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Abstract

Background: There are several antibiotic resistance genes (ARG) for the Escherichia coli (E. coli) bacteria that cause urinary tract
infections (UTI), and it is therefore important to identify these ARG. Artificial Intelligence (Al) has been used previously in the field of
gene expression data, but never adopted for the detection and classification of bacterial ARG. We hypothesize, if the data is correctly
conferred, right features are selected, and Deep Learning (DL) classification models are optimized, then (i) non-linear DL models would
perform better than Machine Learning (ML) models, (ii) leads to higher accuracy, (iii) can identify the hub genes, and, (iv) can identify
gene pathways accurately. We have therefore designed aiGeneR, the first of its kind system that uses DL-based models to identify ARG
in E. coli in gene expression data. Methodology: The aiGeneR consists of a tandem connection of quality control embedded with feature
extraction and Al-based classification of ARG. We adopted a cross-validation approach to evaluate the performance of aiGeneR using
accuracy, precision, recall, and F1-score. Further, we analyzed the effect of sample size ensuring generalization of models and compare
against the power analysis. The aiGeneR was validated scientifically and biologically for hub genes and pathways. We benchmarked
aiGeneR against two linear and two other non-linear Al models. Results: The aiGeneR identifies tetM (an ARG) and showed an accuracy
of 93% with area under the curve (AUC) of 0.99 (p < 0.05). The mean accuracy of non-linear models was 22% higher compared to
linear models. We scientifically and biologically validated the aiGeneR. Conclusions: aiGeneR successfully detected the E. coli genes
validating our four hypotheses.

Keywords: antimicrobial resistance; antibiotic resistance genes; urine tract infection; artificial intelligence; machine learning; eXtreme
Gradient Boosting; deep learning

1. Introduction E. coli and other bacteria are becoming increasingly
resistant to antibiotics. When bacteria learn to counteract
antibiotic effects, antibiotic resistance arises, making in-
fections more challenging to treat. By several methods,
including genetic changes and the exchange of resistance
genes across bacteria, E. coli can develop antibiotic resis-
tance [6,7]. Antibiotic resistance can also be brought on by
the overuse and abuse of antibiotics. Many E. coli strains
exhibit resistance to one or more drugs. As a result, treating
E. coli infections may become more challenging and neces-
sitate the use of different antibiotics or lengthier treatment
regimens [8].

Escherichia coli (E. coli) is a bacterium that is fre-
quently discovered in both human and animal gastrointesti-
nal tracts. While E. coli is mostly not harmful, some strains
can cause diseases, such as urinary tract infections (UTI)
[1,2]. These infections that can affect the kidneys, bladder,
ureters, and urethra, as well as other parts of the urinary
system [3]. One of the most frequent bacteria that cause
UTI, especially in women, is E. coli. Lower abdomen or
back pain, frequent urination, murky or bloody urine, and
pain during urination are all signs of an E. coli-related UTI
[4,5].
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Fig. 1. Statistics of deaths due to AMR in Europe (2019) [11]. AMR, Antimicrobial resistance; CNC, Certified Nutrition Consultant;
LRI, Lower respiratory infection; iNTS, invasive non-typhoidal Salmonella.

Antimicrobial resistance (AMR), which includes the
concept of antibiotic resistance, is an increasing concern to
healthcare systems around the globe and places a signifi-
cant financial burden on international healthcare systems
[9]. AMR was ranked fifth among the top 10 global health
hazards by the World Health Organization (WHO) in 2019
[10]. Antibiotic resistance is a significant public health is-
sue because it reduces the efficacy of several antibiotics that
are commonly used to treat bacterial infections. Each year
in United States, 2.8 million individuals get affected, result-
ing in 35,000 deaths [11]. The death count in the European
region due to AMR in various infected agents for the year
2019 is shown in Fig. 1. It is observed that the death due to
UTI is 48,700 which is 5% of the total deaths [11-13].

Antibiotic resistance genes (ARG) adopt various bi-
ological processes and are responsible for making a bac-
terium to defend the drug. Identifying the ARG is the
most important part of the AMR analysis and drug design.
Several methods have been proposed to identify the ARG
including statistical, biological, and artificial intelligence
(AI). Given the complexity of the biological processes in-
volved in resistance mechanisms, identifying ARG is a la-
borious operation. In the literature, ARG identification is
done using gene sequencing data; however, a few works
have been discovered that used gene expression data in can-
cer for ARG identification. Gene expression data can be

used to find informative genes and AMR genes using ma-
chine learning (ML) techniques.

These methods can advance our knowledge of the
molecular processes behind AMR and aid in the creation
of a fresh approach for dealing with drug-resistant bacteria.
The ability of ML models to run on gene expression data
to predict desired outcomes has already been demonstrated
in [14-16]. The majority of Al research on resistance genes
and AMR is centered on the gene sequence data. Numerous
studies that use gene expression data for the identification of
relevant genes, hub genes, and sick genes have been mainly
seen in the oncology area [17-20]. Only a small amount of
research using gene expression data to identify ARG has
been found. Our goal is to offer an Al-based automated
model that can detect the ARG and categorize the infected
samples from gene expression data. Our basic hypothesis
is that using the gene expression data, it is also possible to
discover ARG. In this work, we aim to use Al to classify
infected samples and identify ARG using gene expression
data.

The recent trends in computational intelligence have
shown that the role of Al is promising to assist medical ex-
perts in workload reduction for the initial screening of var-
ious diseases [21-23]. The application of Al in the field of
AMR analysis and identification of ARG and infected sam-
ple classification saves time. Further, it also improves the
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Fig. 2. Online system of aiGeneR (AtheroPoint™, CA, USA). DNN, deep neural network; ANN, artificial neural network; XGBoost,
eXtreme gradient boosting; SVM, support vector machine; RF, random forest.

diagnosis process by providing more biological significant
results without the involvement of any medical experts [24].
There have been studies that use Al algorithms for predic-
tion and classification tasks using gene expression and gene
sequence data [25-27]. Even though Al provides a jump
start in gene identification, it is still difficult to isolate the
most significant genes from high-dimension gene expres-
sion datasets. The limited, complicated, and noisy charac-
ter of the E. coli gene expression dataset may deceive the
ML models [28,29]. Additionally, detecting AMR genes is
challenging using ML models since it depends on the qual-
ity of their input data and ad hoc feature extraction solu-
tions [24]. Therefore, effective feature selection and the
use of ML models are required. Feature selection, feature
ranking, and statistical tests may be adopted to enhance the
performance of ML-based models while using a relatively
small number of features and maintaining their efficacy.

We developed a system that can identify the ARG
and describe the infected samples using ML and DL mod-
els. Our system’s innovative features include robustness,
low computational time needs, biologically significant out-
comes, and superior classification accuracy. As per our
hypothesis, non-linear ML models excel in classification
due to their feature extraction capabilities. Furthermore,
aiGeneR 1.0 accurately identifies UTI-related hub genes
through gene network and pathogen analysis. We will here-
after abbreviate aiGeneR 1.0 to aiGeneR.

In this study, we proposed an Al model recognized
as aiGeneR that seeks to classify the infected E. coli sam-
ples and detect ARG. The online system of the aiGeneR
model can be visualized in Fig. 2. This paradigm com-
bines the deep neural network (DNN) concept with non-
linear ML architecture. The model pipeline is built to ex-
tract the most important features from complex gene ex-
pression data, identify significant genes in the first phase,
and then categorize infected samples in the second phase.
This paradigm is innovative in its low processing cost, ro-
bustness, generalizability, and handling of non-linear com-
plicated data. We intend to use aiGeneR in a real-time
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setting to quickly and economically detect the ARG. We
also conduct a power analysis as part of the experimental
protocol to verify the model’s effectiveness with the avail-
able sample size. To determine the generalizability of our
model, we validate it using different data sizes. The results
of our model are also tested scientifically and biologically.
The biological validation gives a thorough understanding of
the importance of the genes that aiGeneR discovered. The
aiGeneR 1.0-identified hub genes and gene pathways high-
light the biological significance and can greatly help up-
coming research on AMR analysis.

The layout of the paper and key contributions are as
follows. Section II contains the related work for gene se-
lection and classification to prepare the pipeline for AMR
data analysis. In section III, we discuss the material and
overall architecture of aiGeneR. Section IV presents the
Al models and the experimental protocol. The outcome of
our proposed model is discussed in section V and section
VI presents the validation of our proposed model aiGeneR.
Sections VII and VIII are the discussion on the experimen-
tal outcomes and benchmarking of our aiGeneR model. The
conclusion is discussed in section IX.

2. Literature Survey

The gene expression value prediction is done by im-
plementing the eXtreme Gradient Boosting (XGBoost) al-
gorithm in [1]. The XGBoost technique, which incorpo-
rates several tree models and has improved interpretabil-
ity, is used in this work to create an algorithm for predict-
ing gene expression values. The datasets used in this study
are the RNA-Seq expression data from the Genotype-Tissue
Expression (GTEXx) project and the GEO (Gene Expression
Omnibus, GEO) dataset that was chosen by the Broad Insti-
tute from the published gene expression database, the per-
formance of the XGBoost model on this dataset is observed
and found performing well for prediction of genes. After
pre-processing, each sample in both datasets has 9520 target
genes and 943 landmark genes. The XGBoost model out-
performed all the other learning models, as shown by the
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overall errors in the RNA-seq expression data. Although
the training set and the test set for this particular job were
produced on separate platforms. It was concluded from this
that the XGBoost model performs admirably on this job and
has high generalization capabilities [17].

For cancer classification in microarray datasets, Deng
et al. [18] propose a two-stage gene selection strategy that
combines eXtreme Gradient Boosting (XGBoost) with a
multi-objective optimization genetic algorithm (XGBoost-
MOGA). In this work, genes are sorted using ensemble-
based feature selection with XGBoost in the initial step.
This step can efficiently eliminate irrelevant genes and
produce a collection of the class’s most pertinent genes.
The second stage of XGBoost-MOGA employs a multi-
objective genetic optimization technique to find the best
gene subset based on the group of the most important genes
[18].

Based on phenotype data from mouse knockout ex-
periments, Tian ef al. [30] proposed a supervised machine
learning classifier for assisting studies on mouse develop-
ment. In this study, supervised machine learning classifiers
are used to estimate the need for mouse genes without ex-
perimental evidence. In this study, discretized training sets
were used to deploy random forests, logistic regression,
naive Bayes classifiers, support vector machines (SVMs)
using radial basis functions (RBF) kernels, polynomial ker-
nel SVMs, and decision tree classifiers in 10-fold cross-
validation. A blind test set of recent mice knockout experi-
mental data was used to validate this model, and the results
showed high accuracy (>80%) in Decision Tree (DT) with
10-fold cross-validation [30]. In conclusion, the study em-
phasizes the value of suggested genome-wide predictions
of crucial mouse genes for directing knockout experiments,
clarifying important aspects of mouse development, and
ranking disease candidate genes in human genome and ex-
ome datasets according to their significance.

In AMR analysis, several methods may be employed
to find informative and ARGs, the Genes related to antibi-
otic resistance can be found using genome-wide associa-
tion studies (GWAS) [31,32]. In this method, genetic vari-
ations between bacteria that are resistant to antibiotics and
those that are sensitive to them are found by comparing their
genomes. Comparative genomics is the method to find the
genes that are particular to resistant strains of bacteria, com-
parative genomics compares the genomes of various bac-
teria. This method can be used to discover new resistance
mechanisms or resistance-related genes [17]. Similarly, the
analysis of patterns of gene expression is referred to as tran-
scriptomics. This method can be used to find genes that are
elevated after exposure to an antibiotic, which can reveal
information about the mechanisms of resistance [33,34]. In
addition to this, functional genomics uses genetic screening
to find the genes responsible for antibiotic resistance. This
method can be applied to discover new targets for medicines
or to discover the genes responsible for resistance mecha-
nisms [35].

Classification problems in high-dimensional data with
a small number of observations have become more preva-
lent, especially in microarray data. We applied search terms
like machine learning, gene expression data, antimicrobial
resistance, antibiotic resistance genes, and E. coli in Sco-
pus, Google Scholar, PubMed and Institute of Electrical and
Electronics Engineers (IEEE) but, were unable to find any
article that matched our problem statement [36,37]. To the
best of our knowledge, there is no such literature found that
uses the gene expression E. coli data for AMR analysis es-
pecially ARGs identification and infected sample classifi-
cation. We took the basic concept of the above works of
literature to design our AMR data analysis pipeline which
implements the Al for feature selection and classification
employing the gene expression data.

The levels of gene activity in a cell or organism can
be determined using gene expression data, which is useful
information that can be used to understand the functional
changes brought on by a variety of situations, such as antibi-
otic resistance. In contrast, gene sequence information ig-
nores the dynamic aspect of gene expression and instead fo-
cuses on the genetic makeup of an organism [38]. The gene
expression data includes aspects such as the identification
of novel targets, prediction of resistance types, and identi-
fication of important regulatory genes. Additionally, com-
pared to gene sequence data alone, gene expression data of-
fers a more thorough understanding of the molecular mech-
anisms causing antibiotic resistance [39]. With these advan-
tages and existing challenges of gene expression dataset for
AMR analysis, we considered the gene expression E. coli
dataset for our experiment.

To identify genes from gene expression data for AMR
treatment, one can follow widely used methods like gene
selection and classification [40—43]. An essential issue is
identifying the patterns of gene expression in cells under
varied circumstances. A crucial medical method called
gene expression profiling is frequently used to record how
cells react to illness or medication treatments [44—46].
When processing hundreds or even thousands of samples,
the cost of gene expression profiling has been continuously
decreasing for the past several years, although it is still
highly expensive [44,47-49].

Gene expression data are complex and non-linear.
From the literature, we found that XGBoost, SVM, and
Random Forest (RF) are frequently used learning models
for classification using gene expression data. In addition
to this, we experimented with two neural network-based
learning models artificial neural network (ANN) and DNN.
The basic advantages associated with DNN, and ANN for
gene expression data analysis are they are capable of han-
dling missing data, dealing with high-dimension data, and
extracting abstract features from the data, and as it is pre-
trained the large volume of gene expression data can be han-
dled efficiently for classification task [50].
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3. Materials and Overall Architecture

A brief description of the experimental components,
resources, and methods used in this study is given in this
section. This phase makes the study reproducible and ver-
ifies its results. It requires covering the setup, collection
strategies, and the analytical processes applied to the data
analysis.

3.1 Antibiotic Resistance Genes

Antibiotic resistance genes (ARG) are certain genes
found in bacterial deoxy nucleic acid (DNA) that provide
antibiotic resistance. These genes can be acquired either
through horizontal gene transfer, in which bacteria trade ge-
netic material with one another, or through mutation. Plas-
mids, which are compact, circular DNA units that are easily
transferred between bacteria, include ARG that can spread
quickly throughout a bacterial population [12,51]. To cure
diseases brought on by bacteria resistant to antibiotics, it is
crucial to target the genes responsible for antibiotic resis-
tance. To combat AMR, it is crucial to raise public knowl-
edge of the hazards associated with improper usage and ex-
cessive use of antibiotics. Also, it is crucial to correctly
diagnose the infection to determine the kind of bacteria that
caused it and, consequently, apply the right antibiotic treat-
ment [6,51]. The first step in creating efficient treatments
for diseases brought on by resistant bacteria is to pinpoint
the genes responsible for AMR. Identification of differen-
tially expressed genes using gene expression data is another
crucial component of AMR study; it helps to comprehend
the state of the infection and offers more clarity for identi-
fying ARGs.
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3.2 Overall Architecture

The complete pipeline of this work is depicted by
the block diagrams in Fig. 3. It comprises several qual-
ity control methods applied to the data preprocessing, var-
ious model stages, and the outcome. The architecture of
aiGeneR gene identification model uses an extensive qual-
ity control pipeline to preprocess gene expression data,
which includes min-max normalization and Log2 transfor-
mation while filtering genes according to a stringent p-value
threshold of 0.05. Next, it makes use of XGBoost for fea-
ture selection and a deep neural network to classify infected
data samples. Power analysis, evaluation of sample size ef-
fects, generalization abilities, and quantification of memo-
rizing tendencies are some of the factors that are used for
evaluating model performance. Additionally, aiGeneR’s
biological validation highlights the importance of hub genes
and the discovery of antibiotic-resistance genes, emphasiz-
ing its applicability in the fields of gene expression analysis
and infectious disease investigation.

3.3 Environment

A large number of samples are needed to train a deep-
learning model because a limited training set will result in
overfitting. The accuracy curves and loss curves of the
training and validation sets provide the most detailed in-
sight into the fitting process. The training and validation set
curve trends should be comparable to one another for opti-
mal fit. A reduction in model complexity is required if the
accuracy or loss of the training set differs from those of the
validation set. These differences indicate overfitting. The
performance of the model prediction needs to be enhanced
in the absence of underfitting [52].
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We construct a basic Multilayer Perceptron (MLP)
neural network to perform a binary classification job with
prediction probability for DNN. The Keras library, which
is based on Tensorflow, is commonly used in Python 3.7
(Python software foundation, Wilmington, DE, USA) [53].
The input dimension of the dataset is 30. One hidden layer
comes before one output layer. The accuracy score is the
measurement of the model performance. If there has been
a significant rise in accuracy (>80%) after 20 epochs, the
learning process is stopped using the early stopping call-
back. For aiGeneR 1.0, we construct the architecture with
two hidden layers with 12 nodes each and the input layer is
of 30 nodes. With this architecture, we can visualize there is
a significant improvement in the accuracy (>90%) after 17
epochs. We evaluate all the implemented models includ-
ing the ANN and aiGeneR with Python 3.7 using Jupyter
Notebook in Anaconda Navigator 2.3.1.

3.4 Dataset

The dataset for this work is obtained from the Na-
tional Center for Biotechnology Information (NCBI) and
the source (URL) of the dataset is “https://www.ncbi.nlm
.nih.gov/geo/query/acc.cgi?acc=GSE98505”. The dataset
explores the historical function of the synthetic protein
MalE-LacZ72-47 in causing cellular stress and its deadly
impact on bacteria. The study’s focus on downstream
metabolic processes shows that the ROS-dependent com-
ponent of antibiotic lethality and MalE-LacZ lethality are
identical. Growing in M63 medium, E. coli MC4100 cells
expressing a MalE-LacZ hybrid protein under a maltose
promoter (MM18) were stimulated with 0.2% maltose. To
extract RNA, the cells were shaken and incubated at 37 °C
for five hours. Samples were taken every hour. Increased
susceptibility is seen in oxidative stress-sensitive mutants,
suggesting that reactive oxygen species (ROS) cause cell
death. The number of samples and genes in this dataset are
summarized in Table 1. However, it is found that the dataset
taken for our experiment is balanced with both positive and
negative samples. The raw data and the processed data are
the same since no genes with null values greater than 30%
were discovered during the imputation phase.

Table 1. Dataset characteristics.

Dataset Type Genes #Total #Normal #Diseased
Raw Data 10208 36 18 18
Processed data 10208 36 18 18
Dataset (with 5571 16 18 18
p-value < 0.05)

3.5 Quality Control

We found that the dataset (GSE98505) is having null
values and the expression value ranges from 0 to 16. We
aim to remove the genes which are having more than 30%
null values but, there are no such genes identified. To re-

duce the computational burden, we apply the normalization
process to the dataset. The data pre-processing phase in-
cludes data imputation, normalization of the raw data, Log2
transform, and p-value measure [14].

In the first step of data processing the duplicate val-
ues are removed. Some well-accepted imputation methods
for numerical features includes rounded mean. In this case,
the approach substitutes null values for that feature’s mean,
rounded mean, or median values found across the whole
dataset. The rounded mean data imputation technique is
used to fill in the null or missing values. The method aids
in maintaining the data’s overall distribution by substituting
missing values with the rounded mean [54]. The rounded
mean imputation technique keeps part of the variable’s sta-
tistical characteristics [55].

Data normalization is done in the second step of data
preprocessing. Here we deploy the min-max normalization
technique. The min-max normalization normalizes the data
without disturbing the other data due to variance in their
original scale and it reduces all features to a standard and
single scale which is best fit for our dataset [56]. However,
itis also found that many machine learning algorithms’ con-
vergence rates and performance can be enhanced by nor-
malizing features using min-max normalization [57].

The third step of the data processing includes the Log2
transformation. For gene expression data, the Log2 trans-
formation reduces the dynamic range, makes interpreting
fold changes easier, and improves statistical stability and
visualization. The fourth and final step of data process-
ing holds the processed data based on a p-value less than
0.05. R statistical software (version 4.2.0, The R Founda-
tion for Statistical Computing, https://www.r-project.org/f
oundation/) was used to perform all statistical analyses [58].
With a statistical significance criterion of p < 0.05 (un-
less otherwise stated), the Log2 transformation was used to
retrieve significantly enriched genes for all database func-
tional analyses.

3.6 AI Model Selection

Artificial neural networks (ANNs) and deep neural
networks (DNNs): Because they are capable of accurately
capturing the intricate interactions between genes and phe-
notypes, ANNs and DNNs are frequently utilized in gene
expression data processing. These models work especially
well for tasks like predicting disease outcomes and classify-
ing gene expression. As our work also focuses on gene net-
work analysis, where the objective is to find interactions be-
tween genes, the performance of ANNs and DNNSs is found
significant [59—61]. The reason behind choosing ML mod-
els like XGBoost, SVM, and RF is, these models can handle
high-dimension data, are robust to overfitting, and have the
ability of non-linear transformation [24]. In addition to this,
XGBoost can be utilized to predict the course of a disease or
find biomarkers for particular illnesses (cancer) [18]. SVM
is frequently employed in the study of gene expression data
because it is capable of revealing intricate connections be-
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tween genes and phenotypes. Similarly, RF is frequently
utilized to predict the course of a disease or find biomarkers
for particular diseases using gene expression data [62,63].

3.7 Our aiGeneR Model

In this study, the proposed aiGeneR is the capsule that
binds the DNN algorithm for classification which performs
incredibly well on the feature that the XGBoost model has
selected. The model accuracy of aiGeneR improved signif-
icantly compared with the model run on raw data and the
model run with selected features. The general equation for
XGBoost feature selection is shown in Eqn. 1,

i=3 wnfald) ()

Where the predicted value of input data b is a, the total
number of distinct trees n in the ensemble is denoted by i,
and w,, is the weight given to tree n based on how much it
helped to lower the overall loss function. The prediction for
tree n on input x is called, f, (b), and it is determined by
going around the decision tree and giving each leaf node a
value depending on the input attributes.

The aiGeneR performs the classification problem by
combining the XGBoost feature selection algorithm and
DNN architecture. This paradigm gives the genes that are
prone to antibiotic resistance, informative for disease pre-
diction, and hub genes, which are in charge of tightly man-
aging a large number of genes through strong cluster cor-
relation. The biological validation section (section VII) ex-
plains in various points about this.

The following is the algorithm for XGBoost feature
selection and DNN (aiGeneR) which gives the best classi-
fication result compared with other ML models.

Step 1: Divide the dataset into train test sets (7:3). Run
the XGBoost model with all the features (Baseline model).

Step 2: Repeat each feature’s evaluation using XG-
Boost to determine its significance. Metrics like feature
gain is used to evaluate a feature’s significance.

Step 3: Choose the Top-10, Top-20, and Top-30 fea-
tures from the XGBoost feature ranking output.

Step 4: To create and train the DNN classifier, import
the necessary libraries, such as TensorFlow or Keras.

Step 5: The Top-10, Top-20, and Top-30 features will
be the input to the DNN model.

Step 6: Finally make the training and test sets on the
input. The testing set will be utilized for evaluation, while
the training set will be used to train the DNN classifier.

’ Algorithm 1 aiGeneR‘

##Taking the gene expression raw dataset as input

Input: Dataset DS (X =36, Y = 10576): The set of
samples and genes

## The quality control and feature ranking

Output: Normalized DS, p < 0.05, Log2 transforma-
tion
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Feature selection (X =36, Y = 5730)

Feature Ranking [DS1(X =36, Y = 10), DS2(X = 36,

Y =20), DS3(X=36,Y =30)]

## Splitting the ranked features into to train-test set

Split the DS to DSy, and DSy, as the train and test
dataset with a split ratio of 7:3

## Proposed DNN model implementation phase

FOR (ILR = 1—20) do

Weight {W; =W, W, ...... , Wio}:

FOR (HLR =1—12) do

FOR (W= W, —>W12) do

FOR (WE; = W19 — Wj1) do

FOR (Nj=1—12)do

N1 = Wi* ILRl + Wi* ILR2 + o +

Wi* ILRyo + WEI

OP; = WoP11*N1 + WoP 12Ny +

......... + WOP22*N12 + WOP10

OPO = WOP01*N1 + WOP02*N2 +

......... + WoP12*Nis + WoP01g

END

END
END
END

END

The DNN used in aiGeneR is intended to classify E.
coli bacterium infection in biological samples. It consists of
several artificial neural layers, with two hidden layers posi-
tioned in between the input and output layers. The network
architecture is specifically designed to handle the input data
with 27 features and generate accurate classification results.

Architecture:

(a) Input layer: There are 27 nodes in the input layer,
each of which corresponds to a different attribute that was
taken from the biological samples. These qualities include
the expression value of different genes in the sample.

(b) Hidden Layer: This deep neural network has two
hidden layers, each with 12 nodes. These hidden layers
act as processing units in between, converting the incom-
ing data into a feature space that is more abstract and repre-
sentative. A rectified linear unit (ReLU) function serves as
the activation function for each node in the hidden layers,
which each apply a weighted sum of inputs from the layer
before. This non-linearity makes it possible to identify in-
tricate linkages in the data.

(¢) Output layer: There is just one node in the output
layer. The anticipated chance that the input sample is con-
taminated with E. coli is represented by the output node’s
activation value in this binary classification problem. Typi-
cally, a sigmoid activation function is used to compress this
number into the range [0, 1], with values closer to 1 denot-
ing a higher likelihood of infection.

A labelled dataset of E. coli-infected and non-infected
samples is utilized to train the DNN. Through the use of an
optimization technique called Adam, the network learns to
modify the weights and biases attached to each link between
nodes in the layers. Utilizing a loss function that measures
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the discrepancy between expected and real labels, the net-
work’s performance is assessed. Binary cross-entropy is a
typical loss function for binary classification applications.
To achieve optimum performance, hyperparameters like the
learning rate are set at 0.0001 and batch size is 42. In or-
der to prevent over fitting, a 3-fold cross-validation is also
used during training. This deep neural network architec-
ture in aiGeneR 1.0, which includes 27 input nodes and two
hidden layers, was created especially for classifying E. coli
infections in biological samples.

In the above algorithm, ILR contains the input layer
nodes and HLR contains the hidden layer nodes. W and
WE; are the weights for the input and hidden layer respec-
tively. OP; and OP are the two nodes of the output layer.
The algorithm is based on a deep network having one input
layer with 27 nodes, two hidden layers with 12 nodes each,
and the output layer where the classification results were
obtained.

3.8 Hyperparameter Tuning

In this section, we discussed the working procedure of
the DNN classification model. The deployment of the pro-
posed model is done with the architectural modification of
the baseline DNN model. We focus on the model evaluation
techniques, evaluation metrics used, and baseline model of
DNN for our work. The implemented DNN model has hav-
ing input layer, two hidden layers, and one output layer.
The DNN model was trained for 20 epochs, with 2 sam-
ples in each batch. To prevent overfitting, an early stopping
mechanism was also implemented. The early halting mech-
anism, which reduced the learning rate to 0.001 of the previ-
ous learning rates, was activated specifically if the accuracy
in the validation set did not increase by 0.0001 within 17
epochs. The Top-10, Top-20, and Top-30 features chosen
by the XGBoost feature selection model is used to deter-
mine the number and dimensions of aiGeneR model’s input
nodes.

4. Al Models and Experimental Protocol

Building an Al protocol for identifying the ARG us-
ing gene expression data is essential. Gene expression data
are typically complicated and nonlinear in nature. It is cru-
cial to comprehend how non-linear classifiers behave when
applied to gene expression data. We believe that when us-
ing gene expression data, non-linear classifiers exceed lin-
ear approaches. Additionally, it is crucial to extract the
most crucial features because they are crucial to classifi-
cation performance [64,65]. The selection of the classifica-
tion model’s feature count is equally critical. To examine
these two key points on linear vs. non-linear models and
effective feature selection, we perform the below experi-
ments;

(1) Experiment #1 (E1): Training the models and com-
parison of linear and non-linear ML models.

(2) Experiment #2 (E2): Effective features are se-
lected by evaluating the feature selection model on the pro-
cessed gene expression data.

4.1 Linear vs. Non-linear Models

The proposed aiGeneR model consists of four ma-
jor steps namely quality control, effective feature selec-
tion, classification, and biological interpretation as shown
in Fig. 3. The main functionality of this model is to ex-
tract significant features, observe the model performance,
and reduce the computation burden. However, the com-
putational time is much less if the learning model operates
with selected features [66].

The different steps of this deployed model are, step-1
includes the used dataset, step-2 holds the data preprocess-
ing and feature selection used for data preparation, and step-
3 is meant for the classification of infected samples. The
last section of our proposed model (step 4) represents the
hub gene identification and biological validation. The basic
operation of the model starts with the data pre-processing
and feature selection process as used by our group previ-
ously [67]. Here we evaluate the XGBoost feature selec-
tion model to find the most significant features from the
dataset. The evaluation is based on training the XGBoost
model on our dataset using the labels as the target variable
and the gene expression levels as features. According to
how much each feature (gene) contributes to the prediction,
XGBoost automatically gives importance scores for every
feature (gene) during the training phase. The advantages of
the XGBoost feature selection technique help to find signif-
icant features which helps to increase model accuracy. The
ability of the XGBoost feature selection technique to deal
with missing values, outliers, and non-linear data makes it
more popular, which is shown in this section [68].

XGBoost

The open-source machine learning algorithm eXtreme
Gradient Boosting (XGBoost) is made to handle issues with
regression, classification, and ranking [64,67]. It is a mod-
ified form of the gradient boosting technique that is fre-
quently used in both commercial applications and data sci-
ence competitions. Some of the important features of XG-
Boost are,

(a) Handling missing values: Internally, XGBoost can
tackle missing values by discovering how to effectively fill
in the gaps with the information that is currently available.

(b) Regularization: L1 and L2 regularization are used
by XGBoost to reduce overfitting and increase the model’s
generalizability.

(c) Feature importance: To comprehend the funda-
mental patterns in the data, XGBoost offers a way to quan-
tify the significance of every feature in the model.

(d) Faster Processing: To make the model learn more
quickly, XGBoost opted for parallel processing which uti-
lizes several CPU cores.

The machine learning method XGBoost uses decision
trees as its foundation. Regression, as well as classification
problems, are addressed by it. A group of decision trees
is assembled using XGBoost, and each tree learns from the
mistakes of the one before it. After the learning process
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Fig. 4. The genes selected by the XGBoost feature selection model with their importance score and Gene number. XGBoost,

eXtreme Gradient Boosting.

Table 2. Mean accuracy and computational time of implemented models.

Mean Computational Time (Sec)

Model (Top-2 learning models from each group)  Mean Accuracy (%)

System-1 System-2
Non-linear 89.50 06.62 11.70
Linear 74.50 15.06 26.24

of each tree is completed, the forecasts of every tree in the
ensemble are combined to get the final prediction [69].

There are two different categories of learning mod-
els used in this study: linear (Appendix A) and non-linear
(Appendix B). We evaluate all of the models according to
their performance in two categories: linear classification
model performance and non-linear classification model per-
formance. It is observed that non-linearity in the dataset af-
fects the performance of the linear models, while the non-
linear model performs remarkably well.

There are a total of five learning models deployed in
this experiment out of which aiGeneR, ANN, and XGBoost
are non-linear learning models, and SVM, RF are linear
learning models. Three non-linear models” mean accuracy
is 88.33%, compared to two linear models mean accuracy
of 67.50%. The non-linear learning model has a mean ac-
curacy that is 22% higher than the linear models when we
compare the top two performers from each learning model
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which satisfies our hypothesis. Similarly, the computa-
tional time taken by the non-linear model is less compared
with the linear model. The comparison statistics in terms of
classification accuracy and computational time of the linear
and non-linear learning models are provided in Table 2.

4.2 Feature Selection and Optimization

Features selection and optimization are crucial pro-
cesses in the analysis of gene expression data. The selection
of the most pertinent features becomes essential for correct
insights and model performance because many genes may
influence outcomes [24]. Finding a selection of genes that
cause the observed changes is the goal of this technological
study.

The genes are selected by deploying the XGBoost fea-
ture selection model. The top-ranked genes selected by
the XGBoost model are then used by the different classi-
fiers proposed in this work. The XGBoost feature selection
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Fig. 5. Top-30 ranked genes with their rank value and gene number.

model is implemented on the 5571 genes selected after data
preprocessing. The XGBoost feature selection model se-
lects and ranks 479 genes as shown in Fig. 4.

In Fig. 4, a few Top-ranked genes which are having
feature importance scores of more than 0.01 are marked
with different color (blue, orange, and dark green) than
other selected genes. The highest feature importance score
obtained is 0.24 and the lowest is 0.00014. We then take the
Top-10, Top-20, and Top-30 ranked genes and form three
different datasets, and applied the classification model to
these datasets. The Top 30 genes based on their feature im-
portance score are shown in Fig. 5.

4.3 Evaluation Metrics

Classification is just one of the many machine-
learning tasks that can be performed with ANNs. An arti-
ficial neural network collects input data for a classification
problem and outputs a categorical result. The classification
performance of the learning model highly depends on the
model tuning. Model tuning is a crucial phase in the ML
process since it can enhance the model’s functionality and
increase its predictive power [70]. A few key parameters
for the deployed ML models in this work are discussed be-
low.

The dataset we have taken has having small sample
size, a short validation set would not give a reliable indica-
tion of the model’s performance. K-fold cross-validation is
one way to handle such a situation [71,72]. Except for the
class distribution of the dataset being kept throughout the
splits, the splitting technique is similar to the repeated K-
fold cross-validation. In other words, each fold will have an
identical distribution of samples across classes as the orig-
inal dataset. So, for classification tasks with unbalanced
class distributions, stratified K-fold cross-validation will be
more appropriate [52,72]. In our implementation phase,
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we take the k value as 3 for all the models. The deployed
XGBoost, SVM, and RF classification model has followed
the K-fold cross-validation from the train-test split. Based
on the validation accuracy, precision, recall, f-score, false
positive rate (FPR), and false negative rate (FNR), the XG-
Boost, SVM, and RF model performance is evaluated.

The deep network-based classification model used in
this study was tested using the same methodology as the
classification models mentioned in Section 4. Training and
validation accuracy curves and loss curves were initially
plotted to pre-screen experimental configurations with good
performance to choose the best set of hyper-parameters
for the model. The best parameter combination was then
chosen by repeating the trial settings with good perfor-
mance 3CV 10 times and using the average AUROC as
an evaluation indicator. The performance of the ANN and
DNN models is measured based on the validation accu-
racy (ACC), precision (PRE), sensitivity (SEN), specificity
(SPE), f-score (F1), FPR, and FNR (Appendix C).

5. Results

The anaconda environment and Jupiter notebook are
utilized to perform the model architecture design and pa-
rameter setting. The learning models are implemented with
Python (version 3.7) programming language [73,74]. The
results obtained using this proposed approach and a discus-
sion along with the exploratory data analysis are presented
in this section. The proposed model is developed on two
different computational systems. The first system (system-
1) is a workstation with 32 GB of Random Access Memory
(RAM), 1 TB of SSD storage, an Intel Core i7 processor,
and an Ubuntu 20.04 operating system. The specification
of the second system (system-2) is 8GB of RAM, 256 SSD
and 1 TB HDD, an Intel core i5 processor, and a Windows
10 operating system. The performance comparison of the
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Table 3. Computational time taken for all models in two different systems (times in seconds and presented up to two decimal

points).
System-1 System-2
Al Classifiers Raw Data  Selected Features Raw Data  Selected Features
SVM 21.13 13.90 38.20 26.14
RE Computational time in (sec) 3321 1623 2132 2633
XGBoost 25.90 11.30 42.31 19.52
ANN 18.04 06.01 23.12 11.81
aiGeneR 17.43 07.23 23.09 11.60

SVM, support vector machines; RF, Random Forest; ANN, artificial neural network; Al, artificial intelligence.

Table 4. Model metrics for all Artificial intelligence models on raw data.

Raw Data (without feature selection)

The performance metrics are in percentage (%)

FS+Classifier ACC PRE SPE
XGB+ANN 62 50 60
XGB+XGB 62 75 66
XGB+SVM 62 50 60
XGB+RF 37 75 0
aiGeneR 75 75 75

SEN F1 FPR FNR
66 57 40 33
60 66 33 40
66 57 40 33
42 54 100 57
75 75 25 25

ACC, accuracy; PRE, precision; SEN, sensitivity; SPE, specificity; F1,

f-score; FPR, false positive rate; FNR, false negative rate; FS, feature

selection.

implemented model in terms of computational time on these
two systems is shown in Table 3.

The computational time taken with system-1 specifi-
cation is much less than with system-2. It can also be ob-
served from Table 2 that the classification models are tak-
ing very little time with the selected features as compared to
the raw dataset. It is seen that the classification model like
DNN, and ANN takes significantly less time with selected
features for defined objectives in comparison to other con-
sidered classifiers. The average computational time for all
the implemented models in the case of raw data as input is
23.14 sec and 35.60 sec for system-1 and system-2 respec-
tively. The average computational time for all the imple-
mented models in the case of the selected feature for the
classification task is 10.93 sec and 18.88 sec for system-1
and system-2 respectively. Using selected features for the
classification task led to a considerable reduction in com-
putational time, with an average drop of 47.23% in system-
1 and 53.03% in system-2 compared to the computational
time required for raw data classification (without feature se-
lection).

5.1 Linear vs. Non-linear Models

Our proposed model, aiGeneR, is quantified in this
section, along with a thorough examination of its correct-
ness. For its remarkable predictive abilities in a variety
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of tasks, from classification to regression, the aiGRNER
1.0 algorithm, a variation of the XGBoost method with the
DNN classification algorithm, has drawn a lot of attention.
Our goal is to thoroughly evaluate the accuracy of aiGeneR
and learn more about its performance traits using various
datasets.

The model metrics for different learning models with
raw datasets (without feature selection) are shown in Ta-
ble 4, and Fig. 6 shows the performance of these learn-
ing model metrics. With an impressive classification ac-
curacy of 75%, the non-linear aiGeneR model outperforms
the linear SVM. The measures show that the proposed
aiGeneR model exceeds the other model in terms of classifi-
cation accuracy which is more than 20% than XGB+ANN,
XGB+XGB, and XGB+SVM classification models. It is
observed that the XGB+RF classification model resulted in
poor accuracy of only 37% and 0% specificity which indi-
cates a large number of false positives and an inability to
correctly detect negative examples.

5.2 Effect of Selected Features

Across three different feature sets, the aiGeneR model
showed promise in classification tasks as shown in Table 5.
The model produced relatively high accuracy and precision
while maintaining a reasonable balance between recall and
precision when tested using the Top-10 attributes. When

11
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Table 5. Model metrics for all the Artificial intelligence models on Top-10, Top-20, and Top-30 selected features (genes).

ML Model  Accuracy Precision Recall F1  Specificity FPR FNR

XGB+SVM 57 57 66 57 57 0.37 0.37

XGB+RF 64 85 60 70 75 0.11 044

Top-10 XGB+XGB 64 71 62 66 66 022 033

XGB+ANN 78 71 83 77 75 0.18 0.09

aiGeneR 85 100 77 87 100 0.10 0.16

XGB+SVM 78 71 83 76 75 0.25 0.16

XGB+RF 71 85 66 75 80 020 033

Top-20 XGB+XGB 86 87 87 87 83 0.12 0.16

XGB+ANN 86 86 86 86 86 0.14 0.14

aiGeneR 93 100 87 93 100 0.00 0.12

XGB+SVM 78 71 83 76 75 025 0.16

XGB+RF 71 85 66 75 80 020 033

Top-30 XGB+XGB 86 87 87 87 83 0.12 0.16

XGB+ANN 86 86 86 86 86 0.14 0.14

aiGeneR 93 100 87 93 100 0.00 0.12
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Fig. 6. Classification model metrics for all the models on raw data.

the aiGeneR model was tested using the Top-20 features,
its performance significantly improved. A stronger over-
all ability to predict and a more balanced trade-off between
precision and recall are shown by improvements in accu-
racy, recall, and F1 score. The experiment is carried out
based on the protocol discussed in the experimental proto-
col (EP) in section IV.

A stronger overall ability to predict and a more bal-
anced trade-off between precision and recall are shown by
improvements in accuracy, recall, and F1 score. The perfect
specificity and low false positive rate demonstrate that the
model has sustained superior performance in correctly clas-
sifying negative samples. However, for the Top-30 feature,
the performance of aiGeneR is unchanged. The proposed
aiGeneR (XGBoost feature selection and DNN classifica-
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tion) model successfully used feature information to gener-
ate precise predictions for the classification problem. It is
crucial to note that the model’s performance was consider-
ably impacted by the choice of the most significant features,
highlighting the significance of feature engineering and se-
lection in machine learning pipelines.

To choose the most insightful features from the
dataset, we used three separate datasets based on feature
selection (ranking). The datasets are Top-10, Top-20,
and Top-30. The five different classification algorithms
aiGeneR, ANN, XGB, SVM, and RF were also coupled
with these features to create a comparative classification
model. Performance measures like accuracy, precision,
recall, F1 score, specificity, false positive rate, and false
negative rate are taken into consideration for the deployed
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Fig. 7. Classification metrics of all the models (Top-10 features).
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Fig. 8. Classification metrics of all the models (Top-20 features).

model’s potential testing on the identification of infected  sification tasks during the experiment phase. The outcomes

and non-infected samples. Figs. 7,8,9 show the model met- revealed that the adoption of the feature selection technique
rics on Top-10, Top-20, and Top-30 genes respectively, and  significantly affects the model’s classification performance.
Fig. 10 summarizes the performance of all these model met- ~ When compared to how these models perform on raw data,
rics in terms of classification accuracy. it is also seen that classification models applied to the Top-

20 features yield the best classification accuracy. Addition-

Using XGBoost feature selection techniques, we com-  3]1y. models with fewer features lighten the computational

pared how well machine learning models performed at clas-
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Fig. 10. All Models accuracy on Top-10, Top-20, and Top-30 features.

load and offer the best classification accuracy. In addition
to this, high accuracy and precision were continuously at-
tained by aiGeneR, making it an excellent contender for
classification tasks for our defined objective. This obser-
vation is obtained with model evaluation metrics in experi-
mental protocol (EP) section (section IV).

The observation in figure (Fig. 10) clearly shows that
the aiGeneR model acquires a higher classification accu-
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racy of a minimum of 10.08% (for all the 30 ranked feature
datasets) and a maximum of 14.9% (for the Top-10 ranked
feature dataset) in comparison to the other proposed mod-
els. However, it is also seen that all the proposed models
perform well on the selected feature set of Top-20 and Top-
30 as compared with the Top-10 feature set (Appendix Ta-
ble 11). It can be concluded from our hypothesis that; the
proper selection of significant features boosts the perfor-

&% IMR Press


https://www.imrpress.com

Table 6. Genes selected by the XGBoost feature selection model.

Rank F# Gene ID Gene Symbol Rank F# Gene ID Gene Symbol

1 3512 1765606 paal 16 4333 1767117 NF

2 2590 1763875 NF 17 1353 1761578 ycgE

3 400 1759806 trpC // ECs1834 18 4 1759074 yfbN

4 210 1759472  sepQ // ECs4565 19 867 1760673  yfeR // ECs3281

5 2546 1763807  ycfT // ECs1493 20 653 1760272  uxuB // ECs5282
6 1296 1761463  C2193 // ECs2497 21 22 1759103 NF

7 2841 1764345 c0272 22 2887 1764429 trpB // ECs1833

8 2626 1763963 polB 23 4579 1767567 ECs2954 // Z3089
9 5051 1768435 pspB 24 4559 1767527 rbn // yihY

10 3050 1764734  ECs3616// Z4071 25 222 1759495 NF

11 2424 1763555 ECs1418 26 435 1759866  potF // ECs0934

12 780 1760513 NF 27 2683 1764051 ECs2895 ///gatC

13 2816 1764302 ECs1074// Z1338 28 1930 1762651 adk

14 3425 1765444 NF 29 991 1760885 ECs4986

15 5664 1764672 tetM 30 790 1759741 paaZ

ANN

aiGeneR 1.0 XGB ANN  aiGeneR 1.0

XGB

Top-10

Top-20

SVM

ANN  aiGeneR 1.0 XGB

Top-30

Feature Group and Models

—e—FPR —e=FNR

Fig. 11. False positive rate and False negative rate of all the studied models for Top-10, Top-20, and Top-30 ranked features.

mance of the classification model in terms of accuracy. A
minimum of 20 features is needed by aiGeneR to attain the
best model accuracy.

The false positive rate (FPR) and false negative rate
(FNR) for all the implemented models on the Top-ranked
feature dataset are shown in Fig. 11. The minimum FNR
and FPR for each feature set is denoted as A1, A2, A3 and
B1, B2, B3 respectively. The FPR and FNR values are the
same for SVM in Top-10 features set is denoted by C1 and
for ANN model on Top-20, and Top-30 feature set is de-
noted by C2 and C3. The average FPR for the Top-10,
Top-20, and Top-30 feature datasets is 0.98, 0.52, 0.74 and
the average FNR is 1.39, 0.72, and 0.69 respectively. It is
observed that the FPR and FNR are reduced with Top-20
and Top-30 ranked features (genes) as compared to Top-10
ranked features.
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5.3 ARG Identification

The XGBoost feature selection algorithm applied to
the raw data selects 471 (four hundred seventy-one) initial
features as shown in Fig. 4. The selection is based on fea-
ture ranking which uses the Gini index for ranking the se-
lected genes and can be visualize in Fig. 5. In this work,
we take the Top-30 ranked genes for the analysis of the per-
formance of the proposed models. We carefully searched
for the presence of the AMR genes in the dataset, and it
was found that there is a single AMR gene present in the
dataset, and that gene is selected and ranked among the
Top-30 genes by the XGBoost model. The selected Top-30
ranked genes and their feature importance number (the po-
sition of genes in the dataset), and gene symbol are shown in
Table 6 and the characteristics of these (aiGener-identified)
genes are shown in Appendix Table 12 (Ref. [57-62,67—
70]) (Appendix F).
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Fig. 12. Receiver operating characteristic of all the classification models.

In addition to the above, the Top-30 ranked genes se-
lected by the XGBoost feature selection model with their
rank, feature importance number (F#), gene id, and gene
name (gene symbol). This gene ranking table presents a
prioritized list of the genes in the dataset based on their fea-
ture importance ratings. The genes that are ranked 1, 3, 8, 9,
22,28, and 30 are highly correlated with other genes based
on the number of genes connected to them.

Escherichia coli (E. coli) often carries the tetM gene.
Tetracycline, a popular antibiotic used to treat various genes
(gene-id) there are only 15 genes which are having their
gene symbols. The tetracycline resistance genes are a fam-
ily of genes that includes the tetM gene. ‘tetM’, a ribosome
protection protein, is a protein that is produced by the tetM
gene. It works by attaching to the ribosome and blocking
the antibiotic tetracycline from attaching to the ribosomal
target site [75]. The tetM gene is identified by our pro-
posed model and ranked in 15th place as shown in Table 6.
Due to the limited gene expression data availability for E.
coli, the presence of ARG is very less. In this work, we de-
ployed XGBoost feature selection method for its simplic-
ity and significant performance over gene expression data.
Several feature selection methods like PCA, LDA, t-SNE,
PCA Polling can be tested on this data and comparison of
classification performance may include in future work.

6. Performance Evaluation

Building trustworthy and efficient predictive mod-
els requires an accurate assessment of model performance,
which is a vital component. The capacity to evaluate a
model’s performance serves as a crucial sign of its poten-
tial to address real-world problems in a variety of domains,
from machine learning to scientific research [76]. This sec-
tion examines a thorough assessment of our suggested mod-
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els, considering several factors to provide readers with a
solid knowledge of their abilities and shortcomings.

To assess the effectiveness of the model in various sce-
narios, we investigate several important factors. A compre-
hensive understanding of the model’s effectiveness is pro-
vided by each subsection, which is created to investigate a
particular aspect of performance.

6.1 Receiver Operating Curves

The Receiver Operating Characteristic (ROC) curve is
a crucial indicator of a classification model’s efficacy. We
examine the performance analysis of our proposed aiGeneR
along with ANN, XGBoost, SVM, and RF with a value of p
< 0.05. The K-3 cross-validation is used to figure out how
the accuracy of each of these models varies as the amount
of training data changes. The dataset employed in this work
is non-linear and complicated, which makes conditionality
problematic. These problems are essentially handled by the
quality control process used in this study.

More importantly, the feature selection technique
which provides the most significant features helps to im-
prove the performance of the aiGeneR model. Fig. 12
shows the ROC performance of the five classification mod-
els (aiGeneR, ANN, XGBoost, SVM, and RF). Our pro-
posed model aiGeneR has accomplished a remarkable mile-
stone with a robust area under the curve (AUC) value of
98.4%. However, the ROC value of RF is lowest compared
with all other classification models. In the analysis process
of gene expression data despite the challenges of the imple-
mented complex non-linear dataset aiGeneR achieves the
best AUC value.
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Fig. 13. Visualization of classification accuracy achieved in different train-test splits of all the studied learning models.

6.2 Memorization vs. Generalization

This study also comprehended the implemented
model’s performance on all possible train-test split and the
comparison of classification accuracy on test data. The size
of training data has an impact on the learning model and
makes the model generalized well to unseen data [34]. We
evaluate our proposed model aiGeneR along with four other
classifiers used in this study on a used dataset with different
train-test splits. It is observed that aiGeneR requires very
minimal cases for generalization whereas other models re-
quire a greater number of cases. The detailed discussion on
the effect of data size on our proposed model is discussed
in this section. All the possible train-test splits on the used
dataset and the comparison of classification accuracy on test
data are shown in Fig. 13.

The goal is to track how the train-test split ratio influ-
ences the performance of the model as per the EP (section
IV) effect of data size. In the case of the aiGeneR clas-
sification model, as the percentage of training data rises,
accuracy progressively rises. When using a 70:30 train-to-
test split ratio, the model obtains the best accuracy of 93%.
The XGBoost-based ANN, XGBoost, and SVM classifica-
tion model achieves the best classification accuracy with
the 70:30 train-test split and the RF classification model
reaches the maximum accuracy with a 60:40 train-test split.
Our observation on this analysis concludes, that all the stud-
ied learning model archives an optimum accuracy with a
70:30 train-test split.
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Model generalization is the capacity of the model to
function effectively on novel, untested data, suggesting its
resilience and applicability for practical applications. The
least number of unseen instances and minimum amount of
data needed for the generalization of the proposed learn-
ing models are shown in Table 7. The least number of
new instances and the minimum amount of data needed
for model generalization are shown in the table for each
machine learning model. We evaluate the model gener-
alization on the Top-30 selected features with 36 samples
(cases). A minimum of 40 data points is needed for gen-
eralization in both DNN and ANN models. Additionally,
to validate the model’s performance on fresh data, at least
16 previously unreported cases are required. To achieve
generalization, the XGBoost model needs a larger dataset
with at least 70 data points and minimum of 25 instances
is required for verifying unrecognized circumstances. Sim-
ilarly, to achieve generalization, SVM and DT require 60
data points with 22 unseen instances.

Table 7. Data required for generalization of models.

Minimum (%) of Samples for =~ Minimum Unseen

Model

Model Generalization Cases
SVM 70 25
RF 60 22
XGBoost 70 25
ANN 40 16
aiGeneR 40 16
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6.3 Power Analysis

We executed a power analysis to establish the mini-
mal sample size required for precisely and accurately cal-
culating a population proportion. The tests were carried out
using the technique mentioned in [65,77,78]. The sample
size calculation formula, denoted by the symbol Sn, is as

follows,
s (B2)] o

Here, MoE stands for the margin of error, p is the es-
timated proportion of the feature in the population and z*
is the Z-score associated with the appropriate confidence
level. Half the breadth of the confidence interval was used
to calculate the MoE?2. We settled on a proportion of 0.5 and
a confidence interval of 95% for our experiment. To imple-
ment the power analysis, we use MedCalc [76,79] and the
obtained result is shown in Appendix Fig. 18.

As can be observed from Appendix Fig. 18 (Appendix
D), the study has a sample size of more than what is nec-
essary to meet the desired level of statistical power and
classify accurately. The minimal sample size for the used
dataset is also less than the amount of data accessible. How-
ever, to increase the classification model’s accuracy, statis-
tical power, and precision, data augmentation may be used.

S, =

7. Validation

The process of confirming that a model or system sat-
isfies its intended requirements is known as validation. Any
model or system must go through this crucial stage in the
development process, but it is especially crucial for models
that will be utilized in high-stakes scenarios. We evaluate
our proposed approach in a two-step validation, in step-1
we go for scientific validation, and in step-2 we do the bi-
ological validation. In scientific validation we evaluate the
performance of the aiGeneR model to unseen gene expres-
sion data and in biological validation we do annotation of
the outcome of our model.

7.1 Scientific Validation

The scientific validation of our proposed work uses
the “Microarray transcriptomic profiling of patients with
sepsis due to faecal peritonitis and pneumonia to identify
shared and distinct aspects of the transcriptomic response”
(E-MAT-5274) dataset which is available in ArrayExpress
[73]. The characteristics of the dataset are described in Ta-
ble 8. We evaluate our proposed model with the E-MAT-
5274 dataset keeping all the model configurations and pa-
rameters as per our proposed pipeline. It can be observed
from Table 9 that, the trend in the Top-20 and Top-30 se-
lected feature groups achieves the same level of classifica-
tion accuracy as our proposed model with the E. coli dataset.

This experiment indicated our proposed model may be
used as a benchmark model for infected sample classifica-
tion and informative gene identification using the gene ex-
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Table 8. Description of the E-MAT-5274 dataset.

N 1 Di d
Data Type Genes orma 1sease

Samples  Samples
Raw Data 47324 54 54
Processed Data 27160 53 53
Dataset after applying a 5000 53 53

p-value less than 0.05

Table 9. Classification accuracy of the proposed models on
the E-MAT-5274 dataset with different ranked features.

Accuracy
Model
Top-10  Top-20  Top-30

SVM 57 68 77
RF 66 74 76
XGBoost 68 83 83
ANN 74 83 84
aiGeneR 81 91 91

pression datasets. The accuracy of classification achieved
by aiGeneR on this dataset is still the greatest and has not
altered, demonstrating the potential for the generalization
of our approach. This indicates the validity of our claim
that aiGeneR is a generalized model that can access vari-
ous gene expression datasets to identify the most important
genes.

7.2 Biological Validation

This section explores the critical function of functional
association and gene network analysis in biological valida-
tion. By highlighting the potential roles of important genes
in particular pathways and processes and revealing coordi-
nated patterns of gene expression, these approaches make
it easier to evaluate high-dimensional gene expression data.
The key to demonstrating the applicability and precision of
these analytical methods is the coupling of computational
predictions with experimental confirmation.

7.2.1 Gene Network

A database of observed and anticipated protein-
protein interactions is called STRING. Protein-protein in-
teraction networks are mathematical representations of the
physical contacts between proteins in the cell [80]. The in-
teractions come from computational prediction, knowledge
transfer across species, and interactions gathered from other
(primary) databases; they comprise direct (physical) and in-
direct (functional) correlations. This analysis section pro-
vides some summary network information, including the
number of nodes and edges. The average node degree is the
average number of interactions a protein has in the network.
Higher numbers of edges reflect a dense gene cluster and a
gene having maximum numbers of edges will be treated as
the hub gene. Gene-network study provides a clear view
of the identification of significant genes and pathways, dis-
covers the functional association, prediction of gene func-
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tion, and identification of hub genes. Disease biomarker
and drug target identification is also the key contribution of
gene-network analysis [81,82].

The proposed learning model is tested on the Top-30
(thirty) ranked genes and found there are only 24 (twenty-
four) gene names (gene symbol) available in the used
dataset. Using these 24 genes the gene network is being
constructed with the help of STRING and it is found that out
of 24 genes, 15 genes are available in the STRING dataset.
While comparing the Top-30 and Top-20 feature datasets
we found that out of these 15 genes present in the STRING
dataset, 11 are also present in the Top-20 feature dataset.

The strain used by our suggested model for the genes
chosen is Escherichia coli K12 MG1655. We increase the
number of genes in our experiment to build networks which
will make it easier to comprehend how genes interact with
one another. We, therefore, take into account an addi-
tional 60 genes that belong to the same strain as our ob-
served genes (model-predicted genes). Finally, the gene
network we tested included 75 genes from the K12 MG1655
strain out of which 15 genes are identified by our suggested
model.

We searched for the connections and functional asso-
ciations between our researched gene sets and other genes
in E. coli to further confirm the filtered gene set. Utilizing
the stringApp of Cytoscape [83], which maps the genes to
the STRING database of interacting proteins [80], identi-
fied 15 significant genes (colored red), and 60 other genes
were linked to the protein-protein interaction (PPI) network
as shown in Fig. 14. STRING involves functional relation-
ships from selected pathways, computational text mining,
and prediction techniques as well as tangible connections
from experimental data [84].

The number of nodes is the same as the number of
genes (75) and the expected edges is 156 but, the network
constructed in STRING shows the number of edges is 360
which is a sign that the obtained genes create a signifi-
cantly more interacting network than excepted. The Genes
identified by our model (Top-30 gene group), especially
paaZ, polB, trpC, trpB, adk, paaX, and trpE shows the max-
imum number of connected genes and gene cluster to them
as shown in Table 6. The genes selected by aiGeneR are
given additional properties to serve as hub genes according
to the interaction edge we discovered in our gene network
and the deep connections among the genes. The tetM an
ARG identified by our proposed model is resistant to tetra-
cycline. Both Gram-positive and Gram-negative bacteria
can exhibit tetracycline resistance, which is mediated by
the genes tetM and other related genes. Through horizon-
tal gene transfer processes like conjugation, transformation,
and transduction, this resistance can spread between bacte-
ria [85]. The higher classification performance of aiGeneR
with gene network analysis gives us a thorough understand-
ing of the hub genes and the most important genes present
in the dataset.
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7.2.2 The Pathway Analysis

The bar graph in Fig. 15 depicts the findings of a path-
way analysis, which revealed significant metabolic pro-
cesses active in E. coli. Among the identified pathways,
the cellular aromatic compound metabolic process, organic
cyclic compound metabolic process, and small molecule
metabolic process are especially important. These find-
ings are consistent with previous E. coli research that has
demonstrated the importance of these pathways in the bac-
terium’s metabolism [86,87].

The analysis report also includes a few genes like
PAAZ,PAAI, YFER, and UXUB that are connected to mul-
tiple pathways. These genes carry out novel metabolic pro-
cesses in E. coli, including the hydrolysis of phenylacetyl-
CoA and other aromatic molecules [88], which may be es-
sential for E. coli to adapt to diverse environmental circum-
stances and use various carbon sources. However, certain
genes listed in the table, such as POLB and ADK, have
well-established roles in DNA replication, repair, and nu-
cleotide metabolism, respectively. TRPB and TRPC, which
encode enzymes involved in trypTophan biosynthesis, are
also members of the well-studied trp operon in E. coli.

While these genes may not be associated with any new
pathways, their presence in multiple pathways highlights
their importance in E. coli metabolic processes. These find-
ings provide a comprehensive overview of the metabolic
network of E. coli and shed light on the interconnectedness
of various pathways and the roles of specific genes within
them. Further research into the functional significance of
these pathways and genes will help us understand the physi-
ology of E. coli and advance our understanding of microbial
metabolism.

These pathways and genes selected by aiGeneR may
also have implications for the pathogenesis of E. coli-
caused urinary tract infections (UTIs), which are the
most common cause of UTIs in humans. Some E. coli
metabolism pathways and genes, such as those involved
in iron acquisition, adhesion, toxin production, or biofilm
formation, may contribute to virulence and survival in the
urinary tract environment [89]. The genes identified by
aiGeneR and the pathway analysis provide a detailed under-
standing of how these pathways and genes affect E. coli’s
ability to cause UTIs could lead to new prevention and treat-
ment strategies, especially in light of rising antibiotic resis-
tance [89].

7.2.3 Differentially Expressed Genes

The genes displaying significant expression differ-
ences between the sick and healthy samples were found
using DE analysis. To detect the Differentially Expressed
Genes (DEGs), filtering criteria of padj(FDR) less than
0.05 (p < 0.05) and Log2Fold-change >0.2 was applied.
As the dataset has some limitations there is a very small
number of significant genes present. Hence, we keep the
Log2Fold-change value more than 0.2 to find out the sig-
nificant genes in the dataset taken for analysis as shown
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Fig. 14. Gene correlation network of Top-30 ranked genes from aiGeneR with 60 other genes in the K12 MG1655 strain of E.

coli.

in Fig. 16. The genes named 22263 (1759349), c5398
(1760188), yqek (1760655), c0161 (1767264), c1153
(1768175), ¢3811 (1762223), yddk (1764611) are posi-
tively expressed whereas cusF (1762115) in negatively ex-
pressed. The genes with color red are the significant genes
(differentially expressed) and genes with color gray are
non-significant. However, a few other genes which are pos-
itively expressed are missing names in the database.

8. Discussion

According to the findings, aiGeneR model (XGBoost
feature selection and DNN) can be used as a standard model
for significant gene selection and AMR gene identifica-
tion, it also has certain limitations because of differences

20

in the sizes and methods of the datasets that were taken
into account. There is no information in the dataset used
in this study regarding how the resistance developed about
the sample preparation time. In section VI (B) we construct
the gene network, the genes that are in the Top 30 are taken
into consideration for network construction. It is observed
from the constructed gene network that, the genes selected
by the XGBoost feature selection model have AMR genes
and are highly correlated with different gene clusters that
may be affected by the resistance transferred by the iden-
tified ARGs. Therefore, we may draw a conclusion that
the selected genes (Top-30) by our proposed model have
significant analysis results on AMR gene identification and
finding the genes that highly correlated with the maximum
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Fig. 15. Pathways association of selected Top-30 genes.
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number of genes. During this work, we also found some
important research information on AMR analysis and ARG
identification which are listed below,

The performance of learning models in terms of ac-
curacy is highly increased with Top-ranked datasets built
on the features selected by the XGBoost feature selection
model. The computational time for ML and Deep network
models is significantly less while performing classification
on Top-20 and Top-30 ranked feature datasets. The archi-
tecture of the implemented aiGeneR model is simple and
able to provide high classification accuracy. The ARGs
present in the dataset are identified and correctly classi-
fied with the aiGeneR model. The proposed aiGeneR (XG-
Boost + DNN) provides more accurate features and classi-
fication of infected and non-infected samples classification.
The gene network construction gives a piece of detailed in-
formation on the genes that are selected by our model and
their associatedness with other genes in terms of correla-
tion factors. Our model identifies genes like Paaz, polB,
trpC, trpB, adk, paaX, and trpE shown highly correlated
with other genes and gene clusters. The chosen features are
shown to be biologically significant and help the proposed
model achieve a good level of prediction accuracy.

8.1 Claim

The core of our study involved applying hybrid ML
models to classify E. coli infection cases and identify the
relevant antibiotic resistance genes (ARGs). Deep network
models were combined to create these machine-learning
models. Therefore, it’s critical to compare our approach to
earlier Al models. Considering this, we decided to compare
our suggested models with earlier ML models (in AMR and
other disease analyses) to directly address the benchmark-
ing efforts.

There is an absence of research that combines ML and
gene expression data to identify ARGs. Gene sequence in-
formation is used in the majority of research to classify re-
sistance. Here, we evaluated two distinct gene expression
and sequencing datasets that were utilized for cancer clas-
sification and AMR analysis in our benchmarking section.
We chose cancer as the subject of our model benchmark-
ing because machine learning has been used in numerous
studies that use gene expression data.

For an accurate AMR analysis, data pre-processing,
including cleaning, normalizing, and feature engineering,
is essential. Several techniques in aiGeneR quality con-
trol pipeline, including min-max normalization, Log2 trans-
form, a p-value criterion of less than 0.05, XGBoost feature
selection, and deep neural networks, were used to find sig-
nificant genes. Metrics like accuracy, precision, recall, and
F1 score were used to assess the classification model’s per-
formance on infected E. coli samples. The model achieved
an F1 score of 93%, accuracy of 93%, precision of 100%,
and recall of 87%. Additionally, the model’s adaptability to
changes in the input data, generalizability to new data, and
congruence with biological observations were all assessed.
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It is found that the model is reliable, generalizable, and con-
sistent, according to the findings of these assessments.

Using gene expression data, our proposed aiGeneR
model delivers hub genes and ARGs. The maximum clas-
sification accuracy is attained by the innovative, non-linear
aiGeneR. Furthermore, the efficient feature selection used
in our suggested pipeline plays a crucial role in improv-
ing classification accuracy. With various gene expression
datasets, our suggested aiGeneR has demonstrated its gen-
eralizability while maintaining a high level of classifica-
tion accuracy. The classification performance is enhanced
by the significant genes that are identified by aiGeneR. It
has also been noted that our approach achieves the max-
imum classification accuracy with just 20 genes. One of
the most crucial features of our aiGeneR pipeline is its ca-
pacity to recognize hub genes, and the network analysis of
the aiGeneR chosen has already demonstrated this asser-
tion. Additionally, we assert that the aiGeneR identified
genes are strongly linked to UTI, as revealed by the path-
way analysis of these genes.

8.2 Benchmarking: A Comparative Evaluation

Four different models, including RF, DNN, DT, and
srst2 [90], are implemented in [91]. The performance of
DT was found to have a high classification accuracy of 91%
when the models were evaluated based on classification ac-
curacy. In this work, gradient boosting tree classifier is im-
plemented with 0.1 learning rate, 300, 600, and 5000 boost-
ing stages, deviance loss, and an 8:2 train-to-test split. Sim-
ilar genetic characteristics that cause AMR are found in [92]
by employing the SVM. Two SVM ensembles were cre-
ated for each antibiotic case using the same feature matrix
and AMR phenotypes: one with 500 SVMs trained on 80%
of genomes with all features, and another with 500 SVMs
trained on 80% of genomes with 50% of features, aiming to
enhance SVM accuracy with high-dimensional biological
data. It has been shown that the SVM model’s gene iden-
tification accuracy was 90%. However, most models that
employ gene expression data choose feature selection tech-
niques. The research published in [18,30], and [93] used a
variety of ML models to identify genes and categorize can-
cers. SVM, XGBoost, Neural networks, RF, and DT are
the ML models used in this work. The XGBoost model in
[18] achieves the best classification accuracy of 96.38%,
the XGBoost model in [93] achieves the highest classifica-
tion accuracy of 80%, and the SVM model in [30] achieves
the highest classification accuracy of 96.38%. All these ML
models are implemented on gene expression data. The work
considered for this is shown in (Table 10, Ref. [18,30,91—
96]). A DeepPurpose DL model, which makes use of gene
expression data, was deployed in [94] for the detection of
Target genes and drug-resistant melanoma. The affinity
score provided by the Deep Purpose (which is calculated
based on the targeted genes and their potential drugs) is
used as the performance measure. The model metrics are
not provided in the publication; instead, the authors simply
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Table 10. A study showing the artificial intelligence models on different gene data for gene selection and classification.

Performance Evaluation

Year  Reference Objective Al Type Method Dataset . Score (%) Limitations
Metrics
2018 Moradigaravand Antibiotic ML  GradientBoostingClassifier with a train-test split Whole genome sequencing. Accuracy 91 The resistance detection mechanism of the
etal [91] resistance of 8:2, a learning rate of 0.1, with boosting stages model is unknown, and the model is not
prediction of 300, 600, and 5000. robust.
2018 Tianetal. [30]  Gene Selection ML Random forests, support vector machines (SVMs) Phenotype gene expression Accuracy 80 Feature combinations were not explored,
and Classification with an RBF kernel, polynomial kernel SVMs,  data from mouse knockout and their influence on classification
logistic regression, naive Bayes classifiers, and experiments. accuracy remains unstudied in the ML
decision tree classifiers were used in 10-fold model’s performance assessment.
cross-validation on the discretized training data.
2020 Hyun et al. [92] Genetic features ML  Use the same core allele/non-core gene encoding ~ Genome sequence of 288 Accuracy 90 A substantial volume of data is necessary
that drive the of genomes and the SVM-RSE technique to find ~ Staphylococcus aureus, 456 to assess the prediction accuracy of the
AMR AMR genes in the bigger P. aeruginosa and E. coli Pseudomonas aeruginosa, and models.
pan-genomes. 1588 Escherichia coli.
2022 Dengetal. [18] Gene Selection ML The XGBoost-MOGA method combines the Cancer gene expression. Accuracy 96.38 If there are more genes, the process of
and Classification embedded XGBoost method with the wrapper computing requires more.
MOGA method.
2023 Cavaetal. [93] Cancer ML  Neural network with two hidden layers and each Cancer gene expression. Accuracy 90 Quality control, significant gene
Classification network node implemented the rectified linear identification, and model generalization are
unit (ReLU) as an activation function. RF with missing.
500 numbers trees and XGBoost with a number of
estimators 100.
2022 Liuetal. [94]  Target gene and DL Using Cytoscape and the STRING database, the Melanomas (type of skin Affinity scores - Web-based tools are used for gene
drug-resistance PPI network was created. The survival analysis cancer) gene expression. identification and biological validation of
melanoma was carried out using GEPIA. DeepPurpose a the results is missing.
identification pre-trained DL model is used to estimate the
affinity score (drug-target interactions).
2006 Gyorfty et al. Antibiotic ML SVM 30 human cancer cell lines Accuracy 86 Expression analyses are not directly helpful
[95] resistance gene expression. for identifying potential novel variables
prediction functionally implicated in drug resistance.
2022 Lietal [96] Biomarkers in ML Multivariate Cox analysis with elastic net Gene expression derived from Area-under-the-curve (AUC)  65.90 This work does not include any

colon
adenocarcinoma

drug resistance

regression and 10-fold cross-validation. RNAseq.

experimental validation of the proposed
model or pathway analysis of the hub gene.
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provide the number of genes that the model has identified.
In [95], an experiment was conducted to predict antibiotic
resistance using SVM and gene expression data. The model
accuracy that was attained was 86%. Drug resistance and
biomarkers in colon cancer identification are conducted by
[96]. It obtains an AUC value of 0.6590 using gene expres-
sion data and elastic net regression.

It is not feasible to perform benchmarking specifically
on ARG identification and classification of infected E. coli
samples using gene expression data. As a result, we choose
to compare our suggested model with the work in oncology.
The model we propose is concentrated on E. coli infectious
sample classification and ARG identification. The classi-
fication accuracy of the proposed aiGeneR is 93% with an
AUC value of 98.4%, which is the highest of any model cur-
rently in use for AMR analysis of gene expression data. The
generalizability of our model may be demonstrated by the
classification accuracy and AUC of aiGeneR and its vali-
dation on the E-MAT-5274 gene expression dataset (section
VII).

8.3 Special Notes on aiGeneR

Access to diverse and extensive datasets that contain
details on infections, drugs, and resistance mechanisms is
necessary for AMR studies. Due to the restricted avail-
ability of such data, obtaining it might be difficult, particu-
larly for rare or newly discovered resistance patterns. AMR
data is intrinsically complex since it takes into account sev-
eral variables, including bacterial strains, and environmen-
tal circumstances. It is a big problem to integrate and ana-
lyze these complicated datasets.

For an accurate AMR analysis, data pre-processing,
including cleaning, normalizing, and feature engineering,
is essential. Several techniques in the aiGeneR quality con-
trol pipeline, including min-max normalization, Log2 trans-
form, a p-value criterion of less than 0.05, XGBoost feature
selection, and deep neural networks, were used to find sig-
nificant genes. Metrics like accuracy, precision, recall, and
F1 score were used to assess the classification model’s per-
formance on infected E. coli samples. The model achieved
an F1 score of 93%, accuracy of 93%, precision of 100%,
recall of 87%, and. Additionally, the model’s adaptability
to changes in the input data, generalizability to new data,
and congruence with biological observations were all as-
sessed. It is found that the model is reliable, generalizable,
and consistent, according to the findings of these assess-
ments.

The aiGeneR learning model revealed that the genes
paal, trpC, polB, pspB, trpB, adk, paaZ, and tetM were sig-
nificant. Expertise in microbiology, genetics, bioinformat-
ics, and machine learning is frequently needed for effective
AMR investigation. To address the complexities of AMR,
multidisciplinary collaboration is required.

24

8.4 Strength, Weakness, and Extension

The application of ML models and neural networks for
ARG detection and classification is the primary concern of
this work. The work demonstrates a significant improve-
ment in the identification of informative genes, the dis-
covery of ARGs, and the classification of non-linear gene
expression data sources, making the suggested aiGeneR a
benchmark in the field of ARG identification. In compari-
son to previous studies on gene expression datasets for ARG
detection, the aiGeneR model performs remarkably well.
Additionally, the system’s robustness and domain adapt-
ability are demonstrated by cross-validation, biological val-
idation, and unseen implementations, as well as through
how effectively it operates in domains other than the spe-
cific one on which it was trained.

This pilot study concerning the discovery of ARGs us-
ing gene expression data is highly motivated. This study
can be expanded upon with data augmentation, perhaps
leading to improved model performance. However, physi-
cians do not recommend this strategy (the augmentation of
medical data) because it is medically erroneous [97,98]. If
the model has been trained using synthetic data, we may get
better model metrics. There are a few biases in our model
that could be eliminated with more research, including (i)
a smaller number of studies, (ii) the use of data augmenta-
tion, (iii) comparisons with other ML and DL models, (iv)
no comments on the clinical validation, and (v) a descrip-
tion of benchmarking studies [99—-104].

Future work on enhancing ARG identification will
focus on creating fresh datasets and investigating cutting-
edge architectural concepts like Synthetic Minority Over-
sampling Technique (SMOTE). We aim to assess the per-
formance of these new models and conduct a variability
analysis by contrasting them to our current aiGeneR mod-
els, such as the combination of ML with exhaustive feature
space with DL.

Additionally, to improve the performance of the clas-
sification model, we intend to create a new quality control
pipeline for the non-linear gene data. We want to work on
analyzing research and ranking them according to their bias.
Design systems can also be pruned to lower the size of the
training models, and artificial intelligence designs are sub-
ject to bias.

9. Conclusions

Antibiotic resistance genes (ARGs) were identified
and infectious and non-infectious samples were classified
using a hybrid gene selection and classification approach
using aiGeneR and XGBoost-based classifiers (ANN,
SVM, XGBoost, and RF). As opposed to using the raw
dataset, the results demonstrated that XGBoost feature se-
lection significantly enhanced classifier performance. The
aiGeneR model identified the tetM gene as an ARG respon-
sible for decreased antibiotic efficiency through horizon-
tal gene transfer, with the greatest classification accuracy
of 93% with Top-20 and Top-30 ranking features. Whole
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Genome Sequencing (WGS) is used for AMR investigation
and produces biologically significant data, although it is ex-
pensive. The discovery of AMR genes is complicated by
a scarcity of gene expression data. AMR pattern and gene
identification are made easier by WGS, notwithstanding the
complexity of its processing. Future studies will use syn-
thetic gene expression data from E. coli and deep learning
models to overcome the limits of gene expression data to
increase classification accuracy in AMR research and use
WGS for ARG discovery, particularly in E. coli.
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Appendix

Appendix A: Linear Models

A set of techniques known as linear machine learning
models assumes a linear relationship between the input data
and the target variable. Although these models are easy to
use and understand, they may have trouble detecting com-
plicated, non-linear patterns in data. To avoid overfitting in
linear models, regularization methods like L1 and L2 regu-
larization can be utilised. They are widely utilized in many
different fields since they are simple to create and effective
at handling big datasets.

Al. Support Vector Machine

Machine learning algorithms called support vector
machines (SVMs) can be applied to categorization jobs.
Finding a hyperplane that divides the data into distinct
classes with the greatest margin is the aim of an SVM. An
SVM is given a set of labeled examples for a binary clas-
sification task, each of which has a set of features and a
binary label (either 0 or 1). The SVM then looks for a hy-
perplane that has the greatest margin of separation between
the positive and negative samples. The decision boundary
is determined by the equation wT x + b = 0, where x is the
feature vector, and the hyperplane is defined by a vector w
and a scalar b.

If the data cannot be separated linearly, the SVM can
employ a method known as the kernel trick to move the
data into a space with a greater number of dimensions where
it can be separated linearly. The three most often utilized
kernel functions are the linear, polynomial, and radial ba-
sis function (RBF) kernels [105,106]. The SVM seeks to
minimize a loss function that maximizes the margin and
penalizes misclassifications. It is common to structure the
optimization problem as a quadratic programming problem,
and specialized techniques can be used to locate the answer.
SVMs have been demonstrated to be quite good at perform-
ing classification tasks, especially when the input data is
distinct and there are few features [107].

A technique for machine learning called SVM is used
to solve classification and regression issues. Determining
the hyperplane that most accurately divides the data into
distinct classes is how SVM operates. To maximize the
space between the two adjacent points of different classes,
the hyperplane is chosen. SVM uses a kernel method to
shift the data into a space with higher dimensions where it
may be separated, making it especially effective when the
data cannot be separated linearly [108].

A2. Random Forest

The supervised machine learning method Random
Forest is used for classification, regression, and other appli-
cations. It is an ensemble learning technique that integrates
various decision trees to create a model that is more reli-
able and accurate [109]. Compared to individual decision
trees, Random Forests provide several benefits, including
the ability to handle high-dimensional data, missing val-
ues management and nonlinearities, and reduce overfitting.
They are frequently employed in a variety of fields, includ-
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ing bioinformatics, image recognition, and data mining.
The Random Forest machine learning method for classifica-
tion issues is deployed in this work. Random Forest builds
many decision trees during the training period for classifi-
cation problems, then outputs the class that represents the
mean of the groups (classification) or the mean predictions
(regression) of the individual trees [16,110—112].

RF is a decision-tree-based machine learning algo-
rithm. The problems of classification and regression are ad-
dressed by it. Constructing an ensemble of decision trees,
each trained on certain portions of the data and a randomly
selected subset of the features is how RF works. The fore-
casts of every tree in the ensemble are combined to get the
final prediction [41].

Appendix B: Non-linear Models

Algorithms that are capable of capturing intricate,
non-linear correlations between input data and target vari-
ables are known as non-linear machine learning models.
They can handle complex patterns and interactions in data,
in contrast to linear models. They can be more difficult to
read, more complex, and frequently require more informa-
tion. Non-linear models are important in many real-world
applications because they are required for jobs where linear
relationships do not effectively explain the underlying data
structure.

B1. XGBoost Pseudocode for Feature Ranking

1. Use the training data to create an XGBoost feature
selection and ranking model, gene expression values as fea-
tures, and class labels as targets.

2. Using the trained model, determine each feature’s
relevance scores:

o The trained model contains i-number trees;

e For each feature j in the tree:

o Calculate the total gain of feature j across all splits
in tree i.

o Normalize the gains by dividing them by the sum of
all gains across all features in tree i.

o Calculate the average normalized gain for each fea-
ture across all trees.

3. From most critical to least important, rank the fea-
tures according to their average normalized gain.

4. Provide the prioritized features list.

Where i stands for each tree’s index or identifier in
the trained XGBoost feature selection model. Every feature
in the dataset is represented by the index or identifier j. A
specific feature from the set of all features (gene expression
values) used to train the XGBoost feature selection model
is referred to here as j.

1. XGBOOST PSEUDO CODE FOR CLASSIFICA-
TION

Input: (x;, yi):

1. Training set {(X1,y1), (X2,V2), --., (Xn, Yn)}, Where
x; is the i-th input feature vector, and y; is the class label (0
or 1) of the i-th feature.

2. The number of trees T.

3. Maximum tree depth d.
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4. Learning rate 7) (eta).
5. Regularization parameter A (lambda).

Output:
1. Initialize Fo(x) = 0, the initial prediction.
2.Fort=1toT:

3. Compute the negative gradient at each training fea-
ture i:g; = - [y; — sigmoid (F;—1(x3))].

4. Train a regression tree with maximum depth d to fit
the negative gradient values (g;).

5. Let J be the number of leaves in the tree. For each
leaf j in the tree:

6. Compute the average of the negative gradient val-
ues that fall into leaf j:h; = (sum of g; that belongs to leaf
j)/(number of g; that belong to leaf j).

7. Compute the leaf weight (or score) for leaf j: w; =
—n * h;/(A+ (sum of g; that belong to leafj)).

8. Update the prediction score for each example i:

9. Find the leaf j that feature i falls into.

10. Update the prediction score i: Fr (i) = Fr-1(1) +
Wj.

11. Output the final prediction model: F(x) = sigmoid
(Fr(x)).

Where an individual input feature vector is repre-
sented by x. Each x in the training set corresponds to a
particular example or data point’s set of input features and
for each input feature vector x, y denotes the class label (0
or 1) attached to it. An index or identifier for a particular
training sample in the training set is represented by the i.
In the regression tree, the j serves as an index or identifi-
cation for a particular leaf. In the XGBoost ensemble, T is
the total number of trees or boosting rounds. And for a par-
ticular training instance i at the t-th boosting phase (tree) in
the ensemble, Fr indicates the prediction scores or output
value.

Apart from the XGBoost classification model, several
well-known algorithms are frequently employed in the field
of machine learning classification models. Five of these
models will be covered in detail in this article: Deep neu-
ral networks (DNN), XGBoost, support vector machines
(SVM), and random forests (RF) are examples of artificial
neural networks (ANN). The classification of infected and
normal samples is carried out by deploying the ANN, DNN,
XGBoost, SVM, and RF classification models. The main
aim is to measure the classification performance, especially
classification accuracy and computational time taken. The
detailed description of the implemented classification mod-
els is described in the following section.

B2. Deep Neural Network

Deep neural networks (DNN) are a potent category of
machine learning techniques that can be used for a variety of
tasks, which includes classification [113—115]. A categori-
cal variable must be predicted in a classification challenge
using a set of supplied features. Typically, a DNN for clas-
sification consists of multiple layers of connected neurons,
with each layer uniquely processing the incoming data. The
intermediary layers, also known as hidden layers as shown
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in Fig. 17, alter the input data to create a more beneficial
representation for the classification process [28,116].

Output

Hidden Layer

Input Layer

Fig. 17. The general architecture of Deep neural network.

Through the use of an optimization technique like
stochastic gradient descent (SGD) or Adam, the parameters
of a DNN are learned. A collection of labeled examples
is sent to the network during training, and the parameters
are changed to reduce the discrepancy between the antici-
pated output and the true label. An ANN with numerous
hidden layers is called a DNN. Applications for DNN in-
clude speech and picture recognition, natural language pro-
cessing, and analysis of videos. Backpropagation is a tech-
nique for training DNNs that includes changing the weights
of neural connections to reduce the variation between the
expected and actual output [40,116,117].

B3. Artificial neural network

Machine learning models called artificial neural net-
works (ANNs) are modeled after the structure and operation
of the human brain. ANNs are made up of interconnected
neurons that process the input data to generate the output.
The output is a probability distribution across the potential
classes, while the input data is commonly represented as a
vector of numerical features. As the anticipated class, the
class with the highest probability is chosen.

Feedforward neural networks, convolutional neural
networks, and recurrent neural networks are a few examples
of ANN types that can be applied to categorization. The
most basic kind of neural network has an input layer, one or
more hidden layers, and an output layer. Recurrent neural
networks are better suited for sequential input, like text or
audio, while convolutional neural networks are frequently
employed for picture classification applications [116,118].

An activation function is used to stimulate the neurons
in an ANN, which brings non-linearities into the model.
The sigmoid, ReLU, and softmax functions are the most
often utilized activation functions. The probability distri-
bution over the classes is generated using the softmax func-
tion in the output layer and the sigmoid and ReLU functions
in the hidden layers. ANN has been utilized successfully
in a variety of applications, including speech recognition,
image recognition, and natural language processing. They
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have been demonstrated to be quite effective for classifica-
tion tasks. They can be computationally expensive to train,
though, and need a lot of labeled data to perform well.

Appendix C: Performance Metrics

The main objective of Performance parameter is to es-
tablish the confusion matrix, a real-to-anticipated-class ma-
trix that has many evaluation standards. The confusion ma-
trix is abbreviated as TP and FP for true positives and false
positives, while TN and FN for true and false negatives.
TP is an accurate positive prediction where samples with
infections are forecasted as infected samples, TN is an ac-
curate negative prediction where samples with non-infected
are forecasted as non-infected, FP is an inaccurate positive
prediction where samples with non-infected are forecasted
as infected samples, and FN is an inaccurate negative pre-
diction.

Among the performance metrics for classification pur-
poses examined in this study are recall (Rec), precision
(Pre), Specificity (Spe), Sensitivity (Sen), F-Measure (F1),
and accuracy (Acc), as well as true positive rate (TPR) and
false positive rate (FPR). The “ACC” is calculated by divid-
ing the total number of input samples by the number of cor-
rect predictions. The “Pre” refers to the percentage of cor-
rectly foreseen positive observations to all foreseen positive
observations. The “Rec” is the ratio of correctly predicted
positive observations to observations that were successfully
expected to be positive. The weighted average of “Pre” and
“Rec” is the “F1”. These model performance matrices are
calculated using equations 1-8 below;

False positive rate (FPR) = 2L~ (1)

FPYTN
False negative rate (FNR) = 22— (2)

FN{TP
Accuracy (Acc) = 7 Sﬁﬁﬁl Ny (3D
Precision (Pre) = TPZ% 4)

Specificity (Spe) = rrrrrny (5)
Sensitivity (Sen) = % (6)

Recall (Rec) = 77ty (7)

F-Measure (F1) = 2 % %’% ()

Appendix D: Model Testing

An essential tool in the study of machine learning and
classification is the confusion matrix. It does this by cat-
egorizing a predictive model’s predictions into four main
groups: true positives (positives that were correctly pre-
dicted), true negatives (negatives that were correctly pre-
dicted), false positives (positives that were incorrectly pre-
dicted), and false negatives (negatives that were incorrectly
predicted). We can evaluate the model’s accuracy, preci-
sion, recall, and F1-score, among other performance met-
rics, by contrasting these values.

Appendix E: Power Analysis

In the context of machine learning, power analysis of-
ten refers to the evaluation of the statistical power of the
algorithms and experiments. It facilitates in determining
whether your sample size is sufficient to identify any po-
tential effects or relationships.
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Sample size: area under ROC curve

Options

Type | error (Alpha, Significance) 0.05

Type Il error (Beta, 1-Power) - 020

Data

Null Hypothesis value
Ratio of sample sizes in negative / positive groups

. An_e:a un;jer RE_}_C curve

08

0.95

18/18

Result

Number of positive cases required: 15

Number of negative cases required: 15
Total sample size (both groups together) 30

Table
Type | Error - Alpha
0.20 0.10 0.05 0.01
DOON 10+10 ( 13+13 ( 15%16 L 21+21
TypellEmor [ 010 | 17+17  20+20 23+23  30+30
Beta . 23123, 2020 31 +31 P 3939
001 | 39+39  44+44  49+49 58+58

Fig. 18. Power analysis test of the proposed aiGeneR model.
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Table 11. Confusion matrix of all the deployed models.

Model TP FP FN TN

SVM 5 2 1 6
RF 5 2 2 5
XGBoost 6 1 1 6
ANN 6 1 1 6
aiGeneR 7 0 1 6
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Table 12. The most important Genes identified by aiGeneR and their characteristics.

Gene Name

Importance

paal

The phenylacetic acid breakdown pathway in E. coli includes the paal gene. Phenylacetic acid can be broken down and used by the bacterium as a source of carbon and energy
thanks to this route. Water and soil are two examples of natural habitats where phenylacetic acid can be found. E. coli can adapt to and endure situations where phenylacetic acid

is present because of the paal gene’s capacity to digest this substance [57].

The tryptophan biosynthesis enzyme indole-3-glycerol phosphate synthase is encoded by the trpC gene in E. coli. E. coli is unable to synthesize tryptophan, an important amino
acid. The trpC gene is essential for the bacteria to synthesize tryptophan on its own and meet its cellular needs for protein synthesis [58].

polB

DNA polymerase II, commonly referred to as DNA polymerase IV (Pol IV), is encoded by the polB gene in E. coli. Enzymes called DNA polymerases are in charge of DNA
replication, repair, and recombination. The polB gene produces the error-prone DNA polymerase DNA polymerase II, which participates in translesion synthesis (TLS) during
DNA repair [59].

pspB

Phage shock protein B (PspB), a subunit of the Phage shock protein (Psp) system, is produced by the pspB gene in E. coli. Under membrane stress, the Psp system, a stress

response mechanism, aids E. coli cells in adapting and surviving [60].

tetM

The Tet (M) protein, a well-known indicator of antibiotic resistance, is encoded by the tetM gene in E. coli. Tetracycline, a widely used antibiotic, becomes resistant to Tet(M).
Through mobile genetic elements like plasmids or transposons, the tetM gene can be horizontally transferred between bacterial strains and species. This exchange may help
bacterial populations, particularly E. coli, acquire tetracycline resistance. It is a serious issue in light of the spread of antibiotic resistance and the creation of multidrug-resistant
microorganisms [61].

The tetM gene frequently co-occurs with other genes for antibiotic resistance, such as those that confer resistance to different classes of antibiotics. This phenomenon of co-
resistance might result via genetic linkage or co-selection, in which the use of one antibiotic favors the preservation of resistance genes for other antibiotics. Multidrug resistance

in E. coli strains may be influenced by the tetM gene and other resistance factors.

trpB

The tryptophan biosynthesis route includes the enzyme anthranilate synthase component I, which is encoded by the trpB gene in E. coli. Tryptophan, an important amino acid
needed for protein synthesis and several biological functions, is produced by the trpB gene. An important step in the tryptophan biosynthesis route is the conversion of chorismate
to anthranilate, which is catalyzed by the enzyme anthranilate synthase component I, which is encoded by trpB. E. coli is dependent on foreign supplies or the manufacture of
tryptophan from precursors because it is unable to synthesize tryptophan on its own. The trpB gene and the enzymes it codes for are essential for ensuring that the cell has an

adequate supply of tryptophan [62].

adk

The adenylate kinase enzyme, which is encoded by the adk gene in E. coli, is essential for cellular energy metabolism. The equilibrium of adenine nucleotides, specifically ATP
(adenosine triphosphate), ADP (adenosine diphosphate), and AMP (adenosine monophosphate), is maintained by adenylate kinase (adk).

ATP, ADP, and AMP are essential for energy transmission and utilization in a variety of cellular functions, and adenylate kinase aids in controlling their levels. It makes sure
that the cell maintains a sufficient energy charge and ATP availability to support vital processes including cell motility, ion transport, and biosynthesis. To recycle nucleotides,
adenylate kinase converts AMP and ADP back into ATP. This recycling procedure is crucial for the effective use of nucleotide pools and aids in the preservation of cellular

resources [67,68].

paaZ

Using crotonyl-CoA as a substrate, PaaZ displays enoyl-CoA hydratase activity. Exogenous Pseudomonas medium-chain-length polyhydroxyalkanoate synthase (PaaZ) generates
(R)-3-hydroxyacyl-CoA for polyhydroxyalkanoate biosynthesis in a fadB mutant. A paaZ mutant shows a deficiency in using phenylacetate as a carbon source [69,70].
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Appendix F: Selected Important Genes
Significant genes linked to antibiotic resistance in the

context of urinary tract infections (UTIs) have been discov-
ered by our Al model. These results provide critical in-
formation for developing antibiotic treatment plans and ad-
dressing UTI-related medication resistance. The aiGeneR-
identified genes and their characteristics are detailed in Ta-
ble 12.
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