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Abstract

Primary liver cancer is one of the most common malignant tumors with high mortality and increasing incidence worldwide. Currently,
chemotherapy is an important comprehensive treatment for moderate or advanced liver cancer. Despite the effective therapeutic ef-
fects initially achieved by chemotherapy, the high phenotypic and molecular heterogeneity of liver cancer cells facilitates resistance to
conventional chemotherapy or targeted therapy and even leads to multidrug resistance (MDR), which is one of the major obstacles for
clinical chemotherapy. Drug resistance exhibits multiple and complex molecular mechanisms to antagonize therapy under pharmaco-
logical pressure, including overexpression of drug efflux transporters, downstream adaptive response (such as apoptosis, autophagy, and
endoplasmic reticulum stress), dysfunction of DNA damage repair (DDR), epigenetic modification, tumor microenvironment (TME)
as well as extracellular matrix (ECM). In this paper, we summarize the recent research progress and intervention strategies for drug
resistance in hepatocellular carcinoma (HCC), which will provide a promising therapeutic strategy for overcoming MDR in liver cancer.

Keywords: chemotherapy; hepatocellular carcinoma; multidrug resistance; tumor microenvironment; targeted therapy; immunotherapy

1. Introduction
The main pathological types of primary liver

cancer are hepatocellular carcinoma (HCC), intrahep-
atic cholangiocarcinoma (ICC), and combined HCC-
cholangiocarcinoma (cHCC-CC). Of these, HCC is the
most common and fatal cancer, accounting for approxi-
mately 80%–85% of primary liver cancer cases [1]. The
initiation and progression of HCC is a complex process
involving various modifications to multiple molecular
pathways, as well as altered gene expression [2]. Ethnic
and regional differences also have a major impact on the
incidence and mortality of HCC. Inadequate screening
may result in the late diagnosis of HCC and hence poor
prognosis [3].

HCC is an innately drug-resistant tumour and HCC
patients are generally insensitive to chemotherapy drugs.
They are prone to develop multidrug resistance (MDR) dur-
ing chemotherapy, leading to reduced survival and poor
prognosis [4–6]. The two main types of drug-resistance in
cancer patients are caused by intrinsic factors and exoge-
nous factors. Intrinsic resistance, also called primary resis-
tance, is the consequence of genetic alterations present in
tumour cells before treatment. This includes drug resistance
attributed to cancer stem cells (CSCs) [7], and increased
expression of drug efflux transporters that recognize and
remove chemotherapeutic compounds [8]. In exogenous

resistance, also known as acquired resistance, the cancer
cells are initially sensitive but then develop drug resistance
after a period of chemotherapy [8,9]. Recently, the emer-
gence of targeted therapy such as sorafenib has become an
important treatment strategy for HCC. Although targeted
drugs have led to significantly improved overall survival of
HCC patients, most will eventually develop drug resistance
through secondary mutations or via constitutive activation
of bypass signal pathways. In the present review, we sys-
tematically summarize the underlying mechanisms and in-
tervention strategies for drug resistance in liver cancer, and
provide insights into possible future therapeutic targets for
HCC.

2. Common Anticancer Drugs that Cause
Resistance in Liver Cancer

Currently, the main drug therapies for liver can-
cer are chemotherapy, targeted therapy and immunother-
apy. The conventional chemotherapeutic drugs used in
the clinic are 5-fluorouracil (5-FU), cisplatin, and adri-
amycin (ADM). Sorafenib, lenvatinib, regorafenib, tivan-
tinib and cabozantinib are the commonly used molecu-
lar targeted drugs. Immunotherapy for HCC is a rela-
tively new management option that mainly involves im-
mune checkpoint inhibitors/monoclonal antibodies against
programmed cell death protein 1 (PD-1), PD-1 ligand (PD-
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L1) and receptor cytotoxic T lymphocyte antigen-4 (CTLA-
4). These include drugs such as nivolumab, MED14736,
pembrolizumab, tremelimumab and ipilimumab. However,
acquisition of MDR to the above agents may cause thera-
peutic failure during HCC treatment.

2.1 Chemotherapy Drugs
Adriamycin/Doxorubicin (ADM) is a DNA topoiso-

merase II inhibitor from the anthracycline family of anti-
cancer drugs. The targets of ADM are human type IIA
topoisomerases (Top2α and Top2β), which catalyse the un-
winding of DNA for transcription and replication. ADM
can therefore prevent DNA replication and cause DNA
damage in cancer cells [10,11]. In clinical trials, HCC pa-
tients requiring systemic therapy were given ADM in addi-
tion to first-line sorafenib for disease treatment [12]. This
combination increased patient survival time, but only by
about three months [12]. Moreover, high doses of ADM
may not help with cancer treatment. A clinical trial found
that patients taking 100 mg of ADM showed no benefit
compared to 50 mg of ADM [13]. Furthermore, the ad-
dition of ADM to cisplatin/5-FU hepatic arterial infusion
chemotherapy (CF-HAIC) did not improve efficacy or de-
lay tumour progression [14]. This indicates that ADM
is effective, but not the first choice in the treatment of
HCC. However, the efficacy of ADM-based chemotherapy
is compromised by the emergence of ADM-resistant cancer
cells. For example, HCC cells will developADM resistance
due to increased expression of P-gp, BCRP, and p53 mutant
protein [11,15,16]. In addition, preclinical data indicate that
modulation of autophagy can reverse ADM resistance [17].

5-FU is a heterocyclic aromatic chemotherapeutic
agent that is widely used for HCC treatment. 5-FU targets
thymidylate synthase (TS), leading to inhibition of thymi-
dine formation required for DNA synthesis and hence the
inhibition of cell proliferation [18]. In clinical practice for
the treatment of gastrointestinal cancers, 5-FU is often com-
bined with oxaliplatin and calcium folinate as FOLFOX
therapy [19]. Clinical trial data showed that the median
survival of HCC patients after FOLFOX4 therapy was 8.2
months [19]. Another clinical trial using modified FOL-
FOX6 (mFOLFOX6) showed that the median survival of
patients with metastatic colorectal cancer (mCRC) treated
with this regimen was 8.7 months [20]. Combined treat-
ment with 400 mg per day of sorafenib and mFOLFOX6
was not effective [20]. However, drug resistance to 5-FU is
readily achieved during the treatment of liver cancer. Hong
and colleagues found that GLIPR1 promoted the resistance
of HCC to 5-FU by activating the PI3K/PDK1/ROCK1
pathway [21]. In addition, Li et al. [22] reported that
ALCL3 attenuated 5-FU-induced apoptosis by activating
ERK signalling. On the other hand, ALCL3 triggered cell
cycle arrest through downregulation of p-Chk2Thr68, even-
tually leading to 5-FU drug resistance in liver cancer [22].

Cisplatin is the first metal-based anticancer drug used
for liver cancer treatment [23]. This drug interferes with
the DNA repair mechanism, thereby resulting in DNA dam-
age and inducing apoptosis [24]. An objective response
rate (ORR) of 73.2% was achieved using the newly de-
veloped technique of balloon-occluded, alternate infusion
of cisplatin [25], which also proved to be a safe and ef-
fective method. However, the long-term use of cisplatin
can predispose to complications such as deafness. A clin-
ical trial showed that sodium thiosulfate given 6 hours
after cisplatin chemotherapy could reduce the incidence
of cisplatin-related hearing loss in children with hepa-
toblastoma without affecting their overall survival [26].
However, a previous study found that chemotherapeutic
agents can induce the expression of a peptide (circMRPS35-
168AA) that promotes cisplatin resistance in HCC [27], in-
dicating that HCC patients are at risk of developing resis-
tance. Moreover, downregulation of miR-33a-5p attenu-
ated cisplatin sensitivity in MHCC97L and Hep3B cells,
suggesting this miRNAmay be a potential target for revers-
ing resistance during HCC treatment [28].

2.2 Targeted Drugs

Targeted drugs specifically target tumour cells, rather
than killing cells indiscriminately. In addition, such drugs
have less harmful side-effects on normal tissues. Com-
pared to chemotherapy drugs, targeted drugs are therefore
safer and have fewer side-effects. In addition, the targeted
drug delivery system (TDDS) developed in recent years
also helps to specifically transport targeted drugs to cancer
sites, thus reducing toxicity while killing cancer cells at the
same time. Targeted drugs therefore have the advantages of
specificity, safety and fewer side-effects, as well as being
suitable for combined treatment with other types of drugs.
The resistance of targeted drugs that are commonly used in
liver cancer are summarized below.

2.2.1 Sorafenib

Sorafenib in an oral multi-kinase inhibitor that can fa-
cilitate apoptosis, mitigate angiogenesis, and suppress tu-
mour cell proliferation. It does this by targeting BRAF,
Raf-1, Flt3, VEGFR-2/3 and PDGFR-β. Currently, so-
rafenib is used in the clinic as first-line therapy for late-
stage HCC [29]. In clinical trials, patients treated with so-
rafenib had a median survival of 10.7 months, which was
3 months longer than placebo [30]. Additionally, a clini-
cal trial in the Asia-Pacific region showed a median overall
survival of 6.5 months for HCC patients treated with so-
rafenib, compared to 4.2months for those receiving placebo
[31]. Therefore, sorafenib can extend the survival of HCC
patients by about 3 months [30]. However, patients are
prone to develop MDR following treatment with sorafenib
for a period of time, and resistance to this drug is a major
obstacle to improving the prognosis of HCC patients [32].
Recent studies have shown that epigenetics, transport pro-
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cesses, programmed cell death, and the tumor microenvi-
ronment (TME) are involved in the development of resis-
tance to sorafenib in HCC [33–37]. For example, Huang
et al. [15] reported that BCRP/ABCG2 mediates the ef-
flux of sorafenib, and that inhibitors of BCRP/ABCG2 en-
hanced the anti-cancer activity of sorafenib and reversed
MDR in HCC cells. In addition, Firtina et al. [38] re-
ported that sorafenib-resistant HCC cells acquired fusiform
morphology and showed upregulated expression of mes-
enchymal markers, increased migratory and invasive abili-
ties, and activation of HGF/c-Met signalling compared with
parental cells. Accumulating evidence has also shown that
sorafenib can induce ferroptosis in HCC cells, further ex-
panding the known anti-cancer mechanisms of this drug
[39,40]. Gao et al. [41] reported that YAP/TAZ antag-
onized sorafenib-induced ferroptosis in HCC cells by up-
regulating the transcription of SLC7A11 and accelerating
drug resistance. This suggests that inhibition of sorafenib-
induced ferroptosis may contribute to drug resistance in
HCC cells.

2.2.2 Lenvatinib
Lenvatinib is an oral small-molecule inhibitor of mul-

tiple receptor tyrosine kinases (TKIs) and has been ap-
proved for first-line therapy of HCC. Compared to so-
rafenib, lenvatinib shows a higher remission rate and pro-
longs the survival of HCC patients with advanced stage dis-
ease. Long-term survival can be achieved when lenvatinib
is combined with surgery [42]. Lenvatinib may also be
an appropriate second-line therapy for unresectable HCC
patients that express fibroblast growth factor receptor 4
(FGFR4) and are therefore resistant to sorafenib [43]. A
phase II clinical study showed that 12 mg lenvatinib taken
once daily is the recommended dose for HCC patients [44],
with acceptable toxicity and all safety standards met. An-
other clinical trial in HCC patients suggested that lenva-
tinib may not have a survival advantage compared with so-
rafenib [45]. However, the time to progression (TTP) for
patients treated with lenvatinib was much longer than with
sorafenib, suggesting it is more suitable for HCC treatment
when used in combination with other drugs [45]. Unfortu-
nately, although there is a good initial response to lenvatinib
in sorafenib-resistant HCC, the cells eventually develop re-
sistance to this drug. Long non-coding RNAs are impor-
tant regulators of lenvatinib resistance. Cao et al. [46] re-
ported that LCC-ZEB2-19 inhibits HCC progression and at-
tenuates resistance to lenvatinib. Furthermore, low expres-
sion of LCC-ZEB2-19 correlated with poor prognosis of
HCC. In contrast, the long non-coding RNA AC026401.3
is upregulated in HCC tissues and was associated with poor
prognosis. Knockdown or deletion of AC026401.3 en-
hanced the sensitivity of HCC cells to lenvatinib [47].

2.2.3 Regorafenib
Regorafenib is a diphenylurea multi-kinase inhibitor

that targets angiogenesis (VEGFR1-3, TIE2), PDGFR-β,

FGFR, KIT, RET, and RAF [48]. This drug was approved
by the U.S. Food and Drug Administration (FDA) in 2017
for the treatment of patients with advanced HCC who pre-
viously received sorafenib [48]. Regorafenib is in fact the
only systemic treatment that can be used with sorafenib and
shown to extend patient survival [49,50]. Moreover, it has
been called a lifesaver due to its ability to overcome can-
cer resistance. When patients in the clinic develop resis-
tance to sorafenib, regorafenib can be selected as a second-
line treatment, thus providing greater survival benefits [50].
A clinical trial reported the median survival of HCC pa-
tients treated with regorafenib was 10.6 months, compared
with 7.8 months for the placebo group [49]. Moreover,
there were fewer reports of regorafenib resistance or MDR.
Wang et al. [51] reported that regorafenib inhibited the AT-
Pase activity of ABCB1, thus increasing the intracellular
concentration of paclitaxel and reversing MDR in ABCB1-
overexpressing cells.

2.2.4 Tivantinib

Tivantinib (ARQ 197) is a novel mesenchymal-
epithelial transition (MET) inhibitor with an ATP-
independent binding mechanism that stabilizes the inactive
conformation of MET receptor tyrosine kinase and disrupts
ligand-mediated activation [52]. A clinical trial from
Japan found that HCC patients treated with tivantinib had
a median survival of 10.3 months, compared to 8.5 months
for those taking placebo [53]. There was an study reported
that Tivantinib had the effect of attenuating HCC resistance
in vitro, but must be used in advance [54]. According to
Kobayashi et al. [54], the pre-treatment of HepG2 cells
with tivantinib can reduce the resistance of these cells to
hepatocyte growth factor. Wu et al. [55] demonstrated
that increased activity of ABCG2 caused by tivantinib can
increase resistance to drugs such as mitoxantrone, thus
leading to MDR. This observation may be related to the
timing of tivantinib use.

2.2.5 Cabozantinib

Cabozantinib (XL184) is a potent, oral pan-tyrosine
kinase inhibitor that inhibits VEGFR2, c-Met, Kit, Axl, and
Flt3. This drug was approved by the U.S. FDA for the treat-
ment of liver cancer in 2019 [56,57]. It is used for patients
with advanced liver cancer, often after they develop resis-
tance to sorafenib [58]. In clinical trials, 7% of patients
showed a partial response, 64% had stable or progressive
disease, and 59% died during follow-up [58]. The median
survival for the entire cohort after the start of cabozantinib
treatment was 7.0 months. Of the patients enrolled in these
trials, 92.0% had been treated with sorafenib, and 42% had
undergone liver transplantation and liver resection. The in-
cidence of side-effects with cabozantinib was only 17%,
and was mainly diarrhea [58]. Therefore, canbozantinib
shows good efficacy and high safety, and is an ideal drug
for patients with mid- to advanced HCC. However, there
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are still reports of resistance to canbozantinib. Although
the U.S. FDA has approved this drug for the treatment of
thyroid cancer, some patients do not respond [59]. Starenki
et al. [59] reported that increasing the concentration of
cabozantinib in TT and MZ-CRC-1 cells can produce resis-
tant cell lines with increased mitochondrial activity. Thus,
cabozantinib combined with mitochondrial-targeting drugs
could potentially inhibit medullary thyroid carcinoma.

2.3 Immunotherapeutic Drugs
Immune drugs are divided into immunosuppressive

drugs and immune enhancing drugs. The latter can specifi-
cally kill or inactivate cancer cells by boosting host immu-
nity, as well as some specialized killer cells. Immunother-
apy has fewer side effects than chemotherapy, withmost be-
ing reversible. Therefore, immunotherapy is usually com-
bined with chemotherapy to increase its effectiveness.

When cancer patients start to receive chemotherapy,
the tumour cells evade cytotoxicity using a variety of mech-
anisms. Immunotherapy is quite similar in this regard, al-
though MDR has been less studied with this treatment ap-
proach. Some drugs against PD-1/PD-L1, CTLA-4 and
VEGF-A are susceptible to develop resistance [60–62].
When patients develop resistance to immune drugs in the
clinic, switching to another drug or drug combinations can
be used to overcome the resistance [63]. Therefore, a ma-
jor challenge with cancer immunotherapy is to reverse the
resistance that develops with immune drugs, thereby pro-
longing patient survival.

3. Mechanisms of MDR in HCC
3.1 ABC Transporter Protein

The ATP-binding cassette (ABC) transporter is an
ATP-dependent transmembrane protein that is widely in-
volved in MDR and has a highly conserved sequence. ABC
transporters are overexpressed in tumour cells and act as
drug efflux pumps to induce MDR by reducing the intra-
cellular concentration of anti-cancer drugs [64–66]. ABC
transporter proteins have a typical four-domain structure
that includes conserved cytoplasmic nucleotide-binding do-
mains (NBDs) and highly heterogeneous transmembrane
structural domains (TMDs) [67]. NBDs are mainly respon-
sible for the hydrolysis of ATP, while TMDs are responsi-
ble for the recognition and transport of substrates [67]. Due
to the high heterogeneity of TMDs, the ABC transporter
family has many members and can recognize numerous
different substrates, which ultimately leads to MDR in tu-
mours. At present, there are 48 knownmembers of the ABC
transporter superfamily in the human genome. These are
divided into 7 subfamilies, namely ABCA, ABCB, ABCC,
ABCD, ABCE, ABCF and ABCG [68,69]. Among them,
ABCB1/MDR1 and BCRP/ABCG2 play a decisive role in
HCC chemotherapy. The 7 subfamilies that mediate drug
resistance in different tumour types are summarized in Ta-
ble 1 [68,70].

P-glycoprotein (P-gp) is the most representative pro-
tein of ABC transporters and is referred to as multidrug re-
sistance protein 1 due to its role in modulating MDR in tu-
mour cells. P-gp protein is encoded by the MDR1/ABCB1
gene and has a molecular weight of 170 kDa. It is involved
in the transport of anti-cancer drugs such as adriamycin, pa-
clitaxel and 5-FU [5,11,16,71,72]. P-gp expression is up-
regulated in HCC and is associated with MDR. Zhao et al.
[73] reported that P-gp is upregulated by NF-kB activa-
tion and the MAPK/ERK pathway-mediated translocation
of Y-box binding protein 1 to the nucleus. Moreover, over-
expression of SIRT1 contributes to MDR in HepG2 cells
through increased expression of MDR1/P-gp in a process
that can be reversed by the natural naphthoquinone com-
pound shikonin [74]. Since P-gp plays an important role
in HCC MDR, an increasing number of studies have fo-
cused on P-gp inhibitors. Xu et al. [75] found that gambo-
genic acid (GNA) could reduce P-gp expression by inhibit-
ing the NF-kB and MAPK pathways, suggesting it could
be used to inhibit P-gp in MDR. Zhao et al. [76] reported
that downregulation of Snail Family Transcriptional Re-
pressor 2 (SNAI2) increased the transcription of ABCB1
and ABCG2 genes in HCC cells, which was followed by
the development of MDR. This study implies that SNAI2 is
a negative regulatory factor for ABCB1/ABCG2 and MDR
in HCC cells. It has also been reported that astragaloside IV
(ASIV) may be used to reverse P-gp-mediated MDR [5].

Human breast cancer resistant protein
(BCRP/ABCG2) is the second member of the G sub-
family of the large ABC transporter superfamily. BCRP
was initially discovered in MDR breast cancer cell lines,
where it confers resistance to chemotherapeutic agents.
BCRP/ABCG2 accelerates the efflux of sorafenib from
cells, indicating that BCRP/ABCG2 expression may be a
predictor of sensitivity to sorafenib in HCC [15]. Similar to
ABCB1, BCRP/ABCG2 is also involved in ADM efflux,
thereby facilitating the resistance of HCC cells to ADM
[77]. Downstream EGFR signalling by Akt may regulate
both the protein expression and membrane distribution
of BCRP/ABCG2, thereby affecting its efflux ability. Of
note, EGFR has been reported to determine the sensitivity
of HCC cells to sorafenib treatment [78].

P-gp and ABCG2 are thought to be the two most im-
portant determinants of MDR in response to chemotherapy
in HCC. For example, focus transferase (FUT) 4-, FUT6-
and FUT8-mediatedMDR in drug-resistant BEL7402/5-FU
cells is associated with activation of the PI3K/Akt pathway
and the expression ofMRP1, but not of P-gp [79]. SLAMF3
is a tumour suppressor receptor in HCC, and overexpres-
sion of SLAMF3 in Huh-7 cells specifically induces MRP1
dysfunction [80]. The deubiquitinating enzyme ubiquitin-
specific protease 22 (USP22) is a marker for CSCs, and also
causes MDR in HCC by activating the SIRT1/AKT/MRP1
pathway [81]. Antigen-processing associated transporter 1
(TAP1) is another member of the ABC transporter family.
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Table 1. Resistant substrates and inhibitors of ABC transporters (The table only shows those related to liver cancer).
Gene Drug-resistant associated protein Resistant drugs Inhibitor

ABCB1 P-gp Erlotinib [88], adriamycin
[89], sorafenib [90], cisplatin
[91], fluorouracil [91], pacli-
taxel [92]

Elacridar [93], Verapamil
[94,95], ONT-093 (Ontogen)
[96]

ABCC MRP1, MRP2, MRP3, MRP4 Sorafenib [97], Taxanes [98],
adriamycin [99], cisplatin
[100], etoposide [101], vin-
cristine [102]

Ceefourin 1 [103], Ceefourin
2 [104], Indican [105], MK-
571 [106], MK-571 sodium
[106]

ABCG ABCG1, ABCG2 (BCRP) Regorafenib [107], adri-
amycin [108], paclitaxel
[109], Tivantinib [54], cis-
platin [110], sorafenib [111]

Elacridar [93], Verapamil
[94,95], Ko143 [112], Fu-
mitremorgin C [113]

TAP1 and P-gp show high homology in their transmem-
brane domain responsible for substrate specificity. TAP1
mRNA is highly expressed in breast, lung, liver and ovar-
ian cancers, and TAP1-induced MDR has also been found
in gastric cancer cells [82]. Further research is likely to re-
veal more ABC transporters that participate in MDRmech-
anisms in tumours. Research into the different subtypes of
ABC proteins involved in drug resistance and their relevant
inhibitors should provide additional options for reversing
MDR in the clinical setting of HCC.

Multidrug resistance-associated proteins
(MRPs/ABCC) also form a complex membrane pro-
tein system. The four main members of the MRP family
are highly correlated with tumour resistance, namely
MRP1/ABCC1, MRP2/ABCC2, MRP3/ABCC3, and
MRP4/ABCC4. These proteins are structurally similar,
and their overexpression can confer resistance to multiple
drugs [83]. MRP1, MRP2 and MRP3 are all involved in
the MDR of HCC. Nies et al. [84] reported that MRP2 and
MRP3 were localized on the plasma membrane of these
cancer cells, whereas MRP1 was only expressed on some
HCC cell membranes. Therefore, MRP2 and MRP3 may
be more suitable for the prediction of MDR in HCC [84].
As with the ABC transport family, increased expression
of the MRP family also contributes to the development
of MDR in HCC. Gu et al. [85] reported that bufalin
can significantly block the cell cycle in BEL-7402/5-FU
cells, while also reducing the expression of TS by down-
regulating MRP1 to inhibit drug effector pump activity. TS
is an MDR-related gene, and reducing its expression can
reverse the resistance of BEL-7402/5-FU cells. Qu et al.
[86] reported that ASIV enhances the anti-tumour effect
of cisplatin in liver cancer by inhibiting the expression
of MRP2. Furthermore, Tomonari et al. [87] showed
that siRNA knockdown of MRP3 in the resistant cell line
PLC-PRF5-R2 restored its sensitivity to sorafenib.

Not all ABC transporters are associated with HCC.
So we summarized Table 1 (Ref. [54,88–113]). The sub-

strates and inhibitors of ABC transporters associated with
HCC were summarized in Table 1.

3.2 Apoptosis
The ultimate goal of anticancer therapy is to induce

apoptosis of cancer cells [114]. Dysregulation of cell cycle
checkpoints and of apoptotic signals are the main causes of
MDR [114]. Experimental studies have discovered a vari-
ety of apoptosis signallingmolecules that are closely related
to MDR in liver cancer, including p53 and the Bcl-2 family
of proteins.

The p53 tumour suppressor gene is a well-known fac-
tor that regulates apoptosis in a wide variety of cells and
tissues. The main function of p53 is to induce apoptosis in
response to DNA damage. Zhang et al. [115] reported that
p53 suppressed the growth ofMDRHepG2 cells by increas-
ing the expression of Bax and decreasing the expression of
Bcl-2. p53 also induced G2/M arrest through p21-mediated
inhibition of the CDK1/cyclin B complex. In addition, the
Nogo-B receptor (NgBR) activates the PI3K/Akt/MDM2
pathway, which then promotes p53 protein degradation via
the ubiquitin proteasome pathway leading to chemoresis-
tance in HCC cells [116]. Overexpressed p53 mutants
can inhibit apoptosis and reverse the anticancer effects of
chemotherapeutic agents, including ADM and cisplatin, re-
sulting in MDR in cancer cells [117].

The Bcl-2 family is also involved in MDR of HCC
cells. Bcl-2 family proteins play a critical role in the
mitochondria-mediated apoptosis pathway. These proteins
share similar domains and can be classified into three main
groups: anti-apoptotic proteins (Bcl-2, MCL-1, BCL-XL),
pro-apoptotic proteins (Bax, BAK), and regulatory proteins
(BH3 proteins) [118]. Bcl-2 overexpression contributes to
the resistance to anticancer drugs [61]. Hung et al. [119]
reported that hepatitis B virus pre-S2 large mutant sur-
face antigen (HBV pre-S2D) promotes resistance to 5-FU-
induced cell death via increased expression of Bcl-2.
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3.3 DNA Damage
DNA damage can be triggered by Ultraviolet (UV)

light or chemicals and is the first step in cancer develop-
ment. Although cells can perform DNA repair, the proba-
bility of gene mutation increases with more frequent repair,
thereby increasing the risk of cancer.

Many conventional cancer chemotherapeutics induce
DNAdouble-strand breaks (DSBs). The pathways involved
in DNA repair can create barriers to the treatment of can-
cer and lead to drug resistance [120]. Dysregulation of
DNA damage repair and cell cycle checkpoints, known as
the DNA damage response (DDR), is associated with pre-
disposition to cancer and with chemoresistance to DNA-
damaging anticancer therapy. However, the DDR can also
protect against genomic instability and may enable cancer
cells to become resistant to chemotherapy drugs by enhanc-
ing DNA repair [121].

Therefore, the amplification of drug-induced DNA
damagemay be an effective approach for overcomingMDR
in cancers. For example, bleomycin (BLM) boosts 14-3-
3ε protein to bind phosphorylated MVP (major vault pro-
tein). This reduces the multidrug-resistant activity of MVP
and strengthens BLM-induced DSBs and DDR in HCC
cells [122]. Hence, 14-3-3ε may be used as a pathway-
specific bait protein to identify the critical target(s) respon-
sible for MDR. BLM could therefore be applied to HCC
therapy. XRCC4-like factor (XLF), a core member of the
non-homologous end joining (NHEJ) repair pathway that
modulates DSB repair, has been shown to contribute to
chemoresistance in HCC patients and HCC cells in vitro
[123]. Recently, the roles of RNA-binding proteins (RBPs)
and their partners in chemotherapy and chemoresistance
have received considerable attention. Zinc finger CCHC
domain-containing protein 4 (ZCCHC4) is a newly identi-
fied rRNA m6A MTase. ZCCHC4 is highly expressed in
HCC and suppresses DNA damage agent (DDA)-induced
apoptosis in HCC cells by interacting with the long non-
coding RNA (lncRNA) AL133467.2 and with the DNA
damage indicator γH2AX in the nucleus [124]. Antisense
oligonucleotides and small molecule compounds that target
RBPs could therefore enhance chemotherapeutic sensitivity
and be used in combination therapy for MDR HCC.

3.4 Cancer Epigenetics
Many biological and pathological mechanisms have

been implicated in chemoresistance. In addition to the
dysregulation of anti-apoptotic proteins and aberrations in
DDR, accumulating evidence indicates that epigenetic al-
terations are essential for the development of chemoresis-
tance in cancer cells [125]. DNA methylation in the pro-
moter of tumour suppressor genes leads to transcriptional
inactivation, which then accelerates tumour development
and malignant progression. Epigenetic changes are usu-
ally reversible and are also susceptible to external factors.
Thus, the targeting of epigenetic changes may be used as

monotherapy or in combination with other anticancer drugs
for the treatment of MDR cancers [117]. Depletion of
ADAMTSL5 attenuated the tumour-like properties of HCC
cells and sensitized them to drugs currently used in the
clinic to treat HCC, including crizotinib, lenvatinib, rego-
rafenib, and sorafenib [126]. Moreover, the CDH1 gene
promoter is hypomethylated in HepG2 cells, but hyper-
methylated in the ADM-induced MDR HCC cell line R-
HepG2 [127]. Because CpG methylation in the promoter
usually correlates with gene silencing, evaluation of the
CDH1 gene promoter methylation status may be predictive
of MDR in HCC patients. Indeed, overexpression of CDH1
resulted in decreased P-gp expression and increased ADM
uptake in R-HepG2 cells, accompanied by sensitization to
ADM [127] . Epigenetic changes are especially important
for the emergence of plasticity in many tumour-initiating
cell subpopulations. This suggests that targeting of epige-
netic changes may be a key intervention against HCC drug
resistance.

3.5 Autophagy

Current studies indicate that autophagy is a double-
edged sword in cancer cells. Basal autophagy acts as a tu-
mour suppressor by maintaining genomic stability in nor-
mal cells. However, once cancer is established, activated
autophagy contributes to the survival of cancer cells under
a variety of stresses, thus promoting tumour development.
Autophagy is also considered to be an importantmechanism
of drug resistance by promoting the survival of tumour cells
under therapeutic stress [128]. Hence, the suppression of
autophagy could sensitize HCC cells to chemotherapeutic
drugs [129]. Consistent with this, Yuan et al. [130] found
that both MALAT1-specific siRNA and miR-216b mimics
were able to reduce the IC50 of 5-FU, ADM andmitomycin
C (MMC) in BEL-7402/5-FU cells, as well as the level of
intracellular autophagy. This suggests the MALAT1-miR-
216b axis affects MDR in HCC cells by modulating au-
tophagy. Current understanding of the role of autophagy
in cancer progression and in the response to therapy remain
controversial. Therefore, further studies are needed to de-
termine how cellular autophagy can impact chemotherapeu-
tic sensitivity during HCC treatment.

3.6 Tumour Microenvironment

The TME is comprised of diverse types of normal
cells in addition to cancer cells, including fibroblasts, blood
vessel cells, mesenchymal stem cells, and immune cells
of myeloid or lymphoid origin. These cells regulate tu-
mour growth, metastatic spread, and response to treatment
[131]. Accumulating evidence indicates a critical role for
TME factors in both the response and resistance to vari-
ous anticancer drugs. The HCC TME is recognized as a
key contributor to cancer progression and drug resistance.
Due to the tissue specificity of the liver, long-term exposure
to a high concentration of 27-hydroxycholesterol (27HC)
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is a special characteristic of the TME in HCC and has
been shown to induce MDR in HepG2 cells [132]. Further
study showed that 27HC induced MDR via the activation
of GRP75 to modulate redox balance and cause metabolic
reprogramming of HepG2 cells [133].

3.7 Extracellular Matrix

The extracellular matrix (ECM) has long been asso-
ciated with drug resistance and is a key component of the
TME. ECMproteins are secreted by blood endothelial cells,
lymphatic endothelial cells, mesenchymal cells and im-
mune cells [134]. Stiffening of the ECM is a crucial in-
dicator of a local change in the microenvironment and is
considered a hallmark of many diseases, including HCC.
Aggregation of protein-encapsulated hyaluronic acid (HA)
gel-like structures can prevent drug uptake and delivery to
intra-tumour areas, thereby altering the TME [135]. The
stiffness of ECM promotes the formation of CSC ecolog-
ical niches, a hypoxic environment within the TME, and
increased vascular infiltration, all of which cause drug re-
sistance [135,136]. You et al. [137] showed that increased
ECM stiffness activates the Akt/mTOR/SOX2 pathway and
subsequently enhances oxaliplatin resistance in Hep3B and
Huh7 cells. The fate of cancer cells and immune cells can
be regulated by mechanical feedback from the ECM. This
could be used in future studies of tumour drug resistance
and in vitro drug screening applications.

3.8 Solute Carrier Proteins

Similar to the ABC transporter family, the solute car-
rier (SLC) transporter family are membrane transporters.
However, SLC does not rely on ATP hydrolysis to trans-
port small molecules. SLCs include more than 400 differ-
ent transporters that are grouped into 65 families based on
their sequence homology and transport function [138,139].
The SLC family is classified according to the Hugo Gene
Nomenclature Committee of the Human Genome Organi-
zation (HGNC) [140]. SLC structures are grouped into four
categories based on their protein folds, which include MFS
(major facilitator superfamily) fold, LeuT fold, other anti-
parallel folds, and others [139]. The SLC family is respon-
sible for the transport of inorganic ions, amino acids, lipids,
sugars, neurotransmitters and drugs [139]. When SLCs are
absent, normal cells can transform into drug-resistant cells.
Most SLC proteins responsible for drug uptake belong to
the SLC22A family, including organic anion transporters
(OATs), organic cation transporters (OCTs), and organic
anion transporting polypeptides (OATPs) from the SLCO
family [141,142]. Moreover, some members of the SLC
family can affect the invasion and migration of cancer cells.
For example, Fang et al. [143] showed that knockdown of
SCL2A1 or SLC22A15 significantly reduced the migration
and invasion ability of Hep3B cells. Experiments by Zhao
et al. [144] indicated that the IC50 of sorafenib was re-
duced in resistant cells. This suggests that overexpression

of SLC46A3 results in more uptake of sorafenib, thereby
improving the clinical prognosis of HCC patients, reducing
sorafenib resistance, and enhancing drug response [144].
Herraez et al. [145] reported the MRP2 promoter can over-
come chemotherapy resistance in gastrointestinal and liver
tumours by increasing the expression of the drug transporter
OATP1B1. Moreover, liver cancer can be divided into a
high glycolytic type and a low glycolytic type [146]. High
glycolytic HCC has poor prognosis and is prone to drug re-
sistance [146]. Patients with low glycolysis showed better
clinical outcomes than patients with low oxygen and high
glycolysis [146]. Kim et al. [146] showed that SLC13A5 is
highly expressed in HCC with low glycolysis, which may
be more evidence that overexpressed SLC protein can at-
tenuate MDR in HCC.

3.9 Cancer Stem Cells

CSCs are a small subset of the cancer cell popula-
tion and are thought to play an important role in cancer
cell self-renewal, metastasis, and response to therapy [147].
They are inherently drug-resistant, which is also a hall-
mark feature [148,149]. CSCs show resistance to a vari-
ety of chemotherapeutic and targeted drugs, including cis-
platin and sorafenib [150]. They are inherently resistant to
chemotherapy and radiation [151] and often develop drug
resistance during dormancy, thus making effective cancer
treatment a major challenge [152]. Touil et al. [153] re-
ported that dormant CSCs can express a phenotype simi-
lar to that of 5-FU-resistant cancer cells. Such a pheno-
type includes markers of self-renewal and tumour dissem-
ination potential [153]. These authors also observed that
some CSCs become dormant when exposed to chemothera-
peutic drugs [153]. Therefore, decreasing cancer cell stem-
ness can to some extent reverse the development of drug re-
sistance in cancer cells. Nanog is an important transcription
factor that regulates cell pluripotency and can also induce
CSC properties [150]. The stem cell properties induced by
Nango can lead to resistance to regorfenib and cisplatin.
Alemohammad et al. [150] reported that siRNA knock-
down of Nanog in HepG2 cells, in combination with cis-
platin treatment, downregulated the expression of stem cell-
related genes and upregulated the expression of apoptosis-
related genes. Therefore, the property of cancer cell stem-
ness can promote drug resistance in cancer cells.

3.10 Epithelial-Mesenchymal Transition (EMT)

EMT is a developmentally-related, multistep molec-
ular and cellular reprogramming process that is hijacked
by cancer cells to acquire aggressiveness. Activated EMT
inhibits apoptosis. An increasing number of studies have
also shown that activation of EMT can promote drug resis-
tance in cancer cells [154,155]. Strong correlations have
been reported between EMT-related gene expression pro-
files and treatment resistance [155]. Liao et al. [156]
found that Y-Box Binding Protein-1 can promote EMT in
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sorafenib-resistant HCC. Moreover, sorafenib can promote
YB-1 phosphorylation through the EGFR/PI3K/AKT path-
way, leading to a significant increase in the metastasis of
HCC cells [156]. Cyclin B1 promotes cell growth and
inhibits apoptosis in tumor necrosis factor (TNF)-related,
apoptosis-inducing and ligand-resistant HCC cells [157].
Lv et al. [157] also reported that mesenchymal epithelial
transition factor can promote TNF-associated apoptosis and
induce the growth of drug-resistant HCC cells by regulating
cyclin B1. Themechanisms by which EMT cause chemore-
sistance have been described. RHOJ is a small GTPase
that is preferentially expressed in EMT cancer cells. De-
baugnies et al. [158] showed that RHOJ modulates EMT-
associated chemoresistance by enhancing the response to
replication stress and activating the DDR, thereby allowing
tumour cells to rapidly repair chemotherapy-induced DNA
damage.

Owing to the multifactorial nature of MDR, the block-
ing of one mechanism is insufficient to overcome resis-
tance. Hence, other drug-resistance mechanisms should be
considered to prevent therapeutic failure in HCC patients.
The different pathways and mechanisms relating to MDR
in HCC are summarized in Fig. 1.

4. Management of MDR in HCC
4.1 Drug Interventions

Since MDR is prone to occur in HCC, its reversal
is considered to be the key to improving the efficacy of
chemotherapy. The screening of active ingredients from
plant-derived natural products has recently become the fo-
cus of research to reverse MDR in HCC. These must have
low toxicity and minimal side-effects for normal cells, but
high efficiency against tumour cells. For example, a chro-
matography extract and defatted extract from P. ameri-
cana effectively increases drug accumulation and reverses
MDR in 5-FU-resistant BEL-7402 cells [159]. Astragalus
polysaccharide (APS) is an extract from the Chinese medic-
inal herb Astragalus membranaceus root. This agent exerts
a synergistic anti-tumour effect with ADM in H22 cancer
cell-bearing mice via the suppression of MDR1 and P-gp
expression levels [160]. Yao et al. [161] reported that a new
derivative of betulinic acid, B5G1, triggered the apoptosis
of MDR HepG2/ADM and MCF-7/ADR cells by activat-
ing mitophagy. This suggests that B5G1 may be a potential
candidate for treating different types of MDR cancer cells.
In addition, the marine-derived steroid methyl spongoate
(MESP) exhibits powerful activity againstMDRHCC cells,
independent of the expression of ABC transporter protein
[162]. This observation suggests that MESP may be used
to overcome ABC transporter-mediated MDR in HCC.

4.2 Changing the Mode of Administration of Anticancer
Drugs

Transcatheter arterial chemoembolization (TACE) is
currently one of the most commonly used non-surgical

treatments for HCC. TACE blocks the supply of oxygenated
blood from short blood vessels to HCC tissues [163]. Due
to its minimally invasive characteristics, TACE can pro-
long the survival time and improve the quality of life for
patients with advanced liver cancer [164]. However, MDR
is one of the main causes of treatment failure with conven-
tional targeted arterial embolization interventions for HCC.
Therefore, it is important to understand how best to use the
TACE approach for HCC in the presence ofMDR. Huang et
al. [164] reported that verapamil-targeted arterial perfusion
could reverseMDR and enhance the effect of chemotherapy
in HCC patients. Although TACE has relatively mild ad-
verse effects, future studies should investigate the optimal
dose of TACE required to overcome MDR in HCC, while
causing minimal side-effects.

Because of the critical role of selectively delivering
anticancer agents, investigators are becoming increasingly
focused on vascular permeability in tumour biology. Func-
tional nanosized drug delivery systems (NDDSs) have be-
come important in tumour treatment by enhancing perme-
ability and retention (EPR) effects, thus enabling the de-
livery of high drug doses to tumour tissues while reduc-
ing adverse reactions [165]. NDDSs mainly deliver sub-
micron particles in cancer therapy, including lipids, in-
organic nanomaterials (INM), and polymer nanosystems
[166]. This system has the advantages of high metabolic
stability, membrane permeability, bioavailability, and ac-
tivity prolongation. These properties not only reduce high-
dose adverse effects, but also reverse MDR by bypass-
ing drug efflux, controlling drug release, and interfering
withmetabolism [166–168]. For example, triblock polymer
micelle-mediated co-delivery of ADMand P-gp siRNA into
the MDR HCC cell line HepG2/ADM markedly increased
the accumulation of ADM-siRNA-micelles in the tumour
region in vivo and inhibited tumour growth with synergistic
effects [169]. Liang et al. [170] reported a nano-delivery
system based on AS1411 aptamer-functionalized micelles
for the simultaneous co-delivery of doxorubicin and miR-
519c. The AS1411 aptamer specifically recognizes over-
expressed nucleolin protein in tumour cells. Subsequently,
miR-519c represses ABCG2-dependent drug efflux, lead-
ing to an increase in the intracellular doxorubicin concen-
tration and reversal of MDR in HepG2 cells. Consistent
with this result, the lipid-coated, hollow, mesoporous silica
nanoparticle co-delivery of ADM and miR-375 improves
MDR in HCC cells.

Since the underlying mechanism of MDR in HCC is
complex and regulated by multiple factors, the application
of NDDS alone is unlikely reach a sufficiently high drug
concentration at the tumour site. Thus, NDDS can be com-
bined with other anticancer strategies to overcome MDR in
HCC.
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Fig. 1. Molecular mechanism of drug resistance in hepatocellular carcinoma (HCC). This figure summarizes the molecular mech-
anism of drug resistance in HCC. ABC transporter protein acts as a transmembrane protein and inhibits the entry of anticancer drugs
into cells, leading to drug resistance. Inhibition of the SLC family delivers drugs to cancer cells and causes HCC cells to develop MDR.
Drug-resistant HCC will highly express mutant p53 and bcl-2, which prevent HCC’s apoptosis. In addition, when the drug enters the
drug-resistant HCC, it does not cause DNA damage. Not only that, in drug-resistant HCC, the CDH1 promoter is hypermethylated,
leading to CDH1 silencing and increased P-gp protein expression. Importantly, in drug-resistant HCC, the autophagic system is acti-
vated and is an important mechanism of drug resistance. In addition, miRNA down-regulation in MDR HCC is one of the mechanisms
to generate MDR. In TME, hepatocellular carcinoma cells are surrounded by large amounts of 27HC (27-hydroxycholesterol) and HA
(ECM stiffness protein-encapsulated hyaluronic acid gel-like structures). 27HC leads to an increase in intracellular GRP75 and HA leads
to an increase in ECM stiffness, which result HCC drug resistance. ABC, ATP-binding cassette; SLC, solute carrier; MDR, multidrug
resistance; TME, tumor microenvironment; ECM, extracellular matrix; HA, hyaluronic acid; miRNA, microRNA.

4.3 Combination Chemotherapy

Currently, the efficacy of single-agent chemotherapy
for liver cancer is limited. Therefore, the combination
of multiple chemotherapeutic drugs that target different
molecules or pathways has become the standard clinical
practice for cancer treatment [171–173]. Plant-derived nat-
ural products have been evaluated as potential anticancer
drugs due to low side-effects and high anti-tumour efficacy.
It is therefore of great importance to study the combina-
tion of plant-derived drugs and chemotherapeutic drugs in
the treatment of HCC with MDR. For example, curcumin
can significantly enhance the sensitivity of Hep3B cells to
paclitaxel and improve drug resistance [174]. Jiang et al.
[175] showed that resveratrol can effectively reverse pa-
clitaxel resistance in HepG2 cells. Coumarin derivative
50 is a novel MARK4 inhibitor that directly interacts with
MARK4 to reduce microtubule kinetics and induce apop-
tosis of HCC cells in vitro. This drug significantly en-

hances the response to paclitaxel treatment and overcame
resistance in HCC cells, suggesting that MARK4 is an at-
tractive target for the reversal of MDR [176]. In recent
years, a growing number of plant-derived natural products
have been used in combination therapy with conventional
chemotherapeutic agents against liver cancer. Although
combination therapy has improved clinical efficacy through
the reversal of MDR, it also results in undesirable side-
effects [177]. Thus, further studies are need to explore the
use of suitable combination therapies.

FOLFOX4 chemotherapy is a common regimen for
HCC therapy consisting of 5-FU, leucovorin and oxaliplatin
[178,179]. This regimen is convenient, well tolerated and
safe, and is widely used in stomach, colorectal and liver
cancer [180]. In recent years, FOLFOX4 therapy has been
used to treat drug-resistant liver cancer. He et al. [181] re-
ported that sorafenib combined with hepatic artery infusion
chemotherapy (HAIC) of oxaliplatin, 5-FU and leucovorin
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(FOLFOX) prolonged the median overall survival of HCC
patients to 13.3 months, compared with 7.13 months for so-
rafenib alone. The survival benefit observed in this study
may in part be due to the synergistic, anti-tumour effects
of sorafenib and FOLFOX. In particular, the synergism be-
tween oxaliplatin and 5-FU is attributed to 5-FU-mediated
suppression of drug transporters, while sorafenib can fur-
ther suppress the activity of MDR-associated transporters
[181].

4.4 Combination Immunotherapy

Recently, combination therapies based on immune
checkpoint inhibitors (ICIs) have dominated clinical studies
of all stages of HCC [182]. In contrast to targeted drugs, im-
munotherapy activates the body’s immune system together
with large numbers of immune cells to destroy tumour cells.
The most commonly used immune-combination therapy for
HCC in the clinic is T+A therapy, which is a combination
of anti-PD-L1 antibody (atezolizumab) and anti-VEGF an-
tibody (bevacizumab). Finn et al. [183] reported that ate-
zolizumab in combination with bevacizumab showed bet-
ter overall survival than sorafenib alone. In addition to
target-free therapy, dual-free therapy is also a novel type
of immune combination therapy. O+Y therapy (4 doses of
nivolumab 1 mg/kg + ipilimumab 3 mg/kg every 3 weeks,
followed by nivolumab 240 mg every 2 weeks) is a dual-
immune therapy that has been approved by the U.S. FDA
for the second-line treatment of HCC [184]. O+Y therapy
has a controlled safety profile and longer-lasting effects.
However, as with other anti-tumour agents, immunother-
apy is limited by the development of drug resistance. For
example, drug resistance can easily develop when ate-
zolizumab alone is used to treat HCC. Moreover, the use of
certain anti-PD-1/PD-L1, anti-CTLA-4 and anti-VEGF-A
drugs (e.g., pablizumab, nabolutumab, atezolizumab, epir-
imizumab, and bevacizumab) has been associated with the
development of resistance [60,62,185–187]. ICB (Immune
Checkpoint Blockade) is an immunotherapy method. It
aims to activate the patient’s own immune system to attack
tumor cells by removing the tumor’s suppressive effect on
the immune system. ICB therapy with PD-1 enhances the
expression of∆42PD-1 in T cells to maintain tumour prop-
erties, which may explain the acquired resistance to ICB in
HCC patients [61]. Therefore, the optimization of immune-
combination regimens for long-term patient survival with
minimal MDR remains a challenge in cancer immunother-
apy [63]. The overall goal is to avoid overlapping toxicities,
maximize synergistic effects, and minimize the possibility
for overlapping resistance. This may be achieved through
infrequent use of the same drug during a regimen [63].

4.5 Replacement of Targeted Drugs

Over the past decade, cancer treatment has mainly fo-
cused on the development of novel targeted drugs and im-
munologic agents. Although combination therapies based

on ICIs have dominated all phases of clinical research in
HCC, targeted drugs remain the most commonly used treat-
ment for HCC. Meanwhile, the replacement of targeted
drugs for patients showing chemoresistance is still a fea-
sible approach. The development of resistance to a certain
class of targeted drugs does not mean the patients are also
resistant to other types of drugs. In fact, almost all targeted
drugs have multiple targets containing the same or similar
molecules. For example, sorafenib targets KIT, VEGFR,
PDGFR, RAF, MEK, and ERK [188–191]. Lenvatinib in-
hibits VEGF receptors 1-3, FGF receptors 1-4, PDGF re-
ceptor α, RET, and KIT [191–193]. Regorafenib is an
oral diphenylurea multi-kinase inhibitor that targets angio-
genic (VEGFR1-3, TIE2), stromal (PDGFR-β, FGFR), and
oncogenic receptor tyrosine kinases (KIT, RET, and RAF).
It is structurally similar to sorafenib but has more potent
and broader activity against VEGFR kinases [48,194,195].
Therefore, upon the development of drug resistance, tar-
geted drugs can be selected individually according to the
patient’s situation.

5. Conclusion
HCC is one of the most common malignant tumours

worldwide. Currently, surgical resection is the main treat-
ment for early-stage HCC. Due to the masked onset of
HCC and the lack of obvious early symptoms, most pa-
tients (about 65–70%) are diagnosed with intermediate or
advanced stage disease. Such patients are ineligible for rad-
ical therapies and are therefore reliant on chemotherapy.
However, chemotherapeutic drugs inevitably develop resis-
tance, leading to the failure of HCC treatment. The detailed
mechanisms of MDR include enhanced efflux of drugs, in-
creased DNA repair capacity, genetic factors (gene muta-
tions, epigenetic alterations, etc.) and downstream adap-
tive responses such as apoptosis and autophagy. Amongst
these factors, the drug efflux pump transports anti-cancer
drugs out of the cell, thereby reducing intracellular drug
concentrations and contributing to MDR. In recent years,
improved understanding of the tumour/TME relationship
has highlighted the key role of the TME in tumour pro-
gression, local drug resistance, and immune escape. Due to
the large number of immunosuppressive cells in the TME,
immunotherapy that targets these cells has become a new
strategy for tumour treatment and reversal of drug resis-
tance. The ECM has recently been recognized as a hall-
mark of cancer. It serves not only as a physical support for
tumour cells but also in the regulation of cell‒cell and cell-
matrix cross-talk. The pathological ECM enhances tumour
cell growth, survival and invasion, while altering the be-
haviour of fibroblasts and immune cells to favour metasta-
sis formation and chemotherapy resistance. ECM stiffness
is closely related to drug resistance because the stiffened
matrix forms a physical barrier to drug infiltration, thereby
preventing the entry of drugs into the central core of the tu-
mour tissue. ECM stiffness also induces a hypoxic environ-
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ment that enhances the stem cell-like properties of tumour
cells, leading to drug resistance. A rapidly increasing num-
ber of studies are focused on designing chemotherapeutics
that can evade or reverse MDR. Because MDR is regulated
by complex factors, further studies are needed to better un-
derstand the mechanism of MDR, especially in relation to
the TME and ECM. The emergence of many new therapeu-
tic drugs and strategies targeting various components of the
TME suggest that combination therapy is likely to become
an increasingly important therapeutic approach in cancer.
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