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Abstract

Objective: Emerging evidence suggests the biological implications of N6-methyladenosine (m6A) in carcinogenesis. Herein, we sys-
tematically analyzed the role of m6A modification in renal cell carcinoma (RCC) progression. Methods: Based on 23 m6A regulators,
unsupervised clustering analyses were conducted to determine m6A modification subtypes across 893 RCC specimens in the Cancer
Genome Atlas (TCGA) cohort. By performing principal component analysis (PCA) analysis, m6A scoring system was developed for
evaluating m6Amodification patterns of individual RCC patients. The activity of signaling pathways was assessed by gene-set variation
analysis (GSVA) algorithm. The single-sample gene set enrichment analysis (ssGSEA) algorithm was applied for quantifying the infil-
tration levels of immune cells and the activity of cancer immunity cycle. Drug responses were estimated by genomics of drug sensitivity
in cancer (GDSC), the Cancer Therapeutics Response Portal (CTRP) and Preservice Research Institute for Science and Mathematics
(PRISM) database. databases. Results: Five m6A modification subtypes were characterized by different survival outcomes, oxidative
stress, cancer stemness, infiltrations of immune cells, activity of cancer immunity cycle, programmed cell death 1 (PD-1)/programmed
cell death ligand 1 (PD-L1) expression and microsatellite instability (MSI) levels. According to m6A score, RCC patients were catego-
rized into high and low m6A score groups. Patients with high m6A score displayed a prominent survival advantage, and the prognostic
value of m6A score was confirmed in two anti-PD-1/PD-L1 immunotherapy cohorts. m6A score was significantly linked to oxidative
stress-related genes, and high m6A score indicated the higher sensitivity to axitinib, pazopanib and sorafenib and the lower sensitivity
to sunitinib. Conclusion: This study analyzed the extensive regulatory mechanisms of m6A modification on oxidative stress, the tu-
mor microenvironment, and immunity. Quantifying m6A scores may enhance immunotherapeutic effects and assist in developing more
effective agents.
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1. Introduction
Renal cell carcinoma (RCC) is a common lethal ma-

lignancy globally [1]. As estimated, this malignancy oc-
cupies nearly 4% of newly diagnosed cases as well as 2%
of cancer-related deaths in 2020 [1]. RCC includes a vary-
ing group of malignancies that arise from the nephron [2].
According to the somatic genetic and genomic variations,
RCC encompasses three major histological subtypes: clear
cell RCC (ccRCC; 75%), papillary RCC (pRCC; 20%) and
chromophobe RCC (chRCC; 5%) [3]. For patients with
localized or early stage RCC, surgery (partial or radical
nephrectomy, etc.) improves the 5-year survival rate to
93% [4]. Approximately 30% of patients have metasta-
sis during initial diagnosis, and nearly 30% of the remain-
ing patients will develop metastasis during follow-up [5].

Among the renal cancer-related deaths, over 90% are in re-
lation to RCC metastasis [6]. Within the tumor microen-
vironment (TME), there are complex interactions between
tumor cells, immune cells, and stromal cells [7,8]. Immune
checkpoint inhibitors targeting programmed cell death 1
(PD-1)/programmed cell death ligand 1 (PD-L1) combined
with a tyrosine kinase inhibitor have remarkably altered the
clinical management of metastatic RCC, and have been rec-
ommended as the first-line treatment option [9]. Neverthe-
less, long-term response is low due to high risk of resis-
tance. Thus, novel treatment options are urgently required
to enhance the therapeutic effects as well as to determine
biomarkers for predicting the responses and better stratify-
ing RCC patients, thereby reducing costs and prolonging
the survival duration.
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N6-methyladenosine (m6A) represents the most abun-
dant RNA modification pattern in eukaryotic cells, which
typically occurs at the nitrogen-6 position of adenosine
[10]. M6A modification, a dynamically reversible process,
is mediated by methyltransferases (“writers”), demethy-
lases (“erasers”), and binding proteins (“readers”) [11].
This methylation modification in mRNAs exerts key func-
tions in diverse aspects of RNA metabolism (mRNA splic-
ing, translation efficiency, etc.), thereby participating in
critical biological processes such as tumorigenesis, im-
munomodulatory process, and cancer metastasis [12,13].
Thus, it is of importance to extensively characterize “writ-
ers”, “erasers” and “readers” that alter the modification
levels and recognize the chemical marks [14]. Recently,
fat mass and obesity associated (FTO) m6A demethylase
inhibits ccRCC via FTO-peroxisome proliferator-activated
receptor-gamma co-activator-1α (PGC-1α) signaling axis
[15]. M6A demethylase AlkB homolog 5 (ALKBH5) ac-
celerates RCC progression through modulating aurora ki-
nase B (AURKB) expression with an m6A-dependent man-
ner [16]. Nevertheless, the expression of m6A regulators
in RCC patients with various clinicopathological features,
their roles in the TME, and their prognostic implications
are mostly unclear. Oxidative stress is an imbalance be-
tween oxidants and antioxidants. Overactivation of onco-
genes results in the increased generation of reactive oxy-
gen species (ROS) in tumor cells, accompanied by an in-
creased antioxidant ability to maintain redox homeostasis at
increased levels in tumor cells. Accumulated evidence sug-
gests that m6Amodification modulates cellular ROS levels
via distinct mechanisms [17]. The effects of m6A modifi-
cation in oxidative stress remain unclear in RCC. Here, this
study constructed distinct m6Amodification subtypes char-
acterized by distinct biological functions, oxidative stress,
TME features, tumor immunity and survival outcomes in
RCC. Moreover, this study developed a m6A scoring sys-
tem for quantifying the m6A modification patterns for in-
dividual patients, which could be applied for elucidating
immune phenotypes and predicting the prognosis and im-
munotherapy responses in clinical practice.

2. Materials and Methods
2.1 Data Download and Preprocessing

RNA sequencing profiles (FPKM value) and matched
clinical information of ccRCC, pRCC and chRCC were re-
trieved from the Cancer Genome Atlas (TCGA) database
(https://portal.gdc.cancer.gov) via the Genomic Data Com-
mons (https://portal.gdc.cancer.gov/) utilizing TCGAbi-
olinks package [18]. The raw count value was converted
to TPM value. Three RCC datasets were integrated and
batch effects were removed through Combat function of sva
package [19]. Finally, 128 normal samples and 893 RCC
samples (chRCC (N = 65), ccRCC (N = 539) and pRCC
(N = 289) were included in this study. Copy number alter-
ations (CNAs) of RCC that were preprocessed by GISTIC

algorithm were obtained from the UCSC Xena data por-
tal (http://xena.ucsc.edu/). Additionally, RNA expression
profiling of 101 ccRCC patients from the E-MTAB-1980
dataset was adopted for external validation. In total, 23
m6A regulators containing 8 writers (Cbl proto-oncogene
like 1 (CBLL1), Vir like m6A methyltransferase associated
(VIRMA), methyltransferase 14/3 (METTL14/3), RNA
binding motif protein 15 (RBM15), RNA binding motif
protein 15B (RBM15B), WT1 associated protein (WTAP),
zinc finger CCCH-type containing 13 (ZC3H13)), 2 erasers
(ALKBH5 and FTO) and 13 readers (ELAV like RNA bind-
ing protein 1 (ELAVL1), FMRP translational regulator 1
(FMR1), heterogeneous nuclear ribonucleoprotein A2/B1
(HNRNPA2B1), heterogeneous nuclear ribonucleoprotein
C (HNRNPC), insulin like growth factor 2 mRNA binding
protein 1/2/3 (IGF2BP1/2/3), leucine rich pentatricopep-
tide repeat containing (LRPPRC), YTH domain contain-
ing 1/2 (YTHDC1/2), YTH m6A RNA binding protein
1/2/3 (YTHDF1/2/3)) were collected from the published
literature. The mRNA expression of the m6A regulators
was compared between 128 normal and 893 RCC samples.
Univariate-cox regression analyses were presented to inves-
tigate the correlation between the m6A regulators and RCC
prognosis in the TCGA dataset. The results were visual-
ized via forestplot package (version 2.0.1, https://cran.r-pro
ject.org/web/packages/forestplot) [20]. The expression of
prognostic m6A regulators was validated utilizing the Hu-
man Protein Altas (https://www.proteinatlas.org/).

2.2 Interactions between M6A Regulators
The m6A regulators were inputted into the STRING

online database (http://string-db.org/) [21]. The inter-
actions were visualized into a protein-protein interac-
tion (PPI) network via Cytoscape software (version 3.8.2,
https://cytoscape.org/) [22]. Pearson correlation analysis
was performed to evaluate the correlation of the mRNA ex-
pression of the m6A regulators across RCC samples.

2.3 Immunotherapy Response
Through Tumor Immune Dysfunction and Exclusion

(TIDE) approach, the response to immunotherapy was pre-
dicted following the tumor immune evasion mechanisms
[21]. The expression similarity between subtypes and the
patients who might respond to anti-PD-1 and anti-CTLA4
therapy was detected utilizing SubclassMapping (SubMap)
algorithm [23].

2.4 Unsupervised Clustering Analyses of 23 M6A
Regulators

Unsupervised clustering analyses were applied to es-
timate the number of unsupervised classes across 893
RCC samples based on the expression profile of 23
m6A regulators by ConsensuClusterPlus package (version
1.60.0, https://bioconductor.org/packages/release/bioc/htm
l/ConsensusClusterPlus.html) [24]. The classification ac-
curacy was assessed via t-distributed stochastic neighbor
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embedding (t-SNE) method. Survival differences among
clusters were compared by Kaplan-Meier curves and log-
rank tests.

2.5 Gene-Set Variation Analysis (GSVA)
In total, 50 hallmark pathways were retrieved from

theMolecular Signatures Database, whichmay comprehen-
sively reveal the major biological functions of humans [25].
The enrichment levels of above pathways were quantified
with GSVA package [26]. From the REACTOME dataset
(https://reactome.org/) [27] and the Gene set enrichment
analysis (GSEA) website (http://www.gsea-msigdb.org/gs
ea/index.jsp) [28], 32 oxidative stress-related genes were
collected. The activity of oxidative stress was estimated
with single-sample gene set enrichment analysis (ssGSEA)
function [29].

2.6 Evaluation of Stemness Features
Two stemness indicators: gene expression-based

stemness index (mRNAsi) and DNA methylation-based
stemness index (mDNAsi) were calculated in RCC samples
by building the stemness indexmodels with one-class logis-
tic regression (OCLR) machine-learning method [30]. The
stemness value was ranging from 0 (no gene expression) to
1 (complete gene expression).

2.7 Assessment of Immunological Characteristics
Cancer immunity cycle contains release of cancer cell

antigens (step 1), cancer antigen presentation (step 2), prim-
ing and activation (step 3), trafficking of immune cells to tu-
mors (step 4), infiltration of immune cells into tumors (step
5), recognition of cancer cells by T cells (step 6), and killing
of cancer cells (step 7) [31]. The activation of each step was
quantified in RCC samples by ssGSEA function.

2.8 Tumor Immune Landscape
Immune score and stromal score were obtained using

estimation of stromal and immune cells in malignant tu-
mours using expression data (ESTIMATE) algorithm based
on gene expression data, which represented the fractions of
immune and stromal cells in RCC samples [32]. The en-
richment levels of immune cells were estimated in RCC
samples through the ssGSEA algorithm according to the
expression matrix of gene symbols of tumor-infiltrating im-
mune cells (TIICs) [33]. The mRNA expression of immune
checkpoints was calculated in each RCC specimen.

2.9 Identification of M6A-Related DEGs
Differentially expressed genes (DEGs) were screened

between m6A clusters rough limma package [34]. Genes
with adjusted p < 0.05 were considered as DEGs. DEGs
shared by any two clusters were identified as m6A-related
DEGs.

2.10 Functional Enrichment Analyses
Functional enrichment analyses of m6A-related

DEGs were presented with clusterProfiler package (ver-

sion 4.9.0.2, https://bioconductor.org/packages/release/bi
oc/html/clusterProfiler.html), containing gene ontology
(GO) and kyoto encyclopedia of genes and genomes
(KEGG) [35]. GO categories comprised biological pro-
cesses (BPs), cellular components (CCs) and molecular
functions (MFs). Terms with adjusted p < 0.05 were
significantly enriched by m6A-related DEGs.

2.11 Generation of m6A Scoring System
RCC patients were clustered into distinct gene clusters

through applying unsupervised clustering analyses based on
the extracted m6A-related DEGs. By using ConsensuClus-
terPlus package, the number of gene clusters and their sta-
bility were determined across RCC samples. The accuracy
of the gene clusters was validated with t-SNE method. Sur-
vival differences among gene clusters were observed with
Kaplan-Meier curves and log-rank tests. Univariate-cox
regression analyses were carried out for extracting prog-
nostic m6A-related DEGs with p < 0.05 across RCC pa-
tients. These extracted DEGs were used for feature selec-
tion through recursive feature elimination (RFE) with ran-
dom forest, followed by 10-fold cross-verification utilizing
caret package. The m6A scoring system was quantified in
individual tumors based on the curated expression profiles
of the finally identified DEGs by conducting a principal
component analysis (PCA) utilizing the Boruta algorithm,
named the m6A score. Both principal component 1 and 2
were chosen as signature scores. The m6A score was quan-
tified according to the following formula: m6A score =

∑
(PC1i + PC2i), where i indicated the expression of m6A-
related DEGs.

2.12 Collection of Genomic and Clinical Information of
Immunotherapy Cohorts

The mRNA expression profiles and follow-up data of
patients with anti-PD-1 therapy were downloaded from the
GSE78220 dataset (N = 27) in the Gene Expression Om-
nibus (GEO, https://www.ncbi.nlm.nih.gov/geo/) reposi-
tory [36] and the literature reported by Liu et al. [37] (N
= 121). The prognostic value of m6A score was externally
validated in the two immunotherapy cohorts.

2.13 Gene Set Enrichment Analysis (GSEA)
Pathways were probed by GSEA package [28]. The

“c5.bp.v6.2.symbols.gm” gene set was set as the refer-
ence set, which was obtained from the molecular signatures
database. Pathways with adjusted p < 0.05 were signifi-
cantly associated with m6A score.

2.14 Assessment of Sensitivity of Chemotherapeutic Agents
By employing pRRophetic algorithm [38], the

half-maximal inhibitory concentration (IC50) values of
chemotherapy agents were estimated for RCCs on the
basis of the genomics of drug sensitivity in cancer (GDSC;
www.cancerrxgene.org/) cell line expression spectrum
[39] and mRNA expression profiling.
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2.15 Prediction of Drug Response

Drug sensitivity data of human cancer cell lines
(CCLs) were retrieved from the the Cancer Therapeutics
Response Portal (CTRP) (https://portals.broadinstitute.org
/ctrp) and Preservice Research Institute for Science and
Mathematics (PRISM) database (https://depmap.org/porta
l/prism/) datasets. Both two datasets offer the area under the
dose–response curve as an evaluation indicator for the re-
sponses to hundreds of compounds. Reduced area under the
curve (AUC) indicates higher sensitivity to a specific drug.
ByK-nearest neighbor method, the missing AUCswere im-
puted. Since the CCLs in both datasets were retrieved from
the cancer cell line encyclopedia (CCLE) project (https:
//portals.broadinstitute.org/ccle/) [40], expression profiling
data in CCLE project were employed for CTRP and PRISM
analyses.

2.16 Statistical Analyses

Statistical analyses were conducted with R packages
(version 4.0.2). Kaplan-Meier curves of overall survival
(OS), disease free survival (DFS), disease-specific survival
(DSS), progression free survival (PFS) and progression free
interval (PFI) were depicted for RCC patients and survival
differences between groups were compared with log-rank
tests. Comparison between two groups was presented via
student’s t test or Wilcoxon test. One-way ANOVA or
Kruskal-Wallis test was used for conducting comparison
between three or more groups. Two-sided p < 0.05 indi-
cated statistical significance.

3. Results
3.1 Systematic Analyses of Genetic Variation, Expression,
Prognostic Implication and Interactions of m6A
Regulators in RCC

This study collected three types of RCC ccRCC,
pRCC and chRCC from TCGA datasets and removed batch
effects after integration (Fig. 1A,B). Finally, 893 RCC
samples (chRCC (N = 65), ccRCC (N = 539) and pRCC
(N = 289) and 128 normal samples were included for
further analyses. In total, 23 m6A regulators were col-
lected and the prevalence of CNAs among these m6A
regulators was analyzed in RCC samples. In Fig. 1C,
YTHDC2 had the prevalent gain and IGFBP2, YTHDF2
and RBM15B had the widespread loss across RCC tis-
sues. The mRNA expression of these m6A regulators was
compared in RCC and normal specimens. We found that
most m6A regulators were abnormally expressed in RCC
compared to normal tissues (Fig. 1D), including writers
(CBLL1, METTL14, ZC3H13), eraser (FTO) and read-
ers (FMR1, HNRNPA2B1, HNRNPC, IGF2BP1/2/3, LRP-
PRC, YTHDC1/2, YTHDF2/3). We also compared the
expression of m6A regulators in stage I&II and III&IV
RCC tissues. As depicted in Fig. 1E, writers (CBLL1,
METTL14, METTL3, RBM15B, ZC3H13), and read-
ers (FMR1, IGF2BP1, IGF2BP3, LRPPRC, YTHDC1,

YTHDF1) displayed remarkable differences between stage
I&II and III&IV. Additionally, we noted that there were sig-
nificant differences in the expression of writers (RBM15,
WTAP), erasers (ALKBH5, FTO) and readers (HN-
RNPA2B1, HNRNPC, IGF2BP2/3, YTHDC1, YTHDF2)
among three RCC types ccRCC, pRCC and chRCC
(Supplementary Fig. 1). Through Submap algorithm, we
predicted the responses to anti-PD-1 and anti-CTLA4 ther-
apy. As a result, among three RCC types, ccRCC patients
were more likely to respond to anti-PD-1 therapy. There
was no significant difference in the response to anti-CTLA4
therapy among three RCC types (Supplementary Fig. 1).
By univariate-cox regression analyses, prognostic implica-
tion of each m6A regulator was evaluated across RCC pa-
tients. METTL14, ZC3H13, FTO, LRPPRC and YTHDC1
were protective factors of RCC, while HNRNPA2B1 and
IGF2BP1/2/3 acted as risk factors of RCC (Fig. 1F). Further
multivariate cox regression analysis showed thatMETTL14
and LRPPRC were protective factors, while IGF2BP3 and
HNRNPA2B1 were identified as risk factors, which was
consistent with the results of univariate-cox regression anal-
ysis (Supplementary Fig. 2). Additionally, we evaluated
the relationships between m6A regulators and DFS, DSS,
and PFS outcomes. Our results demonstrated that the m6A
regulators IGF2BP1/3 were significantly associated with
DFS, DSS, and PFS, indicating that theymight contribute to
RCC progression (Fig. 1G–I). The PPI network revealed the
tight interactions among the m6A regulators (Fig. 1J). Also,
there were significant correlations between the m6A regu-
lators at the mRNA levels across RCC samples (Fig. 1K).
Above data highlighted the important implications of the
interactions of m6A regulators in RCC progression.

3.2 Protein Expression of Prognostic m6A Regulators and
Interactions of M6A Regulators with Oxidative Stress in
RCC

Using the human protein altas database, we veri-
fied the expression of prognostic m6A regulators in RCC
and normal kidneys. As depicted in Fig. 2A, METTL14,
ZC3H13, HNRNPA2B1 were lowly expressed in RCC than
normal kidneys. Meanwhile, FTO, LRPPRC, YTHDC1,
IGF2BP1/2/3were highly expressed in RCC comparedwith
normal kidneys. We also evaluated the interactions of m6A
regulators with 32 oxidative stress-related genes in RCC.
In Fig. 2B, m6A regulators was significantly linked to most
oxidative stress-related genes, indicating that the activity of
oxidative stress might be modulated by m6A modification
during RCC progression.

3.3 The M6A Modification Subtypes with Different
Prognosis, Activation of Pathways, Cancer Stemness and
Somatic Copy Number Alterations (SCNA)

By performing consensus clustering analysis, we clas-
sified 893 RCC samples into five m6A modification sub-
types based on the expression profile of the m6A regula-
tors (Fig. 3A), named m6A modification subtype A (N =
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Fig. 1. Systematic analyses of genetic variation, expression, prognostic implication and interactions of N6-methyladenosine (m6A)
regulators in renal cell carcinoma (RCC). (A,B) Before and after removing batch effects by integrating three types of RCC: clear
cell RCC (ccRCC), papillary RCC (pRCC) and chromophobe RCC (chRCC) from the Cancer Genome Atlas (TCGA) datasets. PCA,
Principal component analysis. (C) The frequency of copy number variation (CNV) (red: gain and blue: loss) of m6A regulators across
RCC samples. (D) An overview of the mRNA expression of m6A regulators in RCC and normal specimens. p values were calculated
by unpaired student’s t test, *p< 0.05 and ****p< 0.0001. Red: up-regulation and green: down-regulation. (E) The mRNA expression
of m6A regulators in stage I&II and stage III&IV RCC cases. *p < 0.05, ***p < 0.001 and ****p < 0.0001. (F–I) Univariate-cox
regression analyses of the correlation between m6A regulators and RCC patients’ overall survival (OS), disease free survival (DFS),
disease-specific survival (DSS), and progression free survival (PFS). (J) The protein-protein interaction (PPI) network of writers (green),
erasers (blue) and readers (red). (K) The Pearson correlations between m6A regulators at the mRNA levels across RCC samples. Red:
positive correlation and green: negative correlation, *p < 0.05, **p < 0.01 and ***p < 0.001.
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Fig. 2. Protein expression of prognostic m6A regulators and interactions of m6A regulators with oxidative stress in RCC. (A)
Validation of the expression of prognostic m6A regulators in RCC and normal kidneys from the Human Protein Altas database. Scale
bar, 200 µm. (B) Heatmap of the interactions of m6A regulators and oxidative stress-related genes in RCC. Red: positive correlation and
green: negative correlation, *p < 0.05; **p < 0.01.

85), B (N = 160), C (N = 105), D (N = 237) and E (N =
292). The t-SNE confirmed the accuracy of this classifi-
cation (Fig. 3B). Survival analyses were carried out among
the five m6A modification subtypes. In Fig. 3C, we found
that there were significant differences in prognosis among

subtypes, where subtype A exhibited the worst survival out-
comes, subtype E and B had the prominent survival ad-
vantage, and subtype C and D had the moderate survival
time. The mRNA expression of the m6A regulators was
compared among subtypes. As a result, subtype C had the

6
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Fig. 3. Construction of the m6A modification subtypes with different prognosis, activation of pathways, cancer stemness and
somatic copy number alteration (SCNA) across RCC samples. (A) Consensus clustering analyses for identifying the best clustering
number (k = 5) across RCC samples based on the expression matrix of m6A regulators. (B) The t-SNE for assessing the clustering
accuracy across RCC samples. (C) Survival analyses of RCC patients in different m6A modification subtypes with log-rank tests. (D)
An overview of the mRNA expression of m6A regulators in each m6A modification subtype. Red: up-regulation and green: down-
regulation. (E) An overview of the activation levels of the 50 main signaling pathways in RCC specimens from five m6A modification
subtypes. (F) The mDNAsi score, (G) mRNAsi score and (H) SCNA level among different m6A modification subtypes. p values were
determined with Kruskal-Wallis test.
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lowest expression of the m6A regulators, followed by sub-
type D (Fig. 3D). Most m6A regulators were up-regulated
in subtype A, B and E. To validate the reliability of this m6A
modification classification, the E-MTAB-1980 dataset was
adopted. Consistently, ccRCC patients were clearly classi-
fied into five m6A modification subtypes (Supplementary
Fig. 3). The notable survival difference among the sub-
types was also proven (Supplementary Fig. 3). The ac-
tivation of the major biological processes was quantified
in each RCC specimen vis ssGSEA. Almost all pathways
were inactivated in subtype C and D (Fig. 3E). However,
most pathways were activated in subtype A, B and E. Can-
cer stemness was quantified by two indices: mDNAsi and
mRNAsi. In Fig. 3F, subtype B had the lowest mDNAsi
value while subtype E had the highest mDNAsi value. But
mRNAsi value was the lowest in subtype E (Fig. 3G). The
somatic copy number alteration (SCNA) was observed in
each RCC specimen. Among subtypes, subtype A exhib-
ited the highest SCNA level (Fig. 3H).

3.4 The M6A Modification Subtypes with Distinct
Oxidative Stress and Tumor Immunity

By ssGSEAmethod, we quantified the infiltration lev-
els of immune cells in RCC tissues. As a result, subtype A
had the highest infiltration levels of most tumor-infiltrating
immune cells, but subtype B displayed the lowest infiltra-
tion levels of most immune cells (Fig. 4A,B).With the same
approach, the activity of oxidative stress was quantified.
The significant heterogeneity in oxidative stress was found
among five subtypes (Fig. 4C). Among them, subtype B had
the lowest activity of oxidative stress. The mRNA expres-
sion of immune checkpoints PD-1 and PD-L1 was com-
pared among subtypes. We found that patients in subtype A
exhibited the highest mRNA expression of PD-1 (Fig. 4D)
and PD-L1 (Fig. 4E). The enrichment levels of each step
in the cancer immunity cycle were evaluated across RCC
samples. Our results showed that most steps exhibited the
highest activation in subtype A, while most steps exhibited
the lowest activation in subtype B (Fig. 4F). The overall
infiltrations of immune cells and stromal cells were cal-
culated by ESTIMATE method. As expected, the highest
immune score and stromal score were found in subtype A
(Fig. 4G,H). Meanwhile, we found that there were the low-
est immune score and stromal score in subtype B. Further-
more, subtype A displayed the lowest tumor purity while
the highest tumor purity was detected in subtype B (Fig. 4I).
Microsatellite instability (MSI) was quantified and com-
pared among m6A modification subtypes. In Fig. 4J, our
data showed that there was the lowest MSI level in subtype
E but there was the highest MSI level in subtype B.

3.5 Exploration of Biological Implications of m6A-Related
DEGs

By comparing the DEGs between m6A modification
subtypes, we finally identified 733 m6A-related DEGs
(Fig. 5A; Supplementary Table 1). GO enrichment

analyses indicated that these m6A-related DEGs were
significantly correlated to methylation modification pro-
cesses such as histone modification, covalent chromatin
modification and histone H3-H4 methylation (Fig. 5B).
Meanwhile, we found that the m6A-related DEGs were
markedly enriched in mRNA modification pathways (such
as mRNA surveillance pathway) and carcinogenic path-
ways (such as renal cell carcinoma, TGF-beta signaling
pathway and central carbon metabolism in cancer; Fig. 5C),
which confirmed that m6A modification played a non-
negligible role in the tumor progression. Among 733 m6A-
related DEGs, 512 were significantly associated with RCC
prognosis according to univariate-cox regression analyses
(Supplementary Table 2).

3.6 Construction of the m6A Genomic Subtypes
Characterized by Different Survival Outcomes

To further validated the regulation mechanism of m6A
modification, we conducted unsupervised clustering analy-
ses based on the obtained five m6A cluster-related genes.
On the basis of the expression profiling of the 512 prognos-
tic m6A-related DEGs, 893 RCC samples were clustered
into four m6A genomic subtypes by unsupervised cluster-
ing analyses, named m6A genomic subtype A (N = 226), B
(N = 318), C (N = 140) and D (N = 195; Fig. 5D). The t-
SNE plots confirmed that there was a distinct difference on
transcriptome profiles among the four m6A genomic sub-
types (Fig. 5E). Prognostic analyses showed that there was
a significant difference in survival outcomes among m6A
genomic subtypes (Fig. 5F), where m6A genomic subtype
B had the most prominent survival advantage and m6A ge-
nomic subtype A exhibited the poorest survival outcomes.

3.7 Oxidative Stress, TME Cell Infiltration and
Transcriptome Features in Distinct m6A Genomic
Subtypes

To explore the biological processes of the four m6A
genomic subtypes, we used GSVA to analyze the activity
of the top 50 signaling pathways. In Fig. 6A, m6A genomic
subtype B and D displayed the activation of most pathways,
while m6A genomic subtype A and C had the inactivation
of most pathways. Among four m6A genomic subtypes,
subtype D displayed the highest activity of oxidative stress
(Fig. 6B). The roles of the m6A genomic subtypes in regu-
lating the TME immune infiltration were further analyzed.
We found that several antitumor immune cells such as ac-
tivated CD8 T cells, activated CD4 T cells, central mem-
ory CD4 T cells, central memory CD8 T cells, effector
memory CD4 T cells, effector memory CD8 T cells, ac-
tivated dendritic cells and natural killer T cells displayed
the relatively high infiltration levels in m6A genomic sub-
type A (Fig. 6C). Meanwhile, the most protumor immune
cells such as immature dendritic cells, and plasmacytoid
dendritic cells exhibited the low infiltration levels in m6A
genomic subtypeA andC aswell as the high infiltration lev-
els in m6A genomic subtype B and D. The activity of cancer
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Fig. 4. Assessment of the m6A modification subtypes with distinct oxidative stress and tumor immunity across RCC samples.
(A,B) The infiltration levels of immune cells among five m6A modification subtypes. (C) Activity of oxidative stress among five m6A
modification subtypes. (D,E) The mRNA expression of immune checkpoints programmed cell death 1 (PD-1) and programmed cell
death ligand 1 (PD-L1) among five m6A modification subtypes. (F) The activation of each step in the cancer immunity cycle among
five m6A modification subtypes. (G–I) Immune score, stromal score, and tumor purity among five m6A modification subtypes. (J) The
microsatellite instability (MSI) level among five m6A modification subtypes. p values were calculated with Kruskal-Wallis test, ns: not
significant; *p < 0.05; **p < 0.01; ***p < 0.001.
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Fig. 5. Establishment of the m6A genomic subtypes with different survival outcomes across RCC samples. (A) Venn diagram
for the m6A-related differentially expressed genes (DEGs) by comparing the DEGs between m6A modification subtypes. (B,C) Gene
ontology (GO) and kyoto encyclopedia of genes and genomes (KEGG) enrichment results of the m6A-related DEGs. The length of the
rectangle indicated the number of enriched genes in a specific term. The more the color tended to red, the smaller the adjusted p value.
(D) The four m6A genomic subtypes across RCC samples based on the m6A-related DEGs via unsupervised clustering analyses. (E)
The t-SNE for the transcriptome profiles among the four m6A genomic subtypes. (F) Kaplan-Meier survival curves for the four m6A
genomic subtypes across RCC samples. p values were determined with log-rank tests.

immunity cycle was also analyzed. As a result, priming and
activation of the immune system, recognition of cancer cells
by T cells and killing of cancer cells had the highest activity
in m6A genomic subtype A (Fig. 6D). Above steps exhib-
ited the relatively low activity in m6A genomic subtype B
andC. This indicated thatm6Agenomic subtypeAmight be
an inflammatory phenotype, while m6A genomic subtype
B and C might be non-inflammatory phenotypes. Also, we
quantified the mRNA expression of immune checkpoints.
As expected, PD-1 expression was the highest in m6A ge-
nomic subtype A, while its expression was the lowest in
m6A genomic subtype C (Fig. 6E). Furthermore, m6A ge-
nomic subtype B had the highest PD-L1 expression, while
m6A genomic subtype C had the lowest PD-L1 expression
(Fig. 6F). These data indicated that m6A genomic subtype
A and B might be more sensitive to anti-PD-1/PD-L1 ther-
apy.

3.8 Generation of m6A Scoring System and Assessment of
the Prognostic Value of m6A Score in RCC

Due to the heterogeneity and complexity of m6A
methylation modification, a m6A scoring system was gen-

erated for quantifying m6A modification subtypes of each
RCC patient based on the expression profiling of the prog-
nostic m6A-related DEGs that were identified by PCA
method using the Boruta algorithm, named m6A score
(Fig. 7A). For better illustrating the clinical value of m6A
score, this study analyzed the distribution of m6A score in
different clinicopathological characteristics (Fig. 7B). Our
data showed that patients with age ≥65 had the signifi-
cantly lower m6A score compared to those with age <65.
There was a significantly decreased m6A score in male pa-
tients than female patients. With the increase of grade, stage
and T, m6A score was gradually reduced across RCC spec-
imens. Metastatic patients had significantly lower m6A
score than non-metastatic patients. Patients with N1-2 dis-
played markedly reduced m6A score in comparison to those
with N0. In addition, we also explored the relationship be-
tween clinical factors and m6A score. Low m6A score was
corresponding to more dead cases (p < 0.001), advance
stage and grade cases (Supplementary Fig. 4). Based on
the median m6A score, RCC patients in the TCGA cohort
were separated into high and low m6A score group. Sur-
vival analysis were then presented for comparing the prog-
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Fig. 6. The m6A genomic subtypes characterized by oxidative stress, tumor microenvironment (TME) cell infiltration and tran-
scriptome features across RCC samples. (A) An overview of the activity of the major 50 signaling pathways in RCC specimens from
the four m6A genomic subtypes. Red: activation and green: inactivation. (B) Activity of oxidative stress in the four m6A genomic
subtypes. (C) The enrichment scores of tumor-infiltrating immune cells in the four m6A genomic subtypes. (D) The activity of each step
in the cancer immunity cycle in the four m6A genomic subtypes. (E,F) The mRNA expression of immune checkpoints PD-1 and PD-L1
in the four m6A genomic subtypes. p values were calculated with Kruskal-Wallis test, ns: not significant; *p < 0.05; **p < 0.01; ***p
< 0.001.

nostic divergence between groups. As a result, patients with
high m6A score displayed the prominent advantage in OS,
DSS and PFI in comparison to those with low m6A score
(Fig. 7C–E). Consistently, better OS outcomes were ob-

served in high m6A score group relative to low m6A score
group in the E-MTAB-1980 dataset (Fig. 7F). The prog-
nostic value of m6A score was also externally verified in
the two anti-PD-1/PD-L1 immunotherapy cohorts. Both in
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the GSE78220 dataset and the dataset reported by Liu et al.
[37], high m6A score indicated undesirable outcomes than
lowm6A score among patients who received anti-PD-1/PD-
L1 therapy (Fig. 7G,H). Finally, we estimated the correla-
tion between m6A cluster, genomic cluster and m6A score
using sankey plot (Supplementary Fig. 5). Most of cases
from m6A cluster E and genomic cluster B were attribute to
high m6A score, which can partly explain why m6A cluster
E and genomic cluster B associated with a better survival
outcome.

3.9 Correlation between m6A Score and Signaling
Pathways, Tumor Immunity and Oxidative Stress in RCC

The activity of themajor signaling pathways was com-
pared in high- and low-m6A score RCC patients. We
found that most pathways such as carcinogenic pathways
and inflammation-related pathways were distinctly acti-
vated in high-m6A score group compared to low-m6A
score group. Meanwhile, in comparison to high-m6A score
group, KRAS signaling, coagulation and myogenesis were
distinctly activated in low-m6A score group (Fig. 8A). Con-
sistently, GSEA results revealed that apoptosis, focal ad-
hesion, insulin signaling pathway, MAPK signaling path-
way, oocyte meiosis, pathway in cancer andWNT signaling
pathway were significantly up-regulated in high-m6A score
samples than low-m6A score samples (Fig. 8B). No path-
ways were significantly enriched in low-m6A score spec-
imens. Furthermore, we evaluated the differences in tu-
mor immunity between high- and low-m6A score groups.
Most immune checkpoints such as LAIR1, HAVCR2 and
ICOS displayed the higher mRNA expression in high-m6A
score group compared to low-m6A score group (Fig. 8C).
TNFRSF18, TNFSF14, TMIGD2, LAG3 and CD70 were
significantly up-regulated in low-m6A score group than
high-m6A score group. There were increased infiltration
levels of central memory CD8 T cell, eosinophil, effector
memory CD4 T cell, memory B cell, type 2 T helper cell,
mast cell, neutrophil, natural killer cell, plasmacytoid den-
dritic cell and immature dendritic cell in high-m6A score
group than low-m6A score group (Fig. 8D). Meanwhile, ac-
tivated CD8 T cell, CD56dim natural killer cell, monocyte,
MDSC and activated B cell exhibited the higher infiltra-
tion levels in low-m6A score group in comparison to high-
m6A score group. Most oxidative stress-related genes had
higher expression levels in high- than low-m6A score group
(Fig. 8E).

3.10 Drug Sensitivity and Potential Druggable Targets in
High- and Low-m6A Score RCC Patients

IC50 values of four approved targeted drugs includ-
ing axitinib, pazopanib, sorafenib and sunitinib were es-
timated in each RCC sample. The differences in IC50
values were compared between high- and low-m6A score
RCC patients. In comparison to low-m6A score group,
there were significantly reduced IC50 values of axitinib, pa-
zopanib and sorafenib in high-m6A score group (Fig. 9A–

C). This indicated that RCC patients with high-m6A score
were more sensitive to axitinib, pazopanib and sorafenib.
Conversely, lower IC50 value of sunitinib was found in
low-m6A score group compared to high-m6A score group
(Fig. 9D), demonstrating that low-m6A score patients were
more likely to benefit from sunitinib. Potential therapeu-
tic agents were predicted for low-m6A score patients. Two
drug dataset (CTRP and PRISM) were adopted to identify-
ing candidate CTRP and PRISM-derived agents with higher
drug sensitivity in low-m6A score patients. Differential
drug response analyses between high- and low-m6A score
groups were carried out for predicting drugs with reduced
AUCs in low-m6A score patients. As a result, six CTRP-
derived compounds (CR-1-31B, daporinad, leptomycin B,
methotrexate, oligomycin A and ouabain; Fig. 9E) and
ten PRISM-derived compounds (bosutinib, gemcitabine,
GSK1070916, halobetasol-propionate, mesna, OTX015,
PD-0325901, Ro-4987655, romidepsin and vincristine;
Fig. 9F) had reduced AUCs in low-m6A score group com-
pared to high-m6A score group, indicating that they could
become potential therapeutic agents against low-m6A score
patients. Additionally, potential druggable targets were
predicted for low-m6A score patients. As a result, we found
that m6A score was positively associated with CERES
scores of four druggable targets (NMU, MOCOS, UCHL1,
and RARRES1), with negative relationships with their pro-
tein expression (Fig. 9G,H). Therefore, NMU, MOCOS,
UCHL1, and RARRES1 might become potential druggable
targets for low-m6A score patients.

4. Discussion
RCC contains distinct malignancies with different

pathologic characteristics and different molecular pathways
[41]. Due to no obvious symptoms, 30% RCC patients
have metastasis at diagnosis. Typically, most patients ex-
perience undesirable survival outcomes [41]. RCC initia-
tion and development involve diverse and complex mecha-
nisms. Hence, based on the precise mechanisms underlying
RCC, development of novel therapeutic strategies is of im-
portance in clinical practice.

M6A methylation modifications mediated by methyl-
transferases, demethylases and binding proteins act as crit-
ical determinants in mRNA metabolism [42]. Emerging
evidence suggests that m6A methylation modifications oc-
cupy 80% of RNA methylation modifications, which may
mediate diverse malignancy-associated processes like tu-
morigenesis, metastasis, and immune escape [43]. For ex-
ample, m6A methyltransferase METTL14 mediates tumor
immune and development of ccRCC [44]. In this study,
we found that most m6A regulators displayed abnormal ex-
pression in RCC compared with normal kidneys. Further-
more, there were remarkable differences in the expression
of most m6A regulators between the early and late stage of
RCC, demonstrating the dynamic process of m6A modifi-
cation. The close interactions between the m6A regulators

12

https://www.imrpress.com


Fig. 7. Generation of m6A scoring system and assessment and external validation of the prognostic value of m6A score for RCC
patients. (A) Identification of the final m6A-related DEGs that were used for construction of m6A score by principal component analysis
(PCA) method utilizing Boruta algorithm. (B) The distribution of m6A score in different clinicopathological characteristics across RCC
patients, including age, sex, stage, grade and T, N, M. p values were determined with Wilcoxon or Kruskal-Wallis tests. (C–E) Kaplan-
Meier curves of OS, DSS and PFI for RCC patients with high and low m6A score in the TCGA cohort. (F) Kaplan-Meier curves of OS
between high and low m6A score ccRCC patients in the E-MTAB-1980 cohort. (G,H) Kaplan-Meier curves of OS between high and low
m6A score groups for patients treated with anti-PD-1/PD-L1 therapy in the GSE78220 dataset and the dataset reported by Liu et al [37].

were found according to PPI and pearson correlation anal-
yses, indicating that their interactions might participate in
mediating RCC progression [45].

Here, based on the expression matrix of 23 m6A
regulators, we conducted five distinct m6A modification
subtypes with different biological functions, survival out-
comes, oxidative stress, TME features, cancer stemness and
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Fig. 8. Correlation between m6A score and signaling pathways, tumor immunity and oxidative stress in RCC samples. (A) An
overview of the correlation between m6A score and the enrichment score of the major 50 signaling pathways in RCC samples. The m6A
scores from left to right gradually increased. Red indicated high activation of a specific pathway and green indicated low activation of
a specific pathway. (B) Gene set enrichment analysis (GSEA) for the activated signaling pathways in high-m6A score samples. (C) An
overview of the correlation between m6A score and the mRNA expression of immune checkpoints in the RCC cohort. Red represented
high expression and green represented low expression for a specific immune checkpoint. (D) An overview of the correlation between
m6A score and the infiltration levels of immune cells in RCC specimens. Red indicated high infiltration level and green represented
low infiltration level for a specific immune cell. (E) The mRNA expression of oxidative stress-related genes in high and low m6A score
groups. Comparisons between two groups were analyzed with Wilcoxon test, *p < 0.05; **p < 0.01; ***p < 0.001.
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Fig. 9. Comparison of the response to drugs in high- and low-m6A score RCC patients. (A–D) Violin plots of the estimated
IC50 values of chemotherapy drugs including axitinib, pazopanib, sorafenib and sunitinib in high- and low-m6A score RCC patients.
(E) Differential drug response analyses of six Cancer Therapeutics Response Portal (CTRP)-derived compounds in high- vs low-m6A
score RCC groups. Comparisons between two groups were analyzed with Wilcoxon test, ***p < 0.001. (F) Differential drug response
analyses of ten PRISM-derived compounds in high- vs low-m6A score RCC groups. Comparisons between two groups were analyzed
with Wilcoxon test, ***p < 0.001. (G,H) Associations between m6A score and CRISPR-Cas9 essentiality screens (CERES) score and
protein expression of druggable targets.
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tumor immunity across RCC patients. Furthermore, a m6A
scoring system was developed for quantifying the m6A
modification patterns for each RCC patient, which might
be applied for predicting prognosis, oxidative stress, im-
munotherapy responses, sensitivity to chemotherapy drugs
and designing novel agents. This scoring system possessed
the advantages of focusing the scores on the set with the
largest block of well associated (or anti-associated) genes
in the set; meanwhile, down-weighting contributions from
genes which do not track other set members. High m6A
score indicated favorable survival outcomes of RCC pa-
tients. Selecting RCC subjects who will respond specif-
ically to ICIs is still a challenge. Distinctive biomarkers
are urgently needed to predict clinical outcomes and re-
sponses to ICIs. The prognostic value of m6A score was
confirmed in two anti-PD-1/PD-L1 therapy cohorts. Most
immune checkpoints exhibited the up-regulation in RCC
patients with high m6A score, indicating that the group of
patients might benefit from ICIs.

Molecularly targeted treatment is prone to drug re-
sistance [41]. Here, we found that high m6A score in-
dicated higher sensitivity to axitinib, pazopanib and so-
rafenib, while low m6A score were more sensitive to
sunitinib. This indicated that m6A score might be ap-
plied for estimating the drug sensitivity for RCC patients.
Due to poor survival outcomes of patients with low m6A
score, we predicted six CTRP-derived compounds (CR-1-
31B, daporinad, leptomycin B, methotrexate, oligomycin
A and ouabain) and ten PRISM-derived compounds (bosu-
tinib, gemcitabine, GSK1070916, halobetasol-propionate,
mesna, OTX015, PD-0325901, Ro-4987655, romidepsin
and vincristine) that could become potential therapeutic
agents against low-m6A score patients. Nevertheless, more
experiments will be required for verifying the therapeu-
tic efficacy of above agents in RCC. In addition, the im-
munotherapy cohorts of RCC patients are lack. Therefore,
we only validated the significance of m6A score in predict-
ing the response of anti-PD-1/PD-L1 immunotherapy in the
GSE78220 dataset and the dataset reported by Liu et al.
[37]. Yet, the immunotherapy results were not in line with
our prior results, likely due to the tumor heterogeneity and
limited sample size of these datasets. Thus, in our future
studies, the m6A modification subtypes and score will be
validated in a prospective and large number cohort.

5. Conclusions
Collectively, m6A regulator-based methylation pat-

terns and quantification of m6A score exerted key func-
tions in prognosis stratification, oxidative stress, TME, tu-
mor immunity and immunotherapy responses, which may
assist clinicians to achieve individualized therapy for RCC
patients.
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