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Abstract

The conceptualization of polycystic ovary syndrome (PCOS) has primarily focused on hormonal alterations driven by changes within
the hypothalamus and ovarian granulosa cells, with treatment by the contraceptive pill and weight loss. However, a growing body of
data implicates wider systemic and central nervous system (CNS) changes in the pathoetiology and pathophysiology of PCOS, with
consequent implications for targeted treatments. It is proposed that there is a significant role for night-time interactions of factors acting
to regulate whether the rising level of cortisol over the night and during the morning cortisol awakening response (CAR) is able to induce
the nuclear translocation of the glucocorticoid receptor (GR), thereby influencing how the immune and glial systems regulate cellular
function in preparation for the coming day. Factors affording protection in PCOS also inhibit GR nuclear translocation including gut
microbiome-derived butyrate, and pineal/local melatonin as well as melatonin regulated bcl2-associated athanogene (BAG)-1. A signifi-
cant pathophysiological role in PCOS is attributed to the aryl hydrocarbon receptor (AhR), which shows heightened levels and activity in
PCOS. The AhR is activated by ligands of many systemic processes, including white adipocyte-derived kynurenine, implicating obesity
in the pathophysiological changes occurring in the hypothalamus and ovaries. AhR activation has consequences for the physiological
function in the hypothalamic paraventricular nucleus, granulosa cells and adipocytes, partly mediated by AhR upregulation of the mi-
tochondrial N-acetylserotonin/melatonin ratio, thereby decreasing melatonin availability whilst increasing local stress plasticity in the
paraventricular nucleus. This article reviews in detail the wider systemic and CNS changes in PCOS highlighting interactions of local
and pineal melatonergic pathway, gut microbiome-derived butyrate, white adipocyte-derived kynurenine, the hypothalamic paraventric-
ular nucleus tanycytes/astrocytes, and the hypothalamus-pituitary-adrenal (HPA) axis driven glucocorticoid receptor activation in PCOS
pathophysiology. This integrates a wide array of previously disparate data on the biological underpinnings of PCOS, including how
PCOS associates with many other currently classified medical conditions, such as depression, bipolar disorder, type 1 diabetes mellitus
and the autism spectrum. Numerous future research and treatment implications are detailed.
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1. Introduction

Polycystic ovary syndrome (PCOS) affects between
5%–15%ofwomen, approximately 80%ofwhom are obese
and 20% lean. PCOS symptomatology is currently defined
by hormonal imbalance, predominantly hyperandrogenism
leading to ovarian cysts, irregular menstrual periods, hir-
sutism, and reproductive difficulties driven by pathophys-
iological changes in the ovaries and hypothalamus [1].
Treatment is hormonal birth control medication and type
2 diabetes mellitus (T2DM) medications/lifestyle modifi-
cations. There is a growing resentment that such classi-
fication and treatment is reflective of implicit sexism in
medicine [2], which is proposed to restrict the investigation
of more fundamental, gender-neutral processes underlying
hormonal dysregulation, thereby limiting the discovery of
more gender-neutral treatment targets. The implication of
‘implicit sexism’ seems derived from the frustration aris-
ing from the complexity of processes underpinning PCOS
pathophysiology, which involves changes in, and interac-

tions among, the brain, stress system, adipocytes, circadian
system and ovary. This article provides one possible frame-
work for integrating such diverse data.

Numerous systemic processes show alterations in
PCOS, many of which may be intimately linked to alter-
ations in the circadian rhythm and how the circadian rhythm
regulates stress responses across adipocytes, the hypothala-
mus, gut and ovaries. Circadian rhythm dysregulation and
suppressed pineal and local melatonin levels are significant
aspects of PCOS pathophysiology [3,4], with melatonin (2
mg for 6 months) significantly decreasing PCOS symptoms
[5]. Heightened stress and hypothalamic-pituitary-adrenal
(HPA) axis activation are evident in PCOS [6], with effects
mediated by cortisol activation of the glucocorticoid recep-
tor (GR), leading to the GR being translocated to the nu-
cleus, where it can induce thousands of genes in almost
all body and CNS cells. Gut microbiome derived butyrate,
melatonin and melatonin regulated bcl-2 associated athano-
gene (BAG)-1 prevent GR nuclear translocation, whilst
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Fig. 1. Circadian variations in cortisol and melatonin. Shows the rising levels of cortisol at night and variations in pineal melatonin in
healthy young adults compared to young adults with medical conditions, such as type 2 diabetes and PCOS. As melatonin suppresses the
nuclear translocation of the activated glucocorticoid receptor, the suppression of pineal melatonin in PCOS and related conditions will
increase glucocorticoid receptor effects at night and during the accelerated rise of cortisol upon awakening (cortisol awakening response).
Heightened stress and glucocorticoid receptor activation and nuclear translocation increases local cortisol production via the induction
of 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1), leading to local cortisol production and a heightened ‘local stress’ response.
As a decrease in pineal melatonin and heightened stress are linked to increased gut dysbiosis, thereby decreasing butyrate and butyrate’s
inhibition of glucocorticoid receptor activation, suppressed butyrate production will also increase glucocorticoid receptor effects across
body cells (not shown for clarity).

BAG-1 can also chaperone the GR to mitochondria [7–9].
Melatonin maintains the GR in a cytoplasmic complex with
heat shock protein (hsp)90 [10], whilst gut microbiome-
derived butyrate also inhibits GR nuclear translocation via
the acetylation of the GR and hsp90, thereby implicating
the gut microbiome in stress-linked PCOS pathophysiol-
ogy [11,12]. The GR modulates key PCOS sites, namely
granulosa cell/oocyte interactions [13,14] and hypothala-
mic function [15], implicating variations in circadian mela-
tonin, gut butyrate, and BAG-1 in modulating GR-linked
PCOS pathophysiology. The changes in cortisol and mela-
tonin production over a typical circadian rhythm [9] are
shown in Fig. 1. The consequences of decreased pineal
melatonin in PCOS at night and early morning on glucocor-
ticoid receptor nuclear translocation and therefore on glu-
cocorticoid receptor effects can be clearly seen. Glucocorti-
coid receptor nuclear translocation will also be enhanced by
a decrease in gut microbiome butyrate (not shown in Fig. 1
for clarity).

Importantly, pineal melatonin is directly released into
the cerebrospinal fluid (CSF) of the third ventricle, where
it is maintained at a prolonged heightened level, versus
circulatory melatonin levels [16]. The third ventricle is

lined by tanycytes, which interact with hypothalamic as-
trocytes to regulate hypothalamic neuronal function and
fluxes, thereby allowing pineal melatonin to modulate hy-
pothalamic function [1]. Pineal melatonin is dramatically
decreased over aging [17], as well as in PCOS-associated
conditions [18], implicating suppressed pineal melatonin
in hypothalamic dysregulation in PCOS. Pineal melatonin
also has indirect effects on the hypothalamus and ovary
(oocytes, granulosa cells) via the gut microbiome [19], with
gut dysbiosis/permeability associated with PCOS, thereby
increasing circulating lipopolysaccharide (LPS) [20]. LPS
activates toll-like receptor (TLR)4 on pineal microglia,
thereby increasing tumor necrosis factor (TNF)-α to sup-
press pineal melatonin [21]. Gut dysbiosis/permeability is
therefore intimately linked to circadian processes regulat-
ing hypothalamic and ovarian function. This includesmela-
tonin’s upregulation of aromatase, and therefore the conver-
sion of testosterone to estrogen [22]. Such data highlights
how systemic and circadian interactions may be aspects of
‘core’ processes that underpin hormonal changes and form
a novel conceptualization of the biological underpinnings
of PCOS.
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Melatonin is produced in all mitochondria-containing
cells, allowing the tryptophan-melatonin pathway to be an
important determinant of cell function. Importantly, pineal
and local melatonin can be ‘backward’ converted to N-
acetylserotonin (NAS) by aryl hydrocarbon receptor (AhR)
activation. This has significant consequences, as NAS
and melatonin have differential consequences for cell sur-
vival, proliferation and stress-linked plasticity [9]. Notably,
raised AhR levels, activation and susceptibility alleles are
evident in PCOS, driving an increase in NAS linked glu-
cocorticoid receptor (GR)/stress plasticity in the hypotha-
lamus [23–25] and ovarian oocyte-granulosa cell interac-
tions [26,27]. The AhR may therefore be intimately linked
to the heightened local stress/GR activation, including from
locally induced 11β-hydroxysteroid dehydrogenase type 1
(11β-HSD1) in the hypothalamus and ovary (see Fig. 1). As
many of the beneficial effects of gut microbiome derived
butyrate are mediated via melatonin upregulation [9], the
AhR induced increase in the NAS/melatonin ratio will also
change the consequences of butyrate effects. Altered regu-
lation of the melatonergic pathway and gut butyrate are also
intimately linked to wider PCOS symptomatology, includ-
ing obesity and type 2 diabetes, which are associated with a
decrease in brown adipocytes (BATs) and increase in white
adipocytes (WATs) [28]. Such data highlights some of the
systemic and circadian changes that underpin the complex-
ity of PCOS pathophysiology, which are integrated in this
article to provide a novel conceptualization of PCOS.

This article reviews wide bodies of data on PCOS,
proposing that PCOS is significantly determined by the
effects of the NAS/melatonin ratio, BAG-1, butyrate and
white adipocyte (WAT)-derived kynurenine in the activa-
tion of the AhR, which shape whether the cortisol rise at
night and during the course of the morning cortisol awak-
ening response (CAR) results in GR nuclear translocation
across body and CNS cells. This leads to the proposition
that the wider changes in PCOS are not comorbidities of
a hormonal conceptualization of PCOS, but rather under-
pin the hormonal changes in PCOS. As the tryptophan-
melatonin pathway is an important aspect of physiological
changes in PCOS, it is briefly reviewed first.

2. Tryptophan-Melatonin Pathway
The tryptophan-melatonin pathway seems evident in

all human cells [9]. Mitochondria are the major sites
of melatonin production, with relevance to a wide array
of diverse medical conditions [16,29,30]. Tryptophan is
an essential amino acid that is primarily diet-derived but
may also be provided by the gut microbiome’s shikimate
pathway, which is significantly regulated by Akkerman-
sia muciniphila [31]. Tryptophan availability can also
be limited by pro-inflammatory cytokine and glucocorti-
coid receptor (GR) induced indoleamine 2,3-dioxygenase
(IDO) and tryptophan 2,3-dioxygenase (TDO), respec-
tively, which convert tryptophan to kynurenine, thereby in-

creasing kynurenine activation of the aryl hydrocarbon re-
ceptor (AhR), as well as neuroregulatory kynurenine path-
way products, such as the excitotoxic quinolinic acid and
excitatory picolinic acid [32]. AhR induced cytochrome
P450 (CYP)1A2 and CYP1B1 O-demethylate melatonin
to N-acetylserotonin (NAS) [33,34]. As NAS is a brain-
derived neurotrophic factor (BDNF) mimic via the activa-
tion of the BDNF receptor, tyrosine receptor kinase (Trk)B
[35], NAS has distinct effects to melatonin, giving physi-
ological relevance to variations in the NAS/melatonin ra-
tio. Within the hypothalamus, the AhR induced increase
in the NAS/melatonin ratio contributes to the hypothala-
mic TrkB activation that drives stress-linked hypothala-
mic plasticity [36,37]. TrkB activation in the paraventric-
ular nucleus (PVN) enhances corticotrophin-releasing hor-
mone (CRH) release and therefore increases hypothalamic-
pituitary-adrenal (HPA) axis activation via cortisol effects
at the glucocorticoid receptor (GR) [38]. As well as ini-
tiating the HPA axis, CRH also has independent effects
that are relevant to PCOS pathophysiology, including in-
creasing gut permeability [39]. By decreasing melatonin
availability and increasing NAS, the AhR can have dra-
matic consequences for hypothalamic function and fluxes
as well as glucocorticoid receptor (GR) nuclear transloca-
tion and transcriptional effects. The suppression of mela-
tonin and gut microbiome derived butyrate increases GR
nuclear translocation, thereby enhancing stress linked HPA
axis activation, and GR effects at night and in the course
of the morning cortisol awakening response (CAR). This
has significant systemic consequences driven by variations
in how GR activation drives changes in the transcription of
thousands of genes across all body and CNS cells.

The tryptophan-melatonin pathway is initiated by the
large amino acid transporters, which take up circulat-
ing tryptophan. Cellular tryptophan is rapidly converted
to 5-hydroxytryptophan (5-HTP) by tryptophan hydroxy-
lase (TPH), with 5-HTP quickly converted by aromatic-
L-amino acid decarboxylase (AADC) to serotonin (5-HT).
TPH1 (body) and TPH2 (brain) require stabilization by 14-
3-3 [40]. Platelets and serotonergic neurons are also sources
of serotonin for the mitochondrial melatonergic pathway.
Serotonin is converted to N-acetylserotonin (NAS) by 14-3-
3 stabilized aralkylamine N-acetyltransferase (AANAT), in
the presence of acetyl-coenzyme A (acetyl-CoA) as a nec-
essary cosubstrate. As acetyl-CoA availability is strongly
dependent on the mitochondrial pyruvate dehydrogenase
complex (PDC) conversion of pyruvate to acetyl-CoA, the
melatonergic pathway is intimately linked to mitochondrial
function and metabolism. NAS is converted to melatonin
by acetylserotonin methyltransferase (ASMT). See Fig. 2.

As evident in Fig. 2, the tryptophan-melatonin path-
way can be regulated by the numerous cellular processes
and factors that modulate tryptophan availability, tryp-
tophan uptake, 14-3-3 isoforms, tryptophan hydroxylase
(TPH), AADC, ASMT, and acetyl-coenzyme A (acetyl-
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Fig. 2. Tryptophan-melatonin pathway regulation. Shows how the tryptophan-melatonin pathway (green shade) interacts with the
aryl hydrocarbon receptor (AhR)-driven O-demethylation of melatonin to NAS (blue shade) to determine the NAS/melatonin ratio and
the differential consequences of NAS and melatonin in the hypothalamus and on oocyte-granulosa cell functional interactions. The
AhR and melatonin generally have reciprocal negative interactions. Tryptophan is primarily derived from the diet, but also from the
gut microbiome shikimate pathway, being another route whereby variations in the gut microbiome can regulate systemic processes and
mitochondrial function. Circulating tryptophan is taken up by the large amino acid transporter (LAT)-1. 14-3-3, including the 14-3-3ε
isoform, is required to stabilize tryptophan hydroxylase (TPH)1- and TPH2-, thereby allowing the conversion of tryptophan to 5-HTP.
AADC converts 5-HTP to serotonin (5-HT), which is metabolized by 14-3-3ζ stabilized AANAT, in the presence of acetyl-CoA, to
N-acetylserotonin (NAS). ASMT then converts NAS to melatonin. Acetyl-CoA levels are significantly linked to optimized mitochon-
drial function via pyruvate dehydrogenase complex (PDC) disinhibition, including from pineal melatonin and gut microbiome-derived
butyrate that increase sirtuin-3, which deacetylates and disinhibits the PDC. Disinhibited PDC enhances the conversion of pyruvate to
acetyl-CoA. The AhR, via CYP1B1 and CYP1A2, ‘backward’ converts melatonin to NAS via O-demethylation. The AhR induction of
CYP1B1/CYP1A2/CYP1A1 can also hydroxylate melatonin to 6-hydroxymelatonin, further suppressing melatonin levels and enhancing
the NAS/melatonin ratio. NAS andmelatonin have some common effects but also important differential effects. NAS activates the BDNF
receptor, TrkB, as well as inducing BDNF, thereby enhancing TrkB activation. The consequences of TrkB activation are variable depend-
ing whether full-length (TrkB-FL) and/or truncated (TrkB-T1) isoforms are present, as well as whether TrkB-FL and TrkB-T1 are present
on the mitochondrial and/or plasma membranes. Melatonin is generally beneficial in PCOS, with benefits in both the hypothalamus and
ovary, including via the suppression on glucocorticoid receptor (GR) effects, whilst TrkB activation in the hypothalamus can drive
stress-linked plasticity, including enhancing corticotrophin-releasing hormone (CRH) to potentiate the hypothalamic-pituitary-adrenal
(HPA) axis and cortisol activation of the glucocorticoid receptor (GR). GR-induced TDO suppresses tryptophan availability, whilst
GR-TDO-derived kynurenine activates the AhR (yellow shading). The association of raised AhR levels and alleles with PCOS may be
mediated via such AhR effects on the tryptophan-melatonin pathway that suppresses melatonin and increases NAS linked stress plasticity.
Abbreviations: 5-HT, serotonin; 5-HTTP, 5-hydroxytryptophan; AADC, aromatic-L-amino acid decarboxylase; AANAT, acetyl-CoA,
acetyl-coenzyme A; aralkylamine N-acetyltransferase; AhR, aryl hydrocarbon receptor; ASMT, N-acetylserotonin O-methyltransferase;
BAG-1, bcl2-associated athanogene 1; BDNF, brain-derived neurotrophic factor; CRH, corticotrophin releasing hormone; GR, glucocor-
ticoid receptor; HPA, hypothalamus-pituitary-adrenal; LAT-1, large amino acid transporter 1; NAS, N-acetylserotonin; PCOS, polycystic
ovary syndrome; TrkB-FL, tyrosine receptor kinase B-full length; TrkB-T1, tyrosine receptor kinase B-truncated.
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CoA). Pineal melatonin and gut butyrate induce sirtuin-3,
which deacetylates and disinhibits the pyruvate dehydroge-
nase complex (PDC) [41,42], thereby increasing the con-
version of pyruvate to acetyl-CoA. This provides acetyl-
CoA for the mitochondrial melatonergic pathway as well
as for enhanced ATP production by the tricarboxylic acid
(TCA) cycle and oxidative phosphorylation (OXPHOS).
This optimization of mitochondrial energy production is
accompanied by suppressed mitochondrial oxidant pro-
duction, and therefore reactive oxygen species (ROS)-
driven microRNAs [43]. The regulation of mitochondrial
metabolism and the mitochondrial melatonergic pathway
induction are therefore intimately linked to patterned gene
expression and cellular fluxes. Consequently, the mito-
chondrial melatonergic pathway in a given cell is intimately
intertwined with cellular mitochondrial function and inter-
cellular fluxes, as well as with wider systemic and circadian
processes.

Importantly, N-acetylserotonin (NAS) effects as a
BDNF mimic are complicated by the presence of TrkB-full
length (TrkB-FL) and TrkB-truncated (mostly TrkB-T1) re-
ceptors, with both TrkB-FL and TrkB-T1 being present
in some cells on the plasma membrane and/or mitochon-
drial membrane [32]. NAS may also be metabolized to
N-(2-(5-hydroxy-1H-indol-3-yl) ethyl)-2-oxopiperidine-3-
carboxamide (HIOC) [44], which may not activate TrkB,
allowing the metabolism of NAS to HIOC to have signifi-
cant consequences for proliferative conditions [45,46], in-
cluding PCOS linked stress via TrkB activation-driven hy-
pothalamic stress plasticity. The conversion of melatonin
to NAS will also attenuate melatonin’s induction of other
genes, including the immune-regulatory effect of the alpha
7 nicotinic acetylcholine receptor [47]. The aryl hydrocar-
bon receptor (AhR)-driven O-demethylation of melatonin
to NAS, metabolism of NAS to HIOC and the TrkB iso-
forms sites of expression allows the tryptophan-melatonin
pathway to have considerable plasticity in the regulation
of intracellular and intercellular function [32,33]. Overall,
changes in pineal melatonin, gut butyrate, and AhR activa-
tion significantly regulate the tryptophan-melatonin path-
way, in association with changes in stress-linked HPA axis
activation and glucocorticoid receptor (GR) nuclear translo-
cation.

Melatonin is also intimately linked to glucocorticoid
receptor (GR) regulation, and therefore the consequences
of morning cortisol awakening response (CAR) and HPA
axis activation, which are reviewed next.

3. HPA Axis and Cortisol Awakening
Response

The hypothalamic-pituitary-adrenal (HPA) axis is
widely investigated as a consequence of glucocorticoid re-
ceptor (GR) activation during stress. Stress and GR acti-
vation are also important aspects of PCOS pathophysiol-
ogy [48]. The HPA axis is initiated by the hypothalamic

paraventricular nucleus (PVN) release of corticotrophin-
releasing hormone (CRH), which induces pituitary adreno-
corticotropic hormone (ACTH) release that activates the
Gs-coupledmelanocortin-2 receptor on the zona fasciculata
cells of the adrenal cortex to drive cortisol release and GR
activation across body and brain cells. Cortisol levels grad-
ually increase over the course of sleep at night, culminating
in an accelerated rise at the point of awakening and for the
next 30 minutes, known as the morning cortisol awakening
response (CAR) [49]. CAR and the night-time cortisol rise
are considerably less investigated than stress induced HPA
axis activation. Although heightened cortisol activation of
the GR can have dramatic impacts on immune and glia cells
as well as most other body cells across diverse medical con-
ditions [50–53], the general purpose of the night-time cor-
tisol rise, and morning CAR requires clarification beyond
‘preparing the body for the coming day’ by upregulating
respiration and blood pressure.

Although occasionally expressed on the plasma mem-
brane, where it can drive intracellular signaling pathways
[54], the glucocorticoid receptor (GR) is primarily located
in a cytoplasmic complex with heat shock protein (hsp)90
and p23 [55]. Cortisol activation of the GR leads to GR
translocation to the nucleus where it activates genes ex-
pressing the glucocorticoid response element (GRE) in gene
promotors, thereby impacting patterned gene expression.
However, the GR can be regulated by a number of factors,
including melatonin, gut butyrate and BAG-1, and can me-
diate its effects via a number of processes [56], as indicated
in Fig. 3.

3.1 Glucocorticoid Receptor, Tryptophan 2,3-Dioxygenase
and the Aryl Hydrocarbon Receptor

Glucocorticoid receptor (GR) activation has ef-
fects that are intimately intertwined with the tryptophan-
melatonin pathway. The cortisol activated GR, via
GRE on the TDO promotor, induces tryptophan 2,3-
dioxygenase (TDO), thereby taking tryptophan away from
the tryptophan-melatonin pathway to produce kynurenine,
and kynurenine pathway products such as kynurenic acid
(KYNA) and quinolinic acid. As kynurenic acid and quino-
linic acid have opposing effects on the glutamatergic n-
methyl-d-aspartate receptor (NMDAr), the upregulation of
the kynurenine pathway following GR activation can have
dramatic and diverse effects on neuronal activity [57].
The glucocorticoid receptor (GR) induced tryptophan 2,3-
dioxygenase (TDO) can therefore upregulate kynurenine
and KYNA, both of which activate the AhR, thereby in-
creasing the N-acetylserotonin (NAS)/melatonin ratio as
well as regulating a wide array of diverse processes [32].
This is one route whereby heightened stress levels, via GR
activation of TDO (as well as pro-inflammatory cytokine
induction of IDO), can influence patterned neuronal activ-
ity across the brain. See Fig. 2.
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Fig. 3. The glucocorticoid receptor (GR) has diverse effects and is regulated by melatonin, butyrate and BAG-1. Shows the array
of consequences arising from GR activation, which can impact on both genomic and non-genomic processes. Melatonin suppresses GR
genomic and non-genomic effects, partly by maintaining the GR in a cytoplasmic complex with hsp90 as well as by the epigenetic, and
perhaps direct, BAG-1 upregulation. Butyrate prevents GR nuclear translocation by acetylating the GR and/or heat shock protein (hsp) 90
to keep the GR in a cytoplasmic complex with hsp90 and p23. Abbreviations: BAG-1, bcl2-associated athanogene 1; GR, glucocorticoid
receptor; GRE, glucocorticoid response element.

The aryl hydrocarbon receptor (AhR) is a major target
for a host of diverse ligands, both endogenous and environ-
mental. Endogenous ligands include the gut microbiome-
derived indole-3-acetate and its derivatives, whilst exoge-
nous ligands include air pollutants and cigarette smoke
derived 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). AhR
activation has diverse effects on different cells, as well as
differential effects in the same cell when the AhR is acti-
vated by different ligands [58]. The AhR is importantly
involved in the metabolism of many factors, including es-
trogen [59], via CYP1A2, CYP1B1 and CYP1A1 induc-
tion. AhR effects are further complicated by its expres-
sion on the mitochondrial membrane where it acts to reg-
ulate mitochondrial function [60], including via interac-
tion with translocator protein 18 (TSPO) [61]. The GR-
tryptophan 2,3-dioxygenase (TDO)-kynurenine/kynurenic
acid (KYNA)/AhR pathway therefore has a number of di-
verse consequences [51]. As AhR upregulation and ac-
tivation, as well as AhR alleles, are susceptibility factors
for PCOS [23–25], heightened AhR activation may be in-
timately linked to PCOS alterations in mitochondrial func-

tion, including via the AhR increasing the NAS/melatonin
ratio to enhance stress-related signaling and plasticity in
the hypothalamus of PCOS patients. Interestingly, the
suppression of tryptophan availability is strongly associ-
ated with AhR upregulation and heightened AhR activa-
tion by kynurenine [62], highlighting how the attenuation
of the tryptophan-melatonin pathway from a decrease in
the tryptophan/kynurenine ratio may be intimately coordi-
nated with heightened AhR levels and activity, as evident in
PCOS [23–25]. GR-TDO-kynurenine/KYNA-AhR path-
way driven increase in NAS will have diverse effects that
are dependent upon the expression of TrkB-FL, vs TrkB-
T1, as well as by the presence of these TrkB isoforms on
the plasma, vs mitochondrial, membrane [63]. The speci-
ficity of such potential diverse effects in PCOS pathophys-
iology requires clarification in future investigations. Over-
all, stress-linked GR activation via the induction of trypto-
phan 2,3-dioxygenase (TDO) not only decreases tryptophan
availability for the tryptophan-melatonin pathway, but also
increases kynurenine to activate the AhR, thereby altering
patterned neuronal activity across the brain.
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Fig. 4. Melatonin can suppress the glucocorticoid receptor (GR) by a number of processes. Shows how factors suppressing pineal
and/or local melatonin (yellow shade) can contribute to heightened glucocorticoid receptor (GR) nuclear translocation, with melatonin
proposed to suppress GR nuclear translocation via a variety of mechanisms (green shade). Abbreviations: AhR, aryl hydrocarbon
receptor; BAG-1, bcl2-associated athanogene-1; CYP, cytochrome P450; DNMT1, DNA methyltransferase 1; FKBP, FK506 binding
protein; GR, glucocorticoid receptor; hsp, heat shock protein; IDO, indoleamine 2,3-dioxygenase; miR, microRNA; TDO, tryptophan
2,3-dioxygenase; WAT, white adipocyte.

3.2 Melatonin Interactions with the HPA Axis and Cortisol
Awakening Response

Melatonin suppresses glucocorticoid receptor (GR)
nuclear translocation and effects across diverse cell types
and pathophysiological processes [64–68], as well as the
hyperactivated HPA axis evident in PCOS linked condi-
tions, such as type 2 diabetes mellitus (T2DM) [69]. Mela-
tonin can therefore suppress GR effects at both cellular and
systemic levels, including at night and during the morning
CAR, leading to a differential priming in how night-time
cortisol and the morning CAR ‘prepare the body for the
coming day’. Melatonin has been proposed to suppress GR
nuclear translocation [8], by at least four processes, namely:
(1) by the maintenance of the GR-hsp90 cytoplasmic com-
plex [10]; (2) by enhancing DNA methyltransferase 1
(DNMT1)-mediated FK506 binding protein (FKBP)52 pro-
moter hypermethylation, which suppresses the GR co-
chaperone, FKBP prolyl isomerase 4 (FKBP4), thereby at-
tenuating GR nuclear translocation and mitophagy [70,71];
(3) by derepressing, and perhaps directly upregulating,
BAG-1 [72,73], including by melatonin’s suppression of
miR-138, which, like the AhR, is linked a host of aging-
linked medical conditions [74]; and (4) by melatonin’s re-
ceptor promiscuity [75], allowing melatonin to inhibit GR
nuclear translocation via direct GR and/or hsp90 binding.
See Fig. 4.

The suppressed pineal (and perhaps local) mela-
tonin levels in PCOS enhance glucocorticoid receptor
(GR) nuclear translocation thereby heightening stress-
linked changes in the hypothalamus, ovary andmore widely
in PCOS. The effects of heightened cortisol (corticosteroid)
activation of the GR are mediated via 11β-hydroxysteroid
dehydrogenase type 1 (11β-HSD1) upregulation, as indi-
cated in Fig. 1. 11β-HSD1 is increased in the granu-
losa cells by raised cortisol activation of the GR as well

as by pro-inflammatory cytokines, leading to dysregulated
granulosa cell modulation of oocyte development [76].
11β-HSD1 upregulation in PCOS is therefore a conse-
quence of the decrease in night-time melatonin and bu-
tyrate, which suppress both the GR and pro-inflammatory
cytokines [9]. As melatonin also upregulates aromatase
to increase the conversion of testosterone to estrogen in
granulosa cells [22], the suppression of pineal, and es-
pecially ovarian, melatonin contributes to the ‘gender-
neutral’ core processes underpinning the current concep-
tualization of PCOS as a hormonal disorder. In contrast
to melatonin, a glucocorticoid receptor (GR)/tryptophan
2,3-dioxygenase (TDO)/kynurenine/aryl hydrocarbon re-
ceptor (AhR)-driven increase in the N-acetylserotonin
(NAS)/melatonin ratio will allow NAS to activate hypotha-
lamic paraventricular nucleus (PVN) TrkB to potentiate
HPA axis activation and corticotrophin-releasing hormone
(CRH) production and effects, which suppress aromatase
[65], as well as modulating estrogen metabolism and driv-
ing anovulation via the suppression of the granulosa cell
luteinizing hormone receptor, as is common in stress con-
ditions [77], such as PCOS. Importantly, the suppression of
pineal melatonin in PCOS will enhance the levels of GR
nuclear translocation following the morning cortisol awak-
ening response (CAR), thereby differentially priming body
cells, including immune and glial cells, with effects partly
mediated via local 11β-HSD1 upregulation.

4. Melatonin, Glucocorticoid Receptor and
Wider PCOS Symptomatology

An aryl hydrocarbon receptor (AhR)-driven increase
in the N-acetylserotonin (NAS)/melatonin ratio, coupled
to a heightened hypothalamic-pituitary-adrenal (HPA) axis,
heightened night-time cortisol at the GR increasing11β-
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HSD1 and elevated morning CAR/11β-HSD1 driving glu-
cocorticoid receptor (GR) activation may therefore be core
aspects of PCOS pathophysiology, including in driving the
increased levels of anxiety, depression and gut dysbio-
sis/permeability that contribute to obesity and T2DM [31,
78,79]. As white adipocytes (WAT) are the major sources
of kynurenine in obesity and heightened pro-inflammatory
cytokines induce indoleamine 2,3-dioxygenase (IDO) and
kynurenine in depression [57], the emergence of depres-
sion and obesitywill contribute to themaintenance of PCOS
pathophysiology. As the hypothalamus regulates basic sur-
vival functions, such as eating, drinking, aggression, sex
drive and reproductive hormones, the heightened hypotha-
lamic stress response driven by enhanced glucocorticoid
receptor (GR) signaling and an increased aryl hydrocar-
bon receptor (AhR)-driven NAS/melatonin ratio will have
wider systemic consequences via alterations in hypothala-
mic function. The increased levels of circulating cortisol
in PCOS, as indicated by the 2-fold increase in hair corti-
sol [80], will have significant consequences for the array of
currently conceptualized ‘comorbidities’ in PCOS, such as
depression, anxiety and obesity.

Dysregulated hypothalamic and ovarian function may
therefore arise from a heightened ‘local stress’ response
driven by elevated GR activation as cortisol levels rise over
the course of sleep (see Fig. 1), with heightened night-time
GR activation increasing 11β-HSD1 levels [76]. This does
not necessitate a heightened morning CAR level, as the
suppression of night-time melatonin and butyrate will al-
low elevated GR activation in the absence of raised corti-
sol levels per se. However, raised GR activation will in-
duce 11β-HSD1, thereby increasing local stress responses
[76]. As noted, this does not necessarily indicate a height-
ened CAR level of activity but would indicate enhanced
and dysregulated GR nuclear translocation in the course of
daily morning CAR, thereby differentially preparing body
cells/microenvironment/systems, for the coming day [51].
It is important to note that all cells exist within microenvi-
ronments with other cells, allowing the differential regula-
tion of GR effects at night in the different cells of a given
microenvironment to alter the microenvironment homeo-
static interactions. This may be of some importance as
melatonin and butyrate can have dramatically distinct ef-
fects on cellular function, versus cortisol activation of the
GR, including distinct effects in the different cells of a given
microenvironment, thereby changing the homeostatic in-
teractions in a given microenvironment [51,70]. It is the
impact on microenvironment interaction from variations in
GR nuclear translocation and levels its GR nuclear translo-
cation inhibitors (melatonin, butyrate and BAG-1) that is
proposed to initiate the pathoetiology of diverse medical
conditions, such as cancer, neurodegenerative conditions
and autoimmune disorders [51,70]. This also has implica-
tions for PCOS and wider PCOS symptomatology, includ-
ing adipocyte alterations in PCOS.

4.1 Obesity: Brown and White Adipocytes

Melatonin increases brown adipocyte (BAT) function
and beiges white adipocytes (WAT) as well as generat-
ing beige adipocytes from mesenchymal stem cells [81,82]
via sirtuin-3/pyruvate dehydrogenase complex (PDC) opti-
mization of mitochondrial function [83]. Suppressed pineal
melatonin levels and effects will lower the BAT/WAT ratio
in PCOS, via direct effects in adipocytes, as well as indi-
rectly [84]. The indirect effects of melatonin on adipocyte
phenotypes involve the loss of melatonin’s induction of aro-
matase in granulosa cells, thereby increasing testosterone
[84]. The enhanced androgen levels in PCOS suppress BAT
levels and thermogenesis, at least partly via the reduction
of BAT mitochondrial respiration [84]. This provides a
pathway whereby decreased pineal and local melatonin in-
creases testosterone, leading to lower BAT levels and sup-
pressed thermogenesis, contributing to the alterations in
adipocyte regulation in PCOS.

The heightened WAT levels, GR induced TDO and
heightened pro-inflammatory cytokine induced IDO in
PCOS raise kynurenine levels to activate the aryl hydro-
carbon receptor (AhR). AhR activation is a major sup-
pressor of BAT function and contributes to obesity [85].
Clearly, the glucocorticoid receptor (GR)/tryptophan 2,3-
dioxygenase (TDO)/kynurenine/AhR pathway suppression
of the tryptophan-melatonin pathway couples heightened
AhR activation to suppressed BAT mitochondrial func-
tion, thereby allowing this pathway and associated sup-
pressed melatonin to attenuate BAT induction and func-
tion in PCOS. As the benefits of exercise and fat loss in
PCOS indicate [86], alterations in adipocyte phenotypes
and fluxes are intimately linked to wider PCOS pathophys-
iology. Although adipocytes may release many factors rel-
evant to brain, immune, ovary and circadian function, in-
cluding adiponectin, hormone-sensitive lipase, IL-6, leptin,
andmicroRNA containing exosomes [46,84–86], for clarity
the role of released kynurenine is highlighted in the current
article.

Prolonged glucocorticoid exposure induces metabolic
syndrome and increases white adipocytes (WAT), which
can be attenuated by a glucocorticoid receptor (GR) antago-
nist [87]. GR activation accelerates both BAT andWAT de-
velopment [88]. However, concurrently suppressed mela-
tonin and heightened aryl hydrocarbon receptor (AhR) ac-
tivation dramatically increases the WAT/BAT ratio, high-
lighting the importance of interactions of the circadian
melatonin and cortisol levels with wider systemic pro-
cesses. Preclinical data indicate that raised testosterone lev-
els and androgen receptor activation have cell specific ef-
fects in BATs that enhance GR effects [89]. However, the
expression of BAG-1 and the consequences of GR mito-
chondrial translocation in BAT and WAT have still to be
determined. Clearly, GR effects in BATs and WATs require
further investigation, including whether the GR induces
tryptophan 2,3-dioxygenase (TDO) in WATs and whether
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local melatonin production in adipocytes as well as BAG-
1 would prevent the deleterious effects of GR activation in
adipocytes.

Adipocytes, primarily WAT, are a major source of the
raised circulating kynurenine levels in obesity [90]. This
is proposed to be driven by heightened pro-inflammatory
cytokine-induced indoleamine 2,3-dioxygenase (IDO) and
an IDO/kynurenine/AhR/signal transducer and activator of
transcription (STAT)3/IL-6 signaling pathway [90]. Inter-
estingly, STAT3 suppresses pineal AANAT and the mela-
tonergic pathway via miR-7 upregulation and the suppres-
sion of 14-3-3z, which is necessary for AANAT stabiliza-
tion [91,92]. The extent to which the melatonergic pathway
is suppressed in WAT, in the course of increasing kynure-
nine production will be important to determine, including
as to the role of endogenous WAT melatonin in the course
of WAT beiging.

Notably, over 60% of brain kynurenine is derived
from the periphery [93], indicating that adipocyte-
derived kynurenine may be a significant contributor
to aryl hydrocarbon receptor (AhR)-driven changes
in the brain, including the hypothalamic paraven-
tricular nucleus (PVN), thereby allowing potentially
direct links to hypothalamic stress-linked plasticity via
kynurenine/KYNA/AhR/CYP1A1/1B1 increasing the
N-acetylserotonin (NAS) activation of TrkB (see Fig. 2).
Raised levels of circulating kynurenine and KYNA are
evident in PCOS, with kynurenine and KYNA levels
positively correlating with levels of anti-Mullerian hor-
mone (AMH), luteinizing hormone, and fasting insulin,
as well as Homeostatic model assessment for insulin
resistance (HOMA-IR) [94]. Granulosa cell derived
anti-Mullerian hormone (AMH) is frequently mooted as a
PCOS biomarker [1]. However, the above would suggest
that it may be downstream from decreased pineal and
local melatonin coupled to heightened AhR activation
by WAT derived kynurenine. WAT derived kynurenine
may therefore be a relevant contributor to wider PCOS
pathophysiology in granulosa cells as well as in the
hypothalamus.

As testosterone can increase indoleamine 2,3-
dioxygenase (IDO) [95], the suppression of melatonin’s
induction of aromatase in granulosa cells may therefore
allow raised testosterone to also enhanceWAT indoleamine
2,3-dioxygenase (IDO)-derived kynurenine to activate
the AhR/N-acetylserotonin(NAS)/TrkB and therefore
hypothalamic and oocyte/granulosa cell local stress re-
activity. In the presence of suppressed pineal and local
melatonin, this would be coupled to heightened glucocor-
ticoid receptor (GR) transcriptional effects and thereby
increased local 11β-hydroxysteroid dehydrogenase type 1
(11β-HSD1) [76]. This indicates significant interactions
across adipocytes, hypothalamus and the granulosa cell-
oocyte ‘complex’ arising from suppressed melatonin and
associated increase in GR nuclear translocation. Tanycytes

have a powerful role in determining hypothalamic function
[26], including in the regulation of paraventricular nucleus
(PVN) gonadotrophin releasing hormone (GnRH) and
systemic metabolism [26,27]. Tanycytes may therefore
be an important hub for hypothalamic alterations and
subsequent hypothalamic interactions with adipocytes and
the ovary. Alterations in the ‘homeostatic’ interactions
of the hypothalamus, adipocytes, pineal/local melatonin,
gut butyrate and the ovary may be parsimonious with
the partial efficacy of single-focus treatments, such as
melatonin supplementation or exercise/weight loss, given
the diverse impacts of such single-focus treatments on
wider PCOS pathophysiology [6]. See Fig. 5.

4.2 Depression and PCOS

As well as obesity, people with PCOS often meet
current criteria for comorbid classification of depression
and anxiety [77]. Depression criteria are often met
for conditions where an increase in pro-inflammatory
cytokines/cortisol/IDO/TDO suppresses the tryptophan-
melatonin pathway, coupled to raised kynurenine and aryl
hydrocarbon receptor (AhR) activation that dysregulates
the mitochondrial melatonergic pathway and enhances glu-
cocorticoid receptor (GR) activation. The cytokine/IDO-
GR/TDO-kynurenine pathway coupled to a suppressed
tryptophan-melatonin pathway and ‘comorbid’ depression
are often evident in diverse medical conditions, such as
cancer [51], T2DM [96], rheumatoid arthritis [97], autoim-
mune disorders more widely [98] and an array of neuropsy-
chiatric disorders [99]. Depression in such circumstances
may be seen as a corollary of the above processes in the
pathophysiology of these diverse conditions, and therefore
less a comorbidity andmore of a consequence of core patho-
physiological processes having multiple systemic and CNS
effects [100].

Depression, when presenting as the main symptom, is
typically associated with raised levels of pro-inflammatory
cytokines, circadian dysregulation, hypothalamic-pituitary-
adrenal (HPA) axis dysregulation, with weight gain or loss,
coupled to an amotivational state and some cognitive im-
pairment [101]. These dysregulated processes in depres-
sion are also relevant aspects of PCOS pathophysiology, as
highlighted throughout, and are also evident in Bipolar Dis-
order, which shows an increased comorbidity with PCOS
[102]. Brain areas classically researched as major drivers
and treatment targets of depression include the hippocam-
pus, amygdala, frontal cortex and the brain reward system
(ventral tegmental area and nucleus accumbens) [103,104].
More recent work highlights the role of astrocytes and mi-
croglia and how such CNS glial cells may be regulated by
alterations in the gut microbiome, opioidergic system and
the HPA axis. This has consequences for glia and immune
cell mitochondrial function with impacts on how these re-
active cells regulate neuronal survival and activity, includ-
ing patterned inter-area activity [105,106]. This provides
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Fig. 5. Systemic inhibitors of melatonin modulate hypothalamic and ovarian stress. Shows how systemic inhibitors (blue shade) of
pineal and/or local melatonin will regulate white adipocytes (WAT) and brown adipocytes (BAT), with consequences for a heightened
hypothalamic and ovarian stress response. Melatonin increases BATs and beiges WATs. Suppressed melatonin contributes to decreased
aromatase thereby increasing testosterone, which suppresses BATs. Raised GR/TDO and pro-inflammatory cytokines in PCOS increase
WAT, which are major contributors to circulating kynurenine in obesity. Kynurenine activation of the brain and systemic aryl hydrocarbon
receptor (AhR), along with GR/TDO and proinflammatory cytokine/IDO, will contribute to an enhanced hypothalamic and ovarian stress
response in PCOS. The GR and pro-inflammatory cytokine induction of 11β-HSD1, under conditions of suppressed melatonin, butyrate
and BAG-1 will also significantly contribute to heightened hypothalamic and ovarian stress responses. Abbreviations: 11β-HSD1, 11β-
hydroxysteroid dehydrogenase 1; AhR, aryl hydrocarbon receptor; GR, glucocorticoid receptor; IDO, indoleamine 2,3-dioxygenase;
LPS, lipopolysaccharide; NAS, N-acetylserotonin; TDO, tryptophan 2,3-dioxygenase; TrkB, tyrosine receptor kinase B; WAT, white
adipocyte.

a distinct, and less neurocentric, conceptualization of CNS
function in which to integrate the emergence of depression
in PCOS.

Stress/glucocorticoid receptor (GR) mediated upreg-
ulation of corticotrophin-releasing hormone (CRH) in the
paraventricular nucleus (PVN), amygdala and hippocam-
pus are inhibited by oxytocin acting on astrocyte oxytocin
receptors [107,108]. PVN oxytocin neurons project to the
central amygdala where oxytocin inhibits CRH, thereby in-
hibiting the CRH induction of dynorphin and the dynorphin
activation of the κ-opioid receptor [109,110]. Dynorphin
activation of the amygdala κ-opioid receptor induces dys-
phoria that is proposed to underpin the affective dysregu-
lation evident in Borderline personality disorder [111], and
unipolar depression [106]. Dynorphin at the κ-opioid re-

ceptor also significantly suppresses motivation driven by
ventral tegmental area (VTA) dopamine inputs to the Nu-
cleus Accumbens (N.Acc) [112], suggesting direct effects
of oxytocin [113] and/or oxytocin regulated amygdala mod-
ulation of the VTA-N.Acc junction. Overall, suppressed
PVN oxytocin production may be a significant regulator of
how PCOS associates with mood dysregulation. As PVN
oxytocin also suppresses theHPA axis, PVNoxytocin (from
oxytocin neuronal dense core vesicles acting on PVN astro-
cyte oxytocin receptors) allows oxytocin to modulate the
HPA axis, night-time cortisol rise and morning CAR and
therefore the consequences arising from stress, night-time
cortisol and CAR driven GR activation. Notably, oxytocin
receptor alleles are susceptibility factors for PCOS [114].
Preclinical data also shows PVN oxytocin projections to the
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Fig. 6. Oxytocinmodulation ofmood andwider symptomatology in PCOS. Shows how hypothalamic oxytocin, via astrocyte oxytocin
receptors suppresses the corticotrophin-releasing hormone (CRH)/dynorphin-κ-opioid receptor pathway by coordinating mood linked
changes in the hippocampus, amygdala and VTA-N.Acc junction. This is coordinated with wider systemic regulation of GR activation
during hypothalamic-pituitary-adrenal (HPA) axis driven stress and the cortisol awakening response (CAR). The oxytocin suppression
of the HPA axis and GR activation will contribute to suppressed local stress in the hypothalamus and ovary via decreased 11β-HSD1
induction. Abbreviations: 11β-HSD1, 11β-hydroxysteroid dehydrogenase 1; CRH, corticotrophin releasing hormone; N.Acc, nucleus
accumbens; PVN, hypothalamic paraventricular nucleus; VTA, ventral tegmental area.

hippocampus [115], indicating a role for suppressed oxy-
tocin in PCOS [116] in the regulation of stress/CRH effects
on the cognitive dysregulation that can occur in depression
and PCOS, including when associated with early life stres-
sors [117]. PVN oxytocin may therefore modulate the cog-
nitive, affective and motivational aspects of depression in
PCOS, with effects, at least partly mediated by the sup-
pression of dynorphin activation of the κ-opioid receptor
in these brain regions. See Fig. 6.

As indicated above (section 3.2), the effects of raised
night-timeGR activation, night-time cortisol rise andmorn-
ing CAR may be importantly primed by alterations in
factors during sleep that regulate how CAR primes body
cells, including immune and glial cells. Suppressed pineal
melatonin, butyrate and BAG-1 levels, as well as raised
adipocyte-derived kynurenine, aryl hydrocarbon receptor
(AhR) levels and activation will all impact on how CAR
prepares systemic and brain cells for the coming day [51],

including the hypothalamus, which has a long-standing as-
sociation with mood dysregulation [118,119]. Alterations
in the cortex, hippocampus and amygdala are more clas-
sically seen as reflecting inputs into consciousness related
processes [120] that generate the phenomenological state
of depression. However, mood dysregulation may also be
powerfully driven by implicit processes, including circa-
dian priming of the hypothalamus [121,122]. Such ‘im-
plicit’ processing will also be regulated by systemic fac-
tors, such as white adipocyte (WAT)-derived kynurenine
and alterations in how gut butyrate regulates glucocorti-
coid receptor (GR) translocation and effects [11,12]. The
emergence of depression in PCOS may therefore be a
downstream corollary of implicit and systemic processes in
the regulation of explicit processes underpinning the phe-
nomenological state. The above would indicate that the im-
pact of implicit processes may be occurring at night during
sleep. The classical conceptualization of depression as de-
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fined by explicit processes has parallels to conceptualiza-
tions of PCOS as a ‘hormonal’ condition when it may be
more accurately determined by more fundamental implicit,
circadian and systemic processes.

Importantly, alterations in the gut micro-
biome/permeability are intimately linked to these more
fundamental processes in depression as well as PCOS
pathophysiology more widely [123].

5. Gut Microbiome and PCOS
A recent meta-analysis of ten studies comparing

PCOS, vs controls, on microbiome composition shows
PCOS to be associated with decreased α-diversity, indica-
tive of gut dysbiosis [124], with gut dysbiosis/permeability
also evident in the PCOS ‘comorbidities’, obesity and type
2 diabetes mellitus (T2DM) [125]. Both obesity and T2DM
are intimately linked to driving PCOS symptomatology
[126], at least partly via white adipocyte (WAT)-derived
kynurenine/ aryl hydrocarbon receptor (AhR) activation
[62] and suppressed gut butyrate [127]. A preliminary study
shows butyrate to be decreased in PCOS, in correlation with
raised testosterone levels [128].

Butyrate acts via different processes, including G-
protein coupled receptor (GPR)41, GPR43 and GPR109
activation as well as epigenetic regulation via its capacity
as a pan-histone deacetylase (HDAC) inhibitor. Butyrate
also increases sirtuin-3, thereby enhancing oxidative phos-
phorylation (OXPHOS) and acetyl-CoA via pyruvate de-
hydrogenase complex (PDC) deacetylation and disinhibi-
tion [129], thereby upregulating themitochondrial melaton-
ergic pathway [130,131], (see Fig. 2). Butyrate maintains
the gut barrier and crosses into the general circulation. As
with the LPS suppression of pineal melatonin, decreased
butyrate not only attenuates butyrate’s induction of the mi-
tochondrial melatonergic pathway but has consequences for
metabolism, resilience, and stress responses [130].

Circulating butyrate regulates systemic processes di-
rectly as well as indirectly via mucosal immune cells, in-
cluding by upregulating IL-22 in mucosal CD4+ t cells
and Innate lymphoid cells (ILCs) via GPR41 and histone
deacetylase inhibition (HDACi) [132]. Gut dysbiosis sup-
presses IL-22 levels, which not only attenuates optimal gut
immunity but also contributes to suboptimal granulosa cell
mitochondrial function in preclinical PCOS models [133].
Butyrate therefore has an expected treatment efficacy in
PCOS given that some of the benefits of oral contracep-
tive medication in PCOS patients is mediated via IL-22 up-
regulation [134]. Gut mucosal immune cell derived IL-
22 may also afford benefits in pancreatic β-cells where it
attenuates insulin resistance via the IL-22r/Janus kinase 1
(JAK1)/signal transducer and activator of transcription-3
(STAT3) pathway in a PCOS preclinical model [135], with
effects in the pancreas being another aspect of how the gut
microbiome regulates the obesity/T2DM pathophysiologi-
cal consequences in PCOS. Stress attenuates gut IL-22 pro-

duction, which is reversed by oral melatonin [136], indicat-
ing that the benefits of oral melatonin in PCOS patients [5]
may be mediated by diverse processes, including via the gut
microbiome and its interaction with the mucosal immune
system. STAT3-miR-7 is also an important regulator of the
melatonergic pathway as well as oocyte-granulosa cell in-
teractions over the menstrual cycle [137,138], indicating
possible wider systemic consequences of butyrate induced
IL-22 in mucosal immune cells.

Importantly, butyrate suppresses inflammation in
PCOS granulosa cells [139]. These authors showed that
serum butyrate levels are decreased in clinical PCOS
where obesity is evident [139], which the authors attribute
to enhanced mRNA modification by N6-methyladenosine
(m6A), especially the m6A modification of FOSL2 (FOS
Like 2, AP-1 Transcription Factor Subunit). FOSL2 en-
codes the protein, Fos-related antigen 2 (FRA2). Granu-
losa cell data shows butyrate to suppressMETTL3, possibly
via the induction of Yes-Associated Protein (YAP) [140],
and thereby suppressing the m6A modification of FOSL2,
concurrent to a decrease in the NOD-, LRR- and pyrin
domain-containing protein 3 (NLRP3) inflammasome, IL-6
and TNF-α. See Fig. 7. As LPS potentiates FOSL2 [139],
an increase in gut permeability and circulating LPS, (as ev-
ident in PCOS with concurrent obesity [20]), may be an-
other means by which the gut modulates ovarian function
in PCOS. As butyrate increases sirtuin-3 and the mitochon-
drial melatonergic pathway [131], butyrate optimizes gran-
ulosa cell mitochondrial function and therefore the inter-
cellular interactions of granulosa cells with oocytes as well
as with other granulosa cells. The capacity of butyrate to
regulate PCOS pathophysiology may be attenuated under
conditions of tryptophan-melatonin pathway suppression,
including in granulosa cells where the suppression of mela-
tonin and the melatonin induction of aromatase increases
the testosterone that contributes to wider PCOS symptoma-
tology. Notably, gut permeability (or uterine infection) in-
duced LPS suppresses aromatase in granulosa cells, and in-
creases NF-kB driven inflammatory processes, which his-
tone deacetylase inhibition (HDACi) prevents [141]. Such
data would indicate significant roles for gut dysbiosis and
gut permeability/uterine infection in PCOS granulosa cells,
which may be particularly pertinent when PCOS is accom-
panied by obesity in association with suppressed butyrate
and melatonin levels. See Fig. 7.

As well as regulating PCOS granulosa cell aromatase
and inflammatory processes [141], butyrate also modu-
lates adipocytes. The consequences of decreased bu-
tyrate in obesity, T2DM and PCOS are intimately linked
to butyrate’s pan-HDACi capacity, which increases mi-
tochondrial oxidative phosphorylation to drive a brown
adipocyte (BAT)/browning phenotype during adipogenesis
[142,143]. Other histone deacetylase (HDAC) inhibitors
also show the capacity to brown/beige white adipocytes
(WATs) [144]. Whether this is coordinated with butyrate’s
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Fig. 7. Gut dysbiosis/permeability regulates granulosa cells. Shows how gut dysbiosis and associated increased gut permeability (light
blue shade) can regulate granulosa cell inflammation (gold shade), as well as suppress aromatase to increase testosterone, including via
decreased melatonin in granulosa cells. Gut microbiome-derived butyrate suppresses theMETTL3 conversion of SAM tom6A of FOSL2
mRNA (dark blue shade), possibly via butyrate induction of YAP. Increased FOSL2, including from LPS arising from gut permeability
and/or uterine infection, enhances IL-6, TNF-α and the NLRP3 inflammasome, thereby increasing granulosa cell inflammation. Proin-
flammatory cytokines also increase IDO and TDO to convert tryptophan to kynurenine, whilst decreasing local melatonin’s induction of
aromatase, thereby increasing testosterone. Raised testosterone levels decrease brown adipocytes (BATs) and increase IDO, including
possibly in white adipocytes (WATs), thereby increasing adipocyte-derived kynurenine to activate the aryl hydrocarbon receptor (AhR).
Kynurenine activation of the AhR dysregulates granulosa cells and other ovarian cells. Gut dysbiosis, including via decreased butyrate
and increased gut permeability is therefore intimately linked to adipocyte and ovarian alterations in PCOS and the impact this has for wider
systemic processes, including increased AMH, which drives tanycyte and hypothalamic dysregulation. Pro-inflammatory cytokines, like
raised GR activation, increase local stress responses via 11β-HSD1 upregulation. Abbreviations: 11β-HSD1, 11β-hydroxysteroid dehy-
drogenase 1; AhR, aryl hydrocarbon receptor; AMH, anti-Mullerian hormone; FOSL2, FOS Like 2, AP-1 Transcription Factor Subunit;
IDO, indoleamine 2,3-dioxygenase; IL-, interleukin; LPS, lipopolysaccharide; m6A, N6-methyladenosine; METTL3, m6A methyltrans-
ferase; NLRP3, NOD-, LRR- and pyrin domain-containing protein 3; SAM, S-adenosylmethionine; TDO, tryptophan 2,3-dioxygenase;
TNF, tumor necrosis factor; YAP, Yes-Associated Protein.

suppression of the glucocorticoid receptor (GR)/tryptophan
2,3-dioxygenase (TDO)/kynurenine/aryl hydrocarbon re-
ceptor (AhR) [62] in adipocytes via the acetylation of the
adipocyte GR and hsp90 [11,12] will be important to de-
termine, including the role of butyrate’s induction of the
mitochondrial melatonergic pathway in adipocytes. Gut
microbiome-derived butyrate can therefore regulate sys-
temic processes by a multitude of means. These include
the suppression of GR nuclear translocation during stress-
linked hypothalamic-pituitary-adrenal (HPA) axis activa-
tion and the rising levels of cortisol over sleep culminat-
ing in the cortisol awakening response (CAR). Butyrate can
therefore impact on how night-time cortisol and morning
CAR ‘prepare the body for the coming day’, including in

adipocytes, granulosa cells and hypothalamic cells, thereby
regulating the nature of the homeostatic interactions of any
cell in its given microenvironment. As GR activation also
increases gut permeability, butyrate will act in the gut to
limit the effects of cortisol/stress/corticotrophin-releasing
hormone (CRH) on gut permeability and gut dysbiosis, as
well as regulating the circadian entrainment of intestinal ep-
ithelial cells [145]. Consequently, butyrate’s regulation of
gut permeability/dysbiosis will determine butyrate circula-
tory levels and therefore butyrate impacts on adipocytes and
other cells.

Importantly, gut microbiome production of short-
chain fatty acids varies over the circadian rhythm, with bu-
tyrate being mostly produced during fasting when on a reg-
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ular, but not a high-fat, diet, as shown in preclinical stud-
ies [146]. Subsequent preclinical data shows the applica-
tion of melatonin to establish a gut circadian rhythm of bu-
tyrate production even under a high fat diet, supporting a
role for pineal melatonin in the circadian regulation of gut
microbiome-derived butyrate [147]. The implications for
this in humans have still to be investigated, including the
role of varying butyrate levels over the circadian rhythm in
the regulation of stress linked HPA axis activation and ris-
ing cortisol effects at night and during the morning CAR.
Existing preclinical data indicate that butyrate levels vary
over the circadian rhythm, being increased during fasting
and sleep, thereby allowing butyrate to suppress the gluco-
corticoid receptor (GR) nuclear translocation in the course
of morning CAR as well as in stress linked HPA axis ac-
tivation, especially if stress arises at a time of ‘fasting’
[146,147]. Exogenous butyrate significantly increases cir-
culating butyrate levels for over 6 hours [148], suggesting
fasting-linked enhanced butyrate over sleep will modulate
not only the rising cortisol effects at night but also themorn-
ing CAR activation and nuclear translocation of the GR. As
evident in the use of corticosteroid medications, GR acti-
vation can dramatically alter immune and glial cell activa-
tion, indicating that variations in night-time melatonin, bu-
tyrate and BAG-1 will impact on how these reactive cells
are primed, including ovarian granulosa cells, by GR ac-
tivation during the night and in the course of the morning
CAR. Given the powerful role of the GR in PCOS patho-
physiology, such gut and pineal interactions with CAR and
HPA axis driven GR nuclear translocation are likely to be of
some importance in the pathophysiology of PCOS, as with
many other medical conditions [51].

5.1 Hypothalamic Stress/Plasticity and Gut Microbiome

As well as heightened ‘hypothalamic stress/plasticity’
being modulated by interactions with adipocytes and
the oocyte/granulosa cell complex, the gut micro-
biome is also an important regulator of hypothalamic
function directly, as well as via adipocytes and the
ovaries. Decreased gut butyrate heightens the gluco-
corticoid receptor (GR)/tryptophan 2,3-dioxygenase
(TDO)/kynurenine/aryl hydrocarbon receptor (AhR)/N-
acetylserotonin (NAS)/TrkB pathway [36,37], thereby
impacting on many aspects of hypothalamic function
and fluxes. For example, butyrate suppresses the raised
corticotrophin-releasing hormone (CRH) levels, including
via the upregulation of oxytocin receptors in hypothalamic
astrocytes (see Section 5.2 below). Butyrate therefore
attenuates the CRH initiation of the HPA axis that deter-
mines stress, night-time cortisol and morning CAR cortisol
levels [38] as well as CRH independent effects, such as
increasing gut permeability [39]. Butyrate and LPS effects
in the hypothalamus are significantly modulated by the
heightened and prolonged melatonin (and NAS and NAS
induced BDNF [149]) levels in the third ventricle over

the duration of sleep [16], which modulate tanycyte and
astrocyte regulation of hypothalamic neurons and neuronal
fluxes [1] (see Section 6).

Butyrate effects will be partly determined by the
NAS/melatonin ratio, given that butyrate effects involve the
upregulation of acetyl-CoA and therefore the mitochondrial
melatonergic pathway [131]. However, a butyrate upregu-
lation of NAS, versus melatonin, will have dramatic conse-
quences in the hypothalamus, given NAS directly, as well
as indirectly via BDNF upregulation, activates the stress
plasticity linked hypothalamic TrkB. Butyrate, via histone
deacetylase inhibition (HDACi), can enhance AhR activa-
tion by endogenous AhR ligands [150,151], suggesting that
the effects of butyrate on hypothalamic plasticity may be
importantly determined by the levels of AhR ligands, in-
cluding WAT-derived kynurenine. How decreases in gut
microbiome-derived butyrate may interact with core and
wider PCOS pathophysiology is shown in Fig. 8.

5.2 Gut Microbiome and Oxytocin

The complexity of gut microbiome influence in PCOS
is further highlighted by data indicating that the gut bacte-
ria, Limosilactobacillus reuteri, upregulates oxytocin, pos-
sibly involving vagal nerve activation and alterations in
the adaptive immune response [152]. L. reuteri effects
are proposed to be mediated via the adaptive immune sys-
tem during the acceleration of wound healing, although
the immune response does not modulate the L. reuteri
effects on social behavior in autism preclinical models
[153]. L. reuteri upregulates the gut hormone, secretin,
which is produced in enteroendocrine cells, and which
increases oxytocin production in human gut enterocytes
[154]. Enterocyte-derived oxytocin maintains the gut bar-
rier and dampens mucosal immunity [155]. L. reuteri also
upregulates gut butyrate production as well as increasing
other butyrate-producing bacteria, as shown consistently
in 6 human volunteers [156]. By increasing gut butyrate,
L. reuteri will also increase brown adipocytes (BATs), the
mitochondrial melatonergic pathway and optimize mito-
chondrial metabolism, as well as suppressing glucocorti-
coid receptor (GR) nuclear translocation via GR and hsp90
acetylation [11,12], thereby impacting on hypothalamic-
pituitary-adrenal (HPA) axis, night-time rising cortisol and
morning CAR effects. Butyrate, and other histone deacety-
lase inhibitors (HDACi), upregulate oxytocin receptor lev-
els and activation [157], suggesting that L. reuteri effects
may be partly mediated via butyrate upregulating oxytocin
receptors and levels, including in gut enterocytes, as well
as via secretin upregulation [154]. Interestingly, preclini-
cal data shows sodium butyrate to increase pancreatic se-
cretin [158], possibly indicative of a role for butyrate in the
upregulation of secretin from gut enteroendocrine cells and
consequent gut enterocyte oxytocin upregulation. Impor-
tantly, gut oxytocin also suppresses enteric glial cell activa-
tion to stress [159], thereby impacting on how these ‘gut as-
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Fig. 8. Systemic PCOS pathophysiology. Shows PCOS pathophysiology to be driven by heightened stress responses in the hypotha-
lamus and oocyte-granulosa cell complex, as well as in the gut microbiome. Stress/HPA axis, night-time rising cortisol levels and
morning CAR drive glucocorticoid receptor (GR) activation, which when transported to the nucleus increases TDO and kynurenine,
including in adipocytes when obesity is present. GR also induces other stress-linked and immune/glial cell regulatory genes. The sup-
pression of pineal and local melatonin as well as butyrate and BAG-1 enhance GR nuclear translocation, with effects in adipocytes,
hypothalamus, ovary and gut. The GR/TDO/kynurenine pathway suppresses tryptophan levels for the tryptophan-melatonin pathway
as well as increasing kynurenine and kynurenic acid, which activate the AhR to suppress melatonin and increase NAS to drive ovarian
and hypothalamic stress plasticity. Aryl hydrocarbon receptor (AhR) activation, like testosterone, also increases the white adipocyte
(WAT)/brown adipocyte (BAT) ratio, thereby increasing kynurenine, which may further induce and activate the AhR. Enhanced GR ac-
tivation, combined with decreased butyrate, melatonin and BAG-1, coupled to raised pro-inflammatory cytokines underpin wider PCOS
symptomatology, including depression, anxiety and cognitive changes. Heightened local stress effects will be significantly determined
by 11β-HSD1 upregulation by the GR and pro-inflammatory cytokines. Abbreviations: 11β-HSD1, 11β-hydroxysteroid dehydrogenase
1; AhR, aryl hydrocarbon receptor; BAG-1, bcl2-associated anthanogene-1; BAT, brown adipocyte; CAR, cortisol awakening response;
GR, glucocorticoid receptor; HPA, hypothalamus-pituitary-adrenal; IL, interleukin; NAS, N-acetylserotonin; PCOS, polycystic ovary
syndrome; TrkB, tyrosine receptor kinase B; WAT, white adipocyte.

trocytes’ determine the interactions of the gut/microbiome,
enteric nervous system, vagal nerve and mucosal immune
system. Whether the suppression of enteric glial cell ac-
tivation by butyrate [160], includes oxytocin receptor up-
regulation in enteric glial cells in association with gut oxy-
tocin production will be important to determine. Notably,
L. reuteri prevents PCOS in a circadian rhythm disruption
preclinical PCOS model [161].

Whether butyrate upregulates oxytocin receptors on
tanycytes and astrocytes in the preclinical paraventricular

nucleus (PVN), amygdala, hippocampus, and VTA-N.Acc
junction [108,115], thereby regulating the consequences
of PVN-derived oxytocin will be important to determine.
The gut microbiome may therefore have a more signifi-
cant role in the regulation of hypothalamic function in the
course of PCOS pathophysiology than previously appreci-
ated, with consequences for wider patterned interarea con-
nectivity across the brain [162], as well as the regulation of
diverse systemic processes.
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6. Hypothalamic Tanycytes and Astrocytes:
Core Hub in PCOS Symptomatology

Hypothalamic symptomatology in PCOS is classically
linked to enhanced hypothalamic gonadotropin-releasing
hormone (GnRH) pulsatile levels, arising from a 40%
increase in pulsatile frequency, thereby raising pituitary
luteinizing hormone (LH) secretion, which is a major con-
tributor to enhanced ovarian androgen production [163].
Raised serum anti-Mullerian hormone (AMH) levels are
frequently used as a PCOS biomarker, with raised AMH
from granulosa cells associating with heightened hypotha-
lamic glia-neuronal activation in PCOS patients [1]. These
authors proposed that AMH induces tanycyte retraction,
thereby allowing greater entry of GnRH neurons to the me-
dian eminence blood capillaries, implicating a core role for
tanycyte/glia-neuronal dysregulation in PCOS hormonal
pathophysiology [1]. Structural changes in tanycytes may
therefore be an important aspect of hypothalamic ‘stress
plasticity’, including as induced by paraventricular nucleus
(PVN) TrkB activation. Alterations in tanycyte function
are also an important aspect of obesity, as indicated by: (1)
tanycyte loss in the arcuate nucleus and median eminence
in obesity [164]; (2) tanycyte retraction driven by changes
in tanycyte mitochondrial function, including alterations
in the mitochondrial import inner membrane translocase
TIM50, heat shock protein (hsp)40, hsp60, hsp70, hsp90a
and hsp110, coupled to raised levels of Agouti-related
protein (AgRP), thereby increasing food intake [165,166].
Knockout of the glucose transporter (GLUT)2 in tanycytes
disrupts the hypothalamic glucose-sensing mechanism, in-
creasing food consumption and weight gain, indicating the
powerful role that tanycytes have on systemic metabolism
and the hypothalamic regulation of ‘core’ behaviors [167].
Such data would indicate a significant role of tanycytes in
PCOS, perhaps especially when obesity is present, as well
as indicating how changes in granulosa cells, such as in-
creased AMH, modulates tanycyte and hypothalamic func-
tion. The ablation of tanycytes in mice increases weight
gain, feeding and insulin insensitivity as well as visceral
adiposity, further highlighting the importance of tanycytes
to systemic metabolism, which is partly mediated by their
capacity to sense and transport glucose and leptin [168].

Tanycytes are also important regulators of hypothala-
mic neurogenesis and gliogenesis being conceptualized as
‘stem-like’ cells, which may also be an aspect of tanycyte
regulation of metabolism and reproduction. Tanycytes are
classically subdivided into α1, α2, β1 and β2 tanycytes,
although their plasticity would indicate that tanycyte phe-
notyping may simply reflect a gradation of responses to dy-
namic environmental changes [169]. α-tanycytes seem to
have true ‘stem-cell’ properties, whereas β-tanycytes seem
to be more limited as ‘neuronal progenitor cells’, with tany-
cytes providing neurons and astrocytes for the median em-
inence and other hypothalamic nuclei, as well as for re-
newal of tanycytes lost at the barrier with the cerebrospinal

fluid (CSF) [170]. Tanycyte morphology and putative sub-
type biomarkers show significant changes over aging, with
heightened glial fibrillary acidic protein (GFAP) expres-
sion, most typical of astrocytes, being upregulated over age,
whilst the brain-CSF barrier may also show gaps over ag-
ing where tanycytes have not been replaced [169]. Like
astrocytes, tanycytes form networks that can transmit Ca2+
waves triggered by ATP activation of purinergic P2Y1 re-
ceptors, indicating a coordinated regulation of hypothala-
mic processes. Tanycytes are proposed to have systemic
anti-aging properties, possibly via their release of exosomal
miRNAs into the CSF and/or their stem cell capacity [171].
These complex and interesting cells also regulate the blood-
hypothalamic barrier and interact with the pituitary and thy-
roid gland in the regulation of core hypothalamic functions,
including reproduction in males and females, metabolism,
food/water intake and aggression [172–175].

The structural plasticity of tanycytes has beenmost ex-
tensively investigated, although it is highly likely that the
plasticity in their morphology is accompanied by a com-
plexity of alterations in cellular fluxes, metabolism and
intercellular interactions. At diestrus, gonadotropin out-
put is low due to GnRH secretory nerve terminals be-
ing completely ensheathed by tanycytes, thereby blocking
GnRH release into the pituitary portal blood vessels. Tany-
cytes are structurally remodeled on the proestrus day al-
lowing the preovulatory GnRH/luteinizing hormone (LH)
surge. Tanycyte structural plasticity is therefore a crucial
aspect of reproduction. Progesterone attenuates GnRH re-
lease via semaphoring (Sema)7A/B1-integrin-mediated en-
sheathment of GnRH nerve terminals by tanycytes, thereby
suppressing the pulsatile increase in LH release [176]. In
contrast, estradiol induces the release of endothelial ni-
tric oxide (NO), leading to tanycyte retraction, coupled
to an increase in cyclooxygenase (COX)1 and COX2-
induced prostaglandin (PG)E2, which increases GnRH re-
lease [169]. Tanycytes are therefore major determinants of
hormonal alterations and their treatment in PCOS.

The expression/activation/ablation of the tany-
cyte outer mitochondrial membrane protein, transloca-
tor protein-18 (TSPO), induces an AMPK-dependent
lipophagy and increases ATP [177], indicating a significant
role for tanycytic TSPO via macroautophagy/autophagy-
regulated lipid metabolism. Interestingly, data in other cell
types shows TSPO to ‘crosstalk’ with the mitochondrial
aryl hydrocarbon receptor (AhR), with both showing
heightened expression/activity when the other is knocked
out, whilst both are required for optimal mitochondrial
function [61]. Notably, TSPO effects at mitochondria
may require activation of the BDNF-mammalian target
of rapamycin (mTOR) pathway [178], suggesting that
the AhR induction of N-acetylserotonin (NAS), a BDNF
mimic at plasma membrane and mitochondria located
TrkB, may play a significant role in the interactions of
the AhR and TSPO in tanycytes. This would indicate a
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possible role for the tanycyte mitochondria melatonergic
pathway in the regulation of AhR and TSPO ‘crosstalk’
in tanycytes and therefore in the regulation of systemic
metabolism. Overall, wider data on tanycytes highlights
the role of alterations in tanycyte mitochondrial proteins
in the regulation of systemic metabolism and implicates
a possible significant role for the putative tanycyte mito-
chondrial melatonergic pathway. Tanycyte regulation is
therefore a crucial aspect of hormone-linked reproduction
and metabolism/obesity, which are core classical features
of PCOS symptomatology.

Interestingly, the pineal gland, via the pineal recess
in the posterodorsal aspect of the third ventricle releases
melatonin (and presumably NAS) directly into the cere-
brospinal fluid (CSF), with prolonged and heightened (four-
fold) melatonin levels evident at night in the third ven-
tricle compared to the general circulation [16]. This is
proposed to allow melatonin to have a stronger influence
on the circadian rhythm via heightened effects at the hy-
pothalamic suprachiasmatic nucleus (SCN) [16]. However,
melatonin released into the third ventricle will have di-
rect effects on the cells that predominantly line this ven-
tricle, namely tanycytes. This suggests that decreased
pineal melatonin in PCOS [2] will have significant im-
pacts on hypothalamic function, including via suppressed
melatonin effects on tanycytes and tanycyte mitochondrial
function. Given the importance of tanycyte mitochon-
drial function to hypothalamic regulation, tanycyte retrac-
tion and systemic metabolism, suppressed pineal melatonin
in the third ventricle will deprive tanycytes of melatonin’s
mitochondria-optimizing effects. It is unknown, although
highly likely, whether tanycytes express the melatoner-
gic pathway, nor is it known whether variations in pineal
N-acetylserotonin (NAS)/melatonin ratio effluxed into the
third ventricle would differentially modulate tanycyte and
wider hypothalamic function. BDNF, TrkB-FL and TrkB-
T1 are expressed in tanycytes and adjacent hypothalamic
astrocytes [179], suggesting that pineal NAS, as well as the
O-demethylation of melatonin to NAS by aryl hydrocar-
bon receptor (AhR)-induced CYP1A2 and CYP1B1, will
activate tanycyte TrkB-FL and/or TrkB-T1. Both TrkB-FL
and TrkB-T1 can be expressed in the plasma membrane and
mitochondrial membrane, indicating diverse effects on mi-
tochondrial function and patterned gene transcription that
may be dependent upon the chaperoning of TrkB to mito-
chondria and therefore the state of cell and intercellular pro-
cesses that would regulate the site of TrkB isoforms. This
study also shows stress to be associated with BDNF upregu-
lation in tanycytes and adjacent astrocytes [179], indicating
that BDNF and TrkB activation in tanycytes and adjacent
astrocytes are an integral aspect of the hypothalamic stress
plasticity response [36,37,165].

Melatonin, both pineal and local, may act to modulate
BDNF/TrkB driven stress plasticity during metabolic reg-
ulation and possibly wider hypothalamic regulatory func-

tions [51]. Whether an increased pineal NAS/melatonin
ratio would prime tanycytes and adjacent astrocytes to a
different stress response via NAS activation of TrkB will
be important to determine [36,37,165]. AhR activation is
a significant driver of a heightened NAS/melatonin ratio,
with the AhR an important modulator of tanycyte func-
tion, including tanycyte capacity as stem cells following
insult, as shown in preclinical models [180]. AhR acti-
vation is also strongly associated with dysregulated GnRH
neuronal function and GnRH release coupled to suppres-
sion of the circadian gene, Period (Per)1 [181]. Much of
this data has been collected following TCDD-induced AhR
activation and requires investigation as to the effects of
kynurenine activation of the AhR and the consequences this
has for the NAS/melatonin ratio, including in hypothalamic
GnRHneurons [181]. The role of enhancedwhite adipocyte
(WAT)-derived kynurenine in activating the tanycyte AhR,
thereby altering tanycyte hormonal regulation requires in-
vestigation.

The aryl hydrocarbon receptor (AhR) induced
CYP1A1/2 significantly regulate sex hormones, including
estrogen metabolism to quinol, as well as the hydroxylation
of estrogen, progesterone and testosterone [182]. Estrogen,
via the estrogen receptor (ER)α, downregulates AhR in-
duced CYP1A1 via DNMT1mediated epigenetic processes
[183], whilst AhR activation downregulates ERα [184].
The AhR, via testosterone metabolism, also decreases
androgen receptor levels [185], as well as suppressing
porcine luteal cell progesterone [186]. Such AhR effects
on the main sex hormones and their receptors associated
with classical PCOS pathophysiology has wide systemic
consequences, including for tanycyte regulation where
estrogen and progesterone modulate tanycyte function,
hormonal regulation and systemic metabolism [187]. Such
data highlights the direct and indirect effects of AhR
activation on tanycyte function in PCOS pathophysiology,
and how the AhR levels, ligands and activation can be
significantly determined by diverse systemic and CNS
processes.

Unlike the endogenous AhR ligand, 6-
formylindolo[3,2-b]carbazole (FICZ), the induced
tryptophan-derived AhR ligands, kynurenine and
kynurenic acid as well as the gut microbiome derived
ligands, indole-3-propionate, indole-3-acetate, indole-3-
lactate and indole-3-carboxaldehyde, are not metabolized
by AhR-induced CYP1/2, suggesting that these induced
ligands show a prolonged duration of action at the human
AhR [188]. This would indicate that the prolonged AhR
activation of these induced ligands would be dependent
upon the AhR induction of its own repressor, the AhR
repressor (AhRR) in order to prevent the heightened
stress-linked plasticity in the hypothalamic paraventricular
nucleus (PVN) by AhR-induced N-acetylserotonin (NAS)
and BDNF. As noted, the AhRR is a PCOS susceptibility
gene [23], indicating that the heightened AhR activation
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Fig. 9. Hypothalamic tanycytes and astrocytes interact with systemic processes. Shows how hypothalamic tanycytes and astrocytes
not only interact with systemic processes to regulate gonadal hormones but are also important hubs for how adipocyte, gut, ovarian, and
genetic factors drive PCOS mood, cognitive and motivational dysregulation. Aryl hydrocarbon receptor (AhR) ligands derived from
white adipocyte (WAT) and the gut microbiome (and dietary) have prolonged effects on AhR activation due to the inability of AhR
induced CYP1A1, CYP1B1, CYP1A2 to metabolize these AhR ligands. AhR normally induces its own repressor, AhRR, which is sus-
ceptibility gene for PCOS, with the susceptibility allelel leading to prolongedAhR activation. Consequent increases in the NAS/melatonin
ratio and TrkB activation will drive paraventricular nucleus (PVN) stress-like plasticity, likely involving alterations in the mitochondrial
function and mitochondrial melatonergic pathway in both tanycytes and astrocytes. The latter will be contributed to by the suppres-
sion of pineal melatonin, and possibly an increase in the pineal NAS/melatonin ratio, in the third ventricle. The ensuing alterations
in PVN neuronal regulation include the suppression of oxytocin, thereby decreasing the oxytocin inhibition of glucocorticoid recep-
tor (GR)/corticotrophin-releasing hormone (CRH)/dynorphin/κ-opioid receptor. This will drive mood and stress dysregulation in the
amygdala, associated cognitive dysregulation in the hippocampus and motivational deficits in the VTA/N.Acc. Alterations in ovarian
hormones, including AMH, will also alter tanycyte and astrocyte function. Abbreviations: AhR, aryl hydrocarbon receptor; AhRR, aryl
hydrocarbon receptor repressor; AMH, anti-mullerian hormone; CRH, corticotrophin releasing hormone; GR, glucocorticoid receptor;
k-op, κ-opioid receptor; MDD, major depressive disorder; N.Acc, nucleus accumbens; NAS, N-acetylserotonin; PVN, paraventricular
nucleus; TrkB, tyrosine kinase receptor B; VTA, ventral tegmental area; WAT, white adipocyte.

and induced AhR ligands in PCOS will have prolonged
effects. These prolonged effects include driving changes
in tanycyte and PVN astrocyte mitochondrial melaton-
ergic pathway, allowing prolonged AhR activation to
increase the NAS/melatonin ratio and drive stress linked
PVN plasticity. Such enhanced PVN plasticity will have
concurrent consequences for mitochondrial function in
tanycytes and astrocytes, with impacts on patterned hy-
pothalamic neuronal interactions and PVN fluxes. Of the
induced gut microbiome derived tryptophan metabolites,
only indole-3-proptionate seems to achieve measurable
circulatory levels, suggesting the circulating kynurenine
and not gut-derived AhR ligands will be clinically relevant
[188]. See Fig. 9.

Overall, the presence of TrkB-FL and TrkB-T1 in
tanycytes and adjacent astrocytes allow variations in pineal
(and local) NAS/melatonin ratio tomodulate core aspects of
hypothalamic function [179]. Data on the role of the AhR in
PCOS pathophysiology would indicate that AhR suppres-
sion of melatonin, coupled to increased N-acetylserotonin

(NAS) and BDNF activation of TrkB in hypothalamic tany-
cytes and astrocytes will contribute to a heightened ‘stress’
plasticity response in the hypothalamus, as well as in granu-
losa cells (see Fig. 2). This will alter the nature of the fluxes
between the hypothalamus and granulosa cell/oocyte com-
plex, such as increased granulosa cell anti-Mullerian hor-
mone (AMH) to tanycytes thereby leading to tanycyte re-
traction and heightened GnRH levels to enhance pituitary
luteinizing hormone release [1]. See Fig. 7. Systemic pro-
cesses in adipocytes, gut microbiome and the cortisol awak-
ening response (CAR) will also be influenced by alterations
in the dynamic interactions of hypothalamic tanycytes and
astrocytes with the granulosa cell/oocyte complex. As indi-
cated in Fig. 6, the interactions of tanycytes with astrocytes
in the regulation of neuronal function in the paraventric-
ular nucleus (PVN), especially as influenced by oxytocin
on PVN astrocytes, will be a significant determinant of the
common mood dysregulation evident in many PCOS pa-
tients. Such data would strongly suggest that depression,
anxiety and systemicmetabolic dysregulation are not PCOS
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‘comorbidities’ but are aspects of tanycyte and astrocyte
regulation of hypothalamic neuronal function, which may
ultimately be determined by systemic and circadian factors
influencing mitochondrial function in hypothalamic astro-
cytes and tanycytes, perhaps especially the mitochondrial
melatonergic pathway.

7. Future Research Implications
Anumber of future research directions have been indi-

cated throughout the article. A couple are worth highlight-
ing:

- Is the aryl hydrocarbon receptor (AhR) evident in
tanycytes?

- Is BAG-1 present in brown adipocyte (BAT) and
white adipocyte (WAT), with differential consequences for
glucocorticoid receptor (GR) translocation to the nucleus
versus mitochondria?

- Does the availability of night-time butyrate, like
melatonin, modulate the rising cortisol levels at night
and morning cortisol awakening response (CAR) as well
as stress-linked hypothalamic-pituitary-adrenal (HPA) axis
activation?

- Is the TrkB activation in hypothalamic tanycytes, as-
trocytes and neurons mediated via TrkB-FL, and/or TrkB-
T1 at the plasma and/or mitochondrial membrane? Are
TrkB isoforms and site integral aspects of hypothalamic
plasticity dependent upon mitochondrial function in a given
cell?

- Recent work has indicated a role for glyphosate-
based herbicides (GBH) in the pathoetiology of amy-
otrophic lateral sclerosis (ALS) [189]. GBH suppress aro-
matase [190,191], and alters the histological function of
the ovaries, including granulosa cells and oocytes, in pre-
clinical models [192,193] as well as inducing gut dysbiosis
[189], suppressing adipocyte differentiation [194] and dys-
regulating hypothalamic reproductive hormones [195]. The
role of GBH in PCOS pathoetiology and ongoing patho-
physiology, perhaps especially in the lean PCOS pheno-
type, will be important to determine.

8. Treatment Implications
- Melatonin upregulates aromatase and the conver-

sion of testosterone to estrogen in granulosa cells [4,22].
Melatonin also stimulates progesterone from human and
bovine granulosa cells [196], thereby upregulating the pro-
gesterone deficiency that is evident in PCOS patients [197].
The utility of melatonin (2 mg for 6 months) on PCOS
symptomatology more widely [5], including in the gut
microbiome/permeability, adipocytes, hypothalamus and
granulosa cell-oocyte complex as well as its suppression of
the glucocorticoid receptor (GR) indicate that it is underuti-
lized in PCOS treatment. Optimization of melatonin dose,
timing and mode of application will be important to deter-
mine in future clinical trials of PCOS.

- The refinement of currently available technolo-
gies/treatment, such as MSC-derived exosomes, that tar-
get phenotypes of particular cells would allow for the
tryptophan-melatonin pathway to modulated in given cells,
such as granulosa cells, tanycytes or white adipocytes
(WATs). This would modulate the influence that these cells
have on systemic processes, including by action at night in
the regulation of night-time cortisol and the morning cor-
tisol awakening response (CAR), thereby optimizing the
circadian and systemic processes and suppressing PCOS
symptomatology. Melatonin treated MSC shows signifi-
cant alterations in exosome constituents [198], which may
also allow a readily available improved targeting of cel-
lular processes via different miRNAs. However, the tar-
geted upregulation of the mitochondrial melatonergic path-
way in particular phenotypes of given cells would induce
a level of precision, ultimately driving alterations in the
local microenvironment intercellular interactions. This is
a feasible target for technological development relevant to
the pathophysiological processes underpinning a host of di-
verse medical conditions, including cancer, neurodegener-
ative disorders and ‘autoimmune’/‘immune-mediated’ con-
ditions [51,70,199].

- A recent meta-analysis of probiotic use in PCOS
management indicates beneficial effects on metabolic as-
pects of PCOS symptomatology, including body mass in-
dex, fasting plasma glucose, and lipid profiles [200]. The
gut microbiome is a significant treatment target, including
by the utilization of sodium butyrate.

- A number of nutriceuticals that inhibit the aryl hydro-
carbon receptor (AhR), including epigallocatechin gallate
(EGCG) [201], resveratrol [202], curcumin [203], folate
[204], vitamin B12 [205], and propolis [206] show efficacy
in suppressing PCOS symptomatology. However, none of
the PCOS studies of these AhR antagonists have investi-
gated or implicated a role for the AhR. As well as having
ready utility in helping to alleviate PCOS symptomatology,
it will be important for future research to clarify the role
of the AhR and its modulation of core processes of PCOS
pathophysiology by beneficial nutriceuticals.

- Alterations in autonomic nervous system activity are
common in PCOS [207], with the hypothalamic paraven-
tricular nucleus (PVN) acting as the ‘conductor’ of the au-
tonomic nervous system [208]. Recent data indicates an in-
crease in the sympathetic/parasympathetic nervous system
ratio in PCOS, with clinical utility of transcutaneous auricu-
lar vagal nerve stimulation [209] These authors propose that
such vagal nerve stimulation has already shown efficacy for
isolated PCOS symptoms, including obesity, insulin resis-
tance, T2DM, depression, and gut microbiome symptoms,
as well as cardiovascular disease [209], and therefore is
likely to favorably regulate many of the systemic changes
occurring in PCOS.
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9. Conclusions
The conceptualization of PCOS pathophysiology and

derived treatment has focused on hormonal alterations and
weight loss, leaving many PCOS patients with a feeling that
the sexism of the ‘wandering womb’ may still be present
in medical practice [2]. This article has reviewed in some
detail the wider systemic and CNS changes in PCOS, pro-
viding a conceptualization based on ‘gender-neutral’ pro-
cesses that underpin how hormones are dysregulated in
PCOS, as well as how the common comorbidities of PCOS
such as obesity and mood disorders can be integrated as
aspects of PCOS pathophysiology rather than distinct ‘co-
morbidities’. The article highlights the interactions of the
local and pineal melatonergic pathway, gut microbiome-
derived butyrate, white adipocyte-derived kynurenine, par-
aventricular nucleus (PVN) tanycytes and astrocytes, the
hypothalamus-pituitary-adrenal (HPA) axis and night-time
glucocorticoid receptor (GR) regulation in PCOS patho-
physiology. A significant role is indicated for the night-
time interactions of factors, such as melatonin, butyrate and
BAG-1, which can suppress GR nuclear translocation in the
course of the morning cortisol awakening response (CAR).
The dynamic interactions of the above processes at differ-
ent sites and in different cell types may ultimately be having
their major impacts by regulating how the night-time cor-
tisol rise and morning CAR modulate systemic and CNS
cells, as the body is ‘prepared for the coming day’. Given
the powerful role of reactive cells, such as immune and
glial cells, in determining the function of other systemic and
CNS cells, the actions of night-time cortisol and morning
CAR on these cells will be important to clarify, especially
how CAR is modulated by variations in night-time mela-
tonin, butyrate, and BAG-1 as well as the white adipocyte
(WAT)-derived kynurenine activation of the aryl hydrocar-
bon receptor (AhR). All of these factors not only regulate
the GR but also mitochondrial function, thereby signifi-
cantly impacting on the determining role of mitochondrial
metabolism in the regulation of glia, immune and tanycyte
function. The mitochondrial regulation by melatonin, bu-
tyrate, BAG-1 and kynurenine/AhR are intimately linked
to the mitochondrial melatonergic pathway. This provides a
conceptualization that integrates a wide array of previously
disparate data on the biological underpinnings of PCOS, in-
cluding how PCOS associates with many ‘comorbidities’.
The investigation of the numerous future research implica-
tions indicated should provide a less ‘sexist’ conceptualiza-
tion of PCOS [2], with treatments targeted to core processes
that underpin hormonal and weight dysregulation.
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translocase subunit; TOM, mitochondrial import outer
receptor subunit; TPH, tryptophan hydroxylase; TrkB-FL,
tyrosine receptor kinase B-full length; TrkB-T1, tyrosine
receptor kinase B-truncated; VTA, ventral tegmental area;
WAT, white adipocyte.
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