture is a
promising technique to feed a growing population.
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