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Abstract

Background: Autophagy is instrumental in various health conditions, including cancer, aging, and infections. Therefore, examining
proteins and compounds associated with autophagy is paramount to understanding cellular biology and the origins of diseases, paving
the way for potential therapeutic and disease prediction strategies. However, the complexity of autophagy, its intersection with other
cellular pathways, and the challenges in monitoring autophagic activity make the experimental identification of these elements arduous.
Methods: In this study, autophagy-related proteins and chemicals were catalogued on the basis of HumanAutophagy-dedicatedDatabase.
These entities were mapped to their respective PubChem identifications (IDs) for chemicals and Ensembl IDs for proteins, yielding 563
chemicals and 779 proteins. A network comprising protein–protein, protein–chemical, and chemical–chemical interactions was probed
employing the Random-Walk-with-Restart algorithm using the aforementioned proteins and chemicals as seed nodes to unearth additional
autophagy-associated proteins and chemicals. Screening tests were performed to exclude proteins and chemicals with minimal autophagy
associations. Results: A total of 88 inferred proteins and 50 inferred chemicals of high autophagy relevance were identified. Certain
entities, such as the chemical prostaglandin E2 (PGE2), which is recognized for modulating cell death-induced inflammatory responses
during pathogen invasion, and the protein G Protein Subunit Alpha I1 (GNAI1), implicated in ether lipid metabolism influencing a range
of cellular processes including autophagy, were associated with autophagy. Conclusions: The discovery of novel autophagy-associated
proteins and chemicals is of vital importance because it enhances the understanding of autophagy, provides potential therapeutic targets,
and fosters the development of innovative therapeutic strategies and interventions.

Keywords: autophagy; protein; chemical; network; random walk with restart

1. Introduction
Autophagy constitutes an essential biological process

wherein cells facilitate the degradation and recycling of
unnecessary or dysfunctional components via a lysosome-
dependent mechanism [1]. This process functions as an
adaptive response to stress, providing energy and molecu-
lar precursors while maintaining homeostasis and viability
to enhance cell survival. Dysregulation in autophagy is as-
sociated with numerous diseases, including neurodegener-
ation, metabolic disorders, and cancers [2]. An increasing
number of studies aim to identify and characterize molec-
ular modulators capable of regulating autophagy and inter-
vening in the pathogenesis of these diseases. However, the
intricate mechanisms underpinning the regulation and ex-
ecution of autophagy at the molecular level remain to be
fully elucidated.

To date, four defined types of autophagy have
been distinguished: macroautophagy, microautophagy,
chaperone-mediated autophagy (CMA), and crinophagy.
Macroautophagy, which is the most extensively researched
type, involves the targeting and isolation of cytoplasmic
components into a double membrane-bound vesicle known
as the autophagosome, which then fuses with the lysosome,
leading to the degradation and recycling of contents within
the autolysosome [3,4]. Contrastingly, microautophagy di-
rectly engulfs small cytoplasmic components into the lyso-
some via invagination of the lysosomal membrane or cellu-
lar protrusion [5]. CMA represents a highly complex and
specific pathway wherein targeted proteins must bind to
a chaperone protein, such as heat shock cognate 71 KDa
protein (hsc70), to form a chaperone complex [6]. Fi-
nally, crinophagy, which is the least understood form of
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autophagy, involves the degradation of unnecessary secre-
tory granules [7]. These distinct forms of autophagy oper-
ate via unique mechanisms and involve different genes and
enzymes, contributing to the complex and diverse cellular
functions of autophagy.

Since the discovery of the first autophagy gene
through genetic screens in Saccharomyces cerevisiae, nu-
merous genes and proteins associated with autophagy have
been identified [8,9]. As of now, over 36 proteins deemed
critical for autophagy have been classified, typically de-
noted as autophagy-related gene (ATG) [10]. For instance,
Atg8 significantly correlates with the size of the autophago-
some [11], whereas Atg9 is associated with the quantity of
autophagosomes [12]. Atg6 plays a role in autophagic pro-
grammed cell death, and it is linked to lymphoma, hepato-
cellular carcinoma, and other cancers [13]. Several stud-
ies aimed to identify the regulators of the autophagy path-
way. Bernard et al. [14] identified Lysine Demethylase
4A (KDM4A/Rph1) as a transcriptional repressor of au-
tophagy and used large-scale analysis of ATG expression to
identify numerous novel autophagy regulators [15]. How-
ever, many autophagy-related molecules remain undiscov-
ered due to limitations in experimental techniques.

Elucidating the molecular underpinnings of au-
tophagy is pivotal for comprehending the pathogenesis of
autophagy-related diseases. A growing body of research
focuses on the discovery of novel modulators that regulate
autophagy [16]. Several computational strategies have been
employed to identify potential autophagy genes, demon-
strating superior efficiency compared with experimental
methods. The sequence homology-based method, which
involves comparing sequences of known autophagy genes
with those of other genes, is widely utilized to pinpoint
potential autophagy-related genes based on sequence sim-
ilarity [17,18]. Other techniques, such as co-expression
analysis and Gene Ontology (GO) function-based analy-
sis, have proven effective in unearthing novel autophagy
genes [15,19,20]. In the present study, a novel com-
putational approach was introduced to effectively iden-
tify potential autophagy-related modulators on the basis
of molecular interactions. The information on existing
autophagy-related modulators was sourced from the Hu-
man Autophagy Modulator Database (HAMdb) [21]. By
utilizing known autophagy data, numerous novel chemicals
and proteins were identified through a series computational
methods, grounded in the network of proteins and chemi-
cals. This study offers a convenient methodology for iden-
tifying new autophagy modulators. The findings illuminate
the molecular mechanisms of autophagy and provide poten-
tial therapeutic targets for intervening in autophagy-related
diseases.

2. Materials and Methods
2.1 Autophagy-Associated Chemicals and Proteins

The original autophagy-associated chemicals and pro-
teins were sourced from HAMdb [21]. Serving as a com-

prehensive research tool, HAMdbwas designed to facilitate
the study of autophagy, a pivotal cellular process respon-
sible for the degradation and recycling of superfluous or
defective cellular organelles and proteins. HAMdb encom-
passes 796 proteins and 841 chemicals related to autophagy
through literature review. These chemicals and proteins
were assigned their respective PubChem and Ensembl iden-
tifications (IDs). In detail, 796 autophagy-related proteins
involved 86 cell lines and 899 diseases, and 841 related
chemicals involved 82 cell lines and 10 categories of dis-
eases. After those not present in the constructed network
were excluded, 563 related chemicals and 779 related pro-
teins were considered in this study, as enumerated in Sup-
plementary Table 1.

2.2 Network Construction
Chemical and protein organization necessitated inter-

action data, which were procured from Search Tool for Re-
curring Instances of Neighboring Genes (STRING, https:
//cn.string-db.org/, version 11.5) [22] and Search Tool for
Interactions of Chemicals (STITCH, http://stitch.embl.de/,
version 4.0) [23]. Specifically, STRING provided protein–
protein interaction (PPI) data, and STITCH was utilized for
chemical–chemical interaction (CCI) and chemical–protein
interaction (CPI) information.

The CCI data consists of two chemicals, represented
by their respective PubChem IDs, and a “Combined Score”
ranging from 1 to 999, which denotes the strength of the
linkage between these chemicals. Given the enormous
quantity of chemicals within the CCI data, the extrac-
tion was confined to interactions involving chemicals doc-
umented in Kyoto Encyclopedia of Genes and Genomes
(KEGG), resulting in 419,124CCIs involving 11,548 chem-
icals. Each PPI comprised two proteins, denoted by En-
sembl IDs, and one “Combined Score” within the same
range. Among the PPI data, 5,969,249 interactions in-
volved 19,385 proteins. As for the CPI data, each CPI
included one chemical (PubChem ID), one protein (En-
sembl ID), and a “Combined Score” also ranging between
1 and 999. The extraction was limited to the CPIs between
the aforementioned 11,548 chemicals and 19,385 proteins,
yielding a total of 333,440 CPIs.

One large heterogeneous network was constructed
with the CCIs, PPIs and CPIs. Such network defined the
above chemicals and proteins as nodes, whereas CCIs, PPIs
and CPIs determined the edges of this network. The fi-
nal network contained 30,933 (11,548 + 19,385) nodes and
6,721,813 (419,124 + 5,969,249 + 333,440) edges. Further-
more, each edge was assigned a weight, which was defined
as the “Combined score” of the corresponding interaction.
For convenience, such network was denoted by NH .

2.3 Random-Walk-with-Restart (RWR) Algorithm
RWR is a graph-based algorithm used to rank nodes

within a network [24–30]. It operates by initiating a ran-
dom walk on the graph, coupled with a “restart” probabil-
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Fig. 1. Flowchart of autophagy-associated chemicals and pro-
teins mining process. The comprehensive strategy for identi-
fying potential proteins and chemicals related to autophagy in-
volved multiple steps: (1) extraction of validated autophagy as-
sociated chemicals and proteins from Human Autophagy Modu-
lator Database (HAMdb); (2) construction of a heterogeneous net-
work incorporating protein–protein interactions (PPIs), chemical–
protein interactions (CPIs), and chemical–chemical interactions
(CCIs); (3) application of the random-walk-with-restart (RWR) al-
gorithm to this network for the extraction of high-probability can-
didate proteins and chemicals; (4) conducting screening tests to re-
fine these candidates, thereby finalizing the inferred proteins and
chemicals; and (5) analysis of the biological correlation among
the selected proteins, chemicals, and the disease, as confirmed by
literature. MIS, maximum interaction score; MES, maximum en-
richment score.

ity at each step that allows the walker to return to the initial
node. This “restart” probability serves as an indicator of
the initial node’s importance, and the algorithm uses it to
assign a score to every node in the network. In a given net-
work with k seed nodes, every seed node has a probability
value of 1/k. All other nodes have a probability value of

zero. This array of probabilities is aggregated into a vector
referred to asP0. This vector is iteratively updated through-
out the execution of the RWR algorithm as follows:

Pi+1 = (1− r)ATPi + rP0, (1)

where A represents the column-wise normalized adjacency
matrix, and r denotes the probability of reverting to the
initial node, a value set to 0.8 in this study. The execu-
tion of the RWR algorithm is halted when the inequality
∥Pi+1 − Pi∥ L1

< 10−6 is met, signifying the vector has
stabilized. A node with a high assigned probability could
indicate a significant correlation with autophagy, given its
potential strong connection with the relevant seed nodes.
The final output vector is denoted by Pi+1. A node bearing
a high assigned probability may suggest a substantial corre-
lation with autophagy, attributable to its potentially strong
association with the pertinent seed nodes.

2.4 Screening Tests
2.4.1 Permutation Test

The network’s architecture can significantly affect the
outcome when applying the RWR algorithm for identify-
ing critical nodes. A limited group of nodes may receive
high probabilities due to their unique positioning within
the network, regardless of their correlation with autophagy.
Therefore, a permutation test was conducted to determine
the statistical significance and verify the relevance of each
preliminary candidate chemical and protein. The results
generated 1000 sets of chemicals and proteins, each of
which contained the same quantity of chemicals and pro-
teins related to autophagy in the seed nodes for the RWR
algorithm. Consequently, a probability for each candidate
chemical and protein within each of the 1000 random sets
was computed. This methodology allowed a comparison
between the probabilities of the actual seed nodes and those
of the randomly generated sets, thus assisting in determin-
ing the statistical significance of each probability. The Z-
score was used as the metric for evaluating significance as
follows.

Z − score (g) =
P (g)− PM(g)

PSTD(g)
, (2)

where g denotes the candidate chemical or protein; P (g)

signifies its probability concerning actual seed nodes; and
PM(g) and PSTD(g) represent the mean and standard
deviation of probabilities within randomly generated sets,
respectively. A selection threshold of 1.96 was employed,
traditionally utilized in evaluating statistical significance, to
ascertain the validity of a raw candidate protein or chemical
discerned via the network-based methodology.

2.4.2 Interaction Tests for Chemicals
A double interaction test was conducted to obtainmost

important candidate chemicals. Such test adopted the CCI
and CPI information mentioned in Section 2.2. For a CCI
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containing two chemicals c1 and c2, its “Combined score”
was denoted by QCCI(c1, c2). For a CPI consisting of
chemical c and protein p, its “Combined score” was de-
noted by QCPI(c, p). Given a candidate chemical c, two
maximum interaction scores (MISs) were computed as fol-
lows.

MISCCI (c) = max {QCCI(c, c
′)|c

′
is an autophagy

related chemical}
(3)

MISc
CPI (c) = max {QCPI(c, p

′)|p
′
is an autophagy

related protein}
(4)

Evidently, a candidate chemical with highMISsmeant
it can be related to autophagy with a high probability. Con-
sidering that 900 is a crucial cutoff of highest confidence
for CCIs and CPIs, it was set as the threshold for two MISs,
i.e., chemicals with bothMISs no less than 900 were chosen
for further investigations.

2.4.3 Interaction Tests for Proteins
Similar to the interaction tests for chemicals, interac-

tion tests were designed for proteins. This test was based on
PPIs andCPIs, also named double interaction test. For a PPI
containing two proteins p1 and p2, its “Combined score”
was denoted by QPPI(p1, p2). Given a candidate protein
p, two MISs were computed as follows.

MISPPI (c) = max {QPPI(p, p
′)|p

′
is an autophagy

related protein}
(5)

MISp
CPI (c) = max {QCPI(c

′, p)|c
′
is an autophagy

related chemical}
(6)

With the same argument, 900 was set as the threshold of the
above two MISs to access most important proteins.

2.4.4 Enrichment Test
The final test aimed to filter candidate genes in ac-

cordance with their functional term alignments with genes
already confirmed to associate with autophagy. If a candi-
date gene’s functional terms closely mirror those of a val-
idated autophagy-related gene, this considerably increases
the probability that the candidate gene also has a connection
to autophagy [31–33]. The enrichment score (ES) was cal-
culated using the following formula to assess the relation-
ship between a gene and a GO term or a KEGG pathway:

ES(g, F ) = − log10

∑n

k=m

(
M

k

)(
N −M

n− k

)
(

N

n

)
 ,

(7)

where F represents the specific GO term or KEGG path-
way, N denotes the total number of human genes,M sym-
bolizes the count of genes annotated by F , n indicates the
quantity of g’s interacting genes as cited in STRING, and
m represents the count of shared genes that both interact
with g and are annotated by F . For each gene g, a vector
V (g) that includes enrichment scores for all GO terms and
KEGG pathways was constructed. With these vectors, the
relationships between two genes, g and g′ , can be assessed
as demonstrated below.

Φ
(
g, g

′
)
=

V (g) · V (g
′
)

∥V (g)∥ · ∥V (g′)∥
(8)

For each candidate gene g, the maximum enrichment
score (MES) can be calculated as follows.

MES (g) = Max{Φ
(
g, g

′
)
:

g
′
is a validated autophagy associated gene}

(9)

A threshold of 0.98 was established for the MES to
isolate significant candidate genes, suggestive of a potential
association with autophagy.

2.5 Statistical Analysis
In this study, a random walk-based method was de-

signed to identify autophagy-associated proteins and chem-
icals. The RWR algorithm was in charge of identifying
latent proteins or chemicals from the heterogeneous net-
work on the basis of currently known autophagy-associated
proteins and chemicals. The latent proteins and chemicals
were filtered by three screening tests, including permuta-
tion, interaction, and enrichment tests. The false positive
proteins and chemicals can be controlled by permutation
test, whereas the other screening tests can help select most
essential proteins and chemicals that have strong associa-
tions with validated ones. Through the above statistical
analysis, the remained proteins and chemicals were deemed
to have strong associations with autophagy.

3. Results
This study introduces a method that employs a random

walk-based strategy to detect potential novel proteins and
chemicals related to autophagy. Fig. 1 provides a graphical
depiction of the entire procedure.

3.1 Results of Random Walk-Based Method
The developed network underwent analysis via the

RWR algorithm, using autophagy-related proteins and
chemicals as seed nodes. Each node within the network
received a probability value reflecting its correlation with
the seed nodes. Supplementary Tables 2,3 present the re-
sults from the RWR search conducted on the network, built
around seed proteins and chemicals, in conjunction with the
outcomes from the screening tests.
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Fig. 2. Box plot demonstrating the number of interactions between autophagy-associated proteins and chemicals with inferred
proteins and chemicals. A significant number of inferred proteins and chemicals exhibited interactions with autophagy-associated
entities, i.e., approximately 12 proteins and five chemicals, respectively, with all interactions supported by confidence scores exceeding
900. These results highlight a strong association between the identified proteins/chemicals and autophagy.

The results for proteins within the developed network,
derived using autophagy-related proteins and chemicals,
are presented below. The permutation test computed a Z-
score for each protein in the network, as shown in Sup-
plementary Table 2. First, proteins exhibiting a Z-score
exceeding 1.96 were deemed significant, leading to the de-
tection of 2253 proteins. Subsequently, an interaction test
was performed on these proteins, attributing the MIS of PPI
and the MIS of CPI to each protein, as documented in Sup-
plementary Table 2. From these proteins, 668 displayed a
MIS for PPI and CPI surpassing 900 and were thus chosen.
Lastly, enrichment test was applied to examine the proteins
acquired post-filtration. TheMES of each protein was com-
puted, setting a threshold at 0.98. Any protein whose MES
fell beneath this threshold was removed from the protein
list, retaining 88 proteins, which are presented in Supple-
mentary Table 2.

The results for chemicals within the curated network,
based on autophagy-associated proteins and chemicals, are
presented below. A permutation test was conducted for
each chemical in the network, generating a Z-score com-
piled in Supplementary Table 3. Initially, chemicals
demonstrating a Z-score exceeding 1.96 were deemed note-
worthy, leading to the identification of 425 chemicals. Af-
terwards, an interaction test was performed on these chemi-
cals, attributing the MIS of CCI and the MIS of CPI to each
chemical, as outlined in Supplementary Table 3. Of these
chemicals, 50 showcased an MIS for CCI and CPI surpass-
ing 900 and were thus selected.

In the subsequent analyses, the 88 identified proteins
and 50 identified chemicals were referred to as inferred pro-
teins and inferred chemicals, respectively, hypothesizing
their significant association with autophagy.

3.2 Associations between Inferred Proteins/Chemicals and
Validated Proteins/Chemicals

Multiple analyses were conducted to assess the credi-
bility of the inferred proteins and chemicals. The quantity
of interacting proteins and chemicals linked to autophagy
was determined for each inferred protein and chemical, ad-
hering to aminimum confidence score of 900. These results
were visualized as box plots, with both distributions illus-
trated in Fig. 2. Detailed information about interacting pro-
teins and chemicals, along with their respective quantities,
is provided in Supplementary Table 4.

Several inferred proteins demonstrated interactions
with more than 10 proteins associated with autophagy, all
of which had confidence scores exceeding 900. On aver-
age, each inferred protein interacted with approximately 12
proteins related to autophagy, with each interaction bearing
high confidence scores. Similarly, many inferred chemi-
cals revealed interactions with over five chemicals associ-
ated with autophagy, all with confidence scores surpassing
900. On average, each inferred chemical interacted with
around five chemicals linked to autophagy, with each inter-
action substantiated by high confidence scores. These re-
sults imply a robust association between the identified pro-
teins/chemicals and autophagy.

4. Discussion
Dysregulation of autophagy is implicated in a myr-

iad of human diseases, including immune disorders, neu-
rodegeneration, and cancer. The exploration of novel
molecules that can modulate autophagy continues to be
a significant focus for developing disease interventions.
The induction and regulation of autophagy involve vari-
ous cellular signaling pathways. For example, MTOR ki-
nase complex 1 (MTORC1) senses extra- or intracellular
stresses, including nutrient starvation condition in mam-
malian cells, and dissociates from the complex and ATG13
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Fig. 3. Network diagram of 88 inferred proteins and 50 inferred chemicals. The size of each node in the network corresponds to
its degree, with a larger node size indicating a higher degree. The color intensity of edges linking nodes in the diagram amplifies as the
combined score between the nodes increases. Several significant nodes demonstrate a higher level of connectivity and a combined score
than others.

and ULK1/2, leading to the dephosphorylated of ATG13
and formation of the ATG1-ATG13-ATG17 complex and
ultimately induces the macroautophagy [34]. Autophagy
activity is regulated by cAMP-dependent protein kinase A
(PKA) and TOR pathways involving major kinases, includ-
ing AMPK; MTORC1; and proteins TSC1/2, LC3, and
CAMKK2/CaMKKβ [35–37]. In this study, by leveraging
the database of existing autophagy-related modulators pro-
vided in HAMdb, a series of computational methods was
applied to identify new autophagy modulators, premised
on molecule interaction networks. A more efficient ana-
lytical strategy than traditional experiments, which can be

expensive and time-consuming, was applied to identify au-
tophagy modulators. A total of 50 chemicals and 88 pro-
teins were identified as potential autophagy modulators.
Fig. 3 illustrates the network diagram of these 88 inferred
proteins and 50 inferred chemicals. The associations be-
tween these identified candidates and autophagy mecha-
nisms were partially validated through literature review, in-
dicating the reliability of the analysis. The functional roles
of some representative chemicals and proteins unearthed in
this study are discussed below.
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4.1 Analysis of Candidate Chemicals Related to Autophagy
Prostaglandin E2 (PGE2), also known as dinopros-

tone, emerged as a potential autophagy modulator through
the computational analysis. In this study, PGE2 achieved a
significant Z-score of 3.31 and an MIS of 999, interacting
with nine validated chemicals. PGE2 is an FDA-approved
medication primarily used for labor induction or uterine
content evacuation [38]. A growing body of evidence un-
derscores the crucial role of PGE2 in modulating cell death-
induced inflammatory responses during pathogenic infec-
tion [39,40]. A recent study elucidated a unique autophagic
cell death mechanism triggered by the activation of PGE2
production, corroborating the functional role of PGE2 in
autophagy [41]. The relationship between PGE2 and au-
tophagy in hepatocellular carcinoma has been substanti-
ated through in-vitro experiments. Gao et al. [42] discov-
ered that the PDK1 inhibitor, implicated in PGE2-induced
pathways, demonstrated autophagy-inducing activity along
with reactive oxygen species (ROS) accumulation. More-
over, PGE2 has been found to foster the autophagy of
monocytes and neutrophils during Mycobacterium tuber-
culosis infection, leading to immunosuppressive effects in
inflammatory immune responses [43]. These findings in-
dicate the potential role of PGE2 as an autophagy-related
modulator and validated the credibility of the results.

Pioglitazone was identified as a potential autophagy-
related modulator, achieving a significant Z-score of 7.71
and an MIS of 997, and it interacted with a validated chem-
ical entity. This compound is employed as an antidiabetic
drug that aids in the regulation of blood glucose levels in pa-
tients with type 2 diabetes. Emerging evidence underscores
the considerable effect of pioglitazone on autophagy. The
administration of pioglitazone has been shown to exert a
protective effect against renal cell hypoxia/reoxygenation
by inducing autophagy via the AMPK-mTOR signaling
pathway [44]. Pioglitazone has also been found to attenu-
ate hepatic steatosis by augmenting autophagy and cytoso-
lic lipolysis in hepatic cells [45]. Conversely, Lin et al. [46]
illustrated that pioglitazone can intervene in the autophagy
process triggered by a high fructose diet, thus normalizing
autonomic abnormalities. These observations suggest that
pioglitazone may exhibit a dual function: it can either pro-
mote or inhibit autophagy depending on physiological con-
ditions. Nevertheless, these findings offer substantial evi-
dence to endorse the role of pioglitazone as an autophagy-
related modulator.

Cholesterol was found to play a role in autophagy-
related activities. It achieved a significant Z-score of 2.0
and anMIS of 996, and it was found to interact with five val-
idated chemical entities. Cholesterol, which is ubiquitously
present in all human cells, performs fundamental functions
in biological processes. Cellular cholesterol depletion leads
to the macroautophagy of human fibroblasts, as evidenced
by an increase in LC3-II [47]. A study affirmed the connec-
tion between cholesterol homeostasis and autophagy, sug-
gesting that these vital biological processes share mutual

regulatory elements [48]. Autophagy is hypothesized to
play a protective role in regulating cholesterol levels and
sustaining normal lipid metabolism. Meanwhile, excessive
cholesterol may activate autophagy as a cellular defense
mechanism to mitigate organellar stress [49]. These obser-
vations underscore the importance of cholesterol in modu-
lating autophagy and validated the prediction of the present
study.

Serotonin, a monoamine neurotransmitter synthesized
by nerve cells, plays an instrumental role in regulating var-
ious bodily functions such as sleep, digestion, and heal-
ing. This study posited that serotonin could be a poten-
tial autophagy-related modulator. It showed a significant
Z-score of 2.5 and an MIS of 994, engaging in interactions
with 16 validated chemical entities. Serotonin neurons have
been reported to initiate autophagic activity in response to
the toxicity of 3,4-methylenedioxymethamphetamine [50].
Besides nerve cells, an association has been demonstrated
between peripheral serotonin and autophagy in liver cells
of a mouse model. Serotonin appears to regulate steato-
sis in liver cancer cells, and it may enhance liver tumori-
genesis through the induction of autophagy [51]. Soll et
al. [52] documented serotonin’s tumor-promoting effect in
hepatocellular cancer through autophagy regulation. The
activation of serotonin signaling has been shown to induce
autophagy in ER+ breast cancer cells [53]. These findings
align with the results of the present study, suggesting that
serotonin could serve as an autophagy-related modulator.

4.2 Analysis of Candidate Proteins Related to Autophagy

The protein G Protein Subunit Alpha I1 (GNAI1)
(ENSP00000343027) was identified as a strong indicator
of autophagy activity. With a significant Z-score of 2.35
and an MIS of 986, GNAI1 demonstrated interactions with
25 validated proteins. Predominantly expressed in immune
cells, GNAI1 acts as a downstream transducer in numerous
signaling cascades for G protein-coupled receptors. A re-
cent study discovered that the upregulation of GNAI1 and
RUNX Family Transcription Factor 2 (RUNX2) coincides
with autophagy activation, which may enhance T cell sur-
vival and promote T-cell leukemia/lymphoma [54]. In the
context of breast cancer, GNAI1 plays a significant role in
ether lipid metabolism and influences various cellular pro-
cesses, including proliferation and autophagy [55]. A num-
ber of studies implicated G protein-coupled signaling in au-
tophagy regulation. For instance, the rate of autophagic flux
was found to be correlated with G-protein inhibitory protein
in a colon cancer cell line [56]. Other signaling proteins,
such as Gαi3, AGS3, and RGS19, were found to participate
in the regulation of macroautophagy [57]. These pieces of
evidence align with the analysis of the present study, sug-
gesting that GNAI1 is a critical modulator in autophagy-
related regulation.

The serine/threonine-protein kinase pim-1 (PIM1,
ENSP00000362608), which is associated with cell prolif-
eration, exhibits oncogenic activity in tumorigenesis. It
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showed a significant Z-score of 8.58 and an MIS of 973
and demonstrated interactions with 11 validated proteins.
Accumulating evidence suggests that PIM1 influences cell
cycle progression by modulating autophagy. The over-
expression of PIM1 can circumvent cell apoptosis by en-
hancing autophagy via the activation of the AMPK/mTOR
pathway in cardiomyocytes in response to oxidative stress
[58]. Conversely, PIM1 inhibition disrupts autophagy-
related pathways, leading to the apoptosis of glioblastoma
cells [59]. Wu et al. [60] highlighted the connection be-
tween hispidulin-induced autophagy and PIM1 downreg-
ulation in podocytes of patients with nephropathy. These
findings reveal a novel role for PIM1 as an autophagy-
related modulator.

RIPK2 encodes a receptor-interacting protein kinase
(ENSP00000220751), instrumental in activating the NF-
κB pathway and modulating immune responses. It demon-
strated a notable Z-score of 17.3 and an MIS of 999 while
demonstrating interactions with 22 validated proteins. A
hypothesized pathogenesis of diabetic nephropathy sug-
gests that high glucose induces short-term autophagy medi-
ated by RIPK2 in glomerular mesangial cells, accompanied
by ROS-NLRP3 inflammasome signaling [61]. RIPK2’s
regulatory role in autophagy has been observed in intesti-
nal bowel disease and pancreatic cancer [61,62]. RIPK2
serves as a downstream modulator in NOD2-mediated au-
tophagy, and it is crucial for pathogen management and
antigen recognition in dendritic cells [63]. The molecu-
lar mechanism underlying RIPK2-mediated autophagy re-
veals that NOD2-RIPK2 signaling modulates the activation
of NLRP3 inflammasome and IL-18 via ULK1-dependent
mitophagy in the context of viral infections [64].

The protein kinase C (PKC) epsilon type
(ENSP00000306124), encoded by the PRKCE gene,
emerged as a potential autophagy-related modulator.
PRKCE achieved a significant Z-score of 6.3 and an MIS
of 964 and demonstrated interactions with 11 validated
proteins. PKC plays an integral role in regulating a
myriad of biological processes, notably participating in
cancer cell proliferation and apoptosis. Toton et al. [65]
recently observed PKC’s influence on the autophagy
of glioblastoma cells and found that a loss of PKC led
to a downregulation in the expression of autophagic
signals, thus presenting a potential therapeutic effect for
glioblastoma. Additional studies elucidated that the Fas
apoptotic inhibitory molecule regulates macroautophagy
through the modulation of the mTOR pathway and PKC-
mediated phosphorylation in lung adenocarcinoma [66].
In hypoxic conditions, PKC interacts with protein tyrosine
phosphatases-PTPN12 and triggers endothelial autophagy
via AMPK activation to foster angiogenesis [67]. PRKCE
is indeed an autophagy-related modulator.

5. Conclusions
In this study, the RWR algorithm was used to probe a

network comprising PPI, CPI, and CCI by using autophagy-

associated proteins and chemicals as seed nodes. The pro-
teins and chemicals underwent further scrutiny via screen-
ing tests, resulting in the identification of 50 chemicals and
88 proteins with a pronounced correlation to autophagy.
Several representative chemicals and proteins were sub-
stantiated through literature review, and compelling evi-
dence was unearthed to endorse the findings. These newly
discovered autophagy-related molecules provide a theoret-
ical foundation to advance autophagy research and con-
tribute to the discovery of new therapeutic targets for dis-
eases related to autophagy.
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