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Abstract

Background: Lactic acid, previously regarded only as an endpoint of glycolysis, has emerged as a major regulator of tumor invasion,
growth, and the tumor microenvironment. In this study, we aimed to explore the reprogramming of lactic acid metabolism relevant to
osteosarcoma (OS) microenvironment by decoding the underlying lactic acid metabolic landscape of OS cells and intercellular signaling
alterations. Methods: The landscape of OS metabolism was evaluated using single-cell gene expression data, lactic acid metabolism
clustering, and screening of the hub genes in lactic acid metabolism of OS samples using transcriptome data. The role of the hub gene
NADH:Ubiquinone Oxidoreductase Complex Assembly Factor 6 (NDUFAF6) was validated with in vitro studies and patient experi-
ments. Results: Single-cell RNA sequencing data validated a lactic acid metabolismhigh subcluster in OS. Further investigation of
intercellular communications revealed a unique metabolic communication pattern between the lactic acid metabolismhigh subcluster and
other subclusters. Next, two lactic acid metabolic reprogramming phenotypes were defined, and six lactic acid metabolism-related genes
(LRGs), including the biomarker NDUFAF6, were screened in OS. In vitro studies and patient experiments confirmed that NDUFAF6 is
a crucial lactic acid metabolism-associated gene in OS. Conclusions: The patterns of lactic acid metabolism in OS suggested metabolic
reprogramming phenotypes relevant to the tumor microenvironment (TME) and identified NDUFAF6 as an LRG prognostic biomarker.
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1. Introduction
Osteosarcoma (OS) is one of the most common ma-

lignant bone tumor worldwide [1]. Notably, OS is charac-
terized by the presence of transformed osteoblasts that pro-
duce poorly differentiated bones and osteoids. The pathol-
ogy of OS has a high degree of heterogeneity, and differ-
ent histological types of OS exhibit distinct biological and
molecular characteristics [2]. The pathogenesis of OS has
not been clearly clarified; however, multiple genetic and
environmental risk factors, such as age, radiation, and gene
mutations, have been found to be associated with osteosar-
comagenesis and tumor progression [3]. OS exhibits a high
propensity for local invasion and distant metastasis (most
commonly in the lungs), as well as recurrence. The 5-year
survival rate of OS has reached 70% in the nonmetastatic
stage since the introduction of chemotherapy [4]. However,
the overall survival rate among patients with metastasis re-
mains at approximately 20% and has not improved over the
past fourty years [5,6]. Therefore, a better understanding
of the molecular mechanisms uncovering OS progression is
critical for the development of customized treatment strate-
gies.

Metabolic reprogramming of tumor cells in response
to stress facilitates tumor progression, and the inhibition of
metabolic reprogramming of tumor cells has been shown to
reduce cell proliferation and invasion [7]. Tumor metabolic
reprogramming dynamically changes during cancer pro-
gression, participates in the reprogramming of the tumor
microenvironment, and leads to the metabolic reprogram-
ming of immune cells in the microenvironment [8]. For ex-
ample, the glycolytic conversion (Warburg effect) of tumor
cells to the regulatory adaptation of lactic acid metabolism
contributes to the epithelial–mesenchymal transformation
of tumor cells and activation of T cells. It is also regu-
lated by multiple factors in the microenvironment, includ-
ing cytokines [9–11]. Therefore, it is necessary to map tu-
mor metabolic reprogramming from the perspective of tu-
mor microenvironment.

Tumors exhibit high metabolic heterogeneity [12].
However, the interaction between metabolic phenotypes
and the tumor microenvironment is not comprehensively
understood. Notably, it has not yet been determined
whether the heterogeneity of tumor metabolism can be used
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to classify OS. Single-cell transcriptomics provides a plat-
form for exploring the cellular heterogeneity of metabolism
and characteristics of the microenvironment. The con-
struction of intercellular communication features enables
systematic elucidation of the regulatory mechanisms of
metabolic reprogramming in the tumor microenvironment.
In this study, the landscape of lactic acid metabolic com-
munication in OS was revealed and hub genes involved in
this biological process were screened.

2. Materials and Methods
2.1 Data Set Acquisition

To research the single-cell level metabolism fea-
tures of and their communications patterns, the single
cell RNA (scRNA) sequencing datasets from the Gene
Expression Omnibus database (https://www.ncbi.nlm.nih
.gov/geo/query/acc.cgi?acc=GSE152048) were integrated.
OS transcriptome sequencing data with updated clinical
data were downloaded from The Cancer Genome Atlas
(TARGETs) (https://ocg.cancer.gov/programs/target) and
the GEO database (https://www.ncbi.nlm.nih.gov/gds/?te
rm=GSE16088).

2.2 Single-Cell Transcriptome Standard Analysis
The scran R package (version 4.3) was utilized for nor-

malization, and standard log-normalization was conducted
on multiple scRNA datasets to identify variable features in
each individual [13,14]. Anchors between datasets were
determined using the FindIntegrationAnchors (Seurat v5)
function and returned as Seurat objects for downstream
analysis. The subtypes of OS and immune cells were indi-
vidually identified using SingleR (version 3.1.7) [15]. The
Monocle2 (version 2.4.0) algorithm was used to construct a
single-cell pseudo-time trajectory and identify the expres-
sion of genes that changed as the cells underwent differen-
tiation. The interaction between different OS subclusters
was investigated using NicheNet (version 1.0) [16], which
utilizes an incident ligand-based method to identify ligand
activity in receiving cells.

2.3 Consensus Clustering for Lactate Metaibolism Gene
(LAMG) Subtypes

Weperformed a consensus clustering algorithm for the
unsupervised classification of OS samples using the Con-
sensusClusterPlus R package (v1.50.0) based on LAMGs
[17]. K-means (km) cluster method was performed with
repeated iterations of 1000 to ensure dependability, and
the Gene Set Variation Analysis (GSVA) package (v1.34.0)
[18] was used to illustrate the differential biological func-
tions among the two clusters. Single-sample gene set en-
richment analysis (ssGSEA) was used to elucidate the infil-
tration of immune cells and different subclusters of OS in
each sample.

2.4 Screening and Validation of Diagnostic LAMGs
Multiple machine learning algorithms, including the

random forest (RF) and support vector machine (SVM)-

recursive feature elimination (RFE), were used to con-
struct prediction signatures and screen candidate diagnos-
tic genes. The “randomForest” R package (version 4.7-1.1)
were used to further screen genes, the RF screens gene fea-
tures based on Gini coefficient [19]. SVM-RFE is a support
vector machine that uses a backward sequential selection
algorithm. It ranks each feature by its score and removes
the feature with the lowest score until the required number
of features are screened. Weighted gene co-expression net-
work analysis (WGCNA) was subsequently performed on
the OS cohort A data using the corresponding R package
to identify the modules associated with interesting features
[20], and a topological overlap matrix (TOM) was first ob-
tained using the adjacency matrix. Next, genes were split
into various gene modules, outliers were removed by clus-
tering analysis, and the optimal value of the soft threshold
β was used to construct a scale-free network. Gene signifi-
cance (GS) and module membership (MM) were calculated
and used for gene screening. The intersecting gene among
the three screened gene sets was considered a candidate di-
agnostic gene.

2.5 Cell Culture
The 143B human OS cell line were required and

were cultured as previously described [21]. The 143 cell
line was validated by STR profiling and tested negative
for mycoplasma. Cells were all cultured in a humidi-
fied incubator at 37 °C and 5% CO2. Lactic acid (100
µg/mL, Product Number : L122090, Brand : aladdin, CAS-
No.: 79-33-4, Shanghai Aladdin Biochemical Technology
Co., Ltd. No. 809) was added to the medium to stim-
ulate the OS cells. To inhibit the expression of NDU-
FAF6, OS cells were transfected with NDUFAF6 siRNA
for 24 h using the INVI DNA RNA transfection reagent
(Retinentech, CAS-No: IV1216025, Shanghai Nonin Bi-
ological Technology Co., Ltd.). The siRNA sequences
used were as follows: si-NDUFAF6 -specific siRNA: 5′-
AGUUUUUUUCCAAAACUGCAU-3′ and ‘Non-sense’
(Control): 5′-UUCUCCGAACGUGUCACGUTT-3′.

2.6 Cell Viability Assay
143B cells (1 × 104) were seeded in 96-well plates

and cultured for 48 h. Next, the medium was removed
and 10 µL Cell Counting Kit-8 (CCK-8) solution (Cat. No
B34302, Selleck, Houston, TX, USA) was added to the
wells according to the manufacturer’s protocol (Beyotime,
China), and the absorbance at 450 nm was measured after
incubation for 4 h at 37 °C.

2.7 Transwell Experiment
The Transwell system was applied for the cell inva-

sion experiment. 143B cells were seeded into the upper
chamber with extracellular matrix (Cat. No: 354243, BD
Biosciences, San Jose, CA, USA) coated. The cells trapped
the filter were fixed and stained with crystal violet solu-
tion after incubation. The cells were photographed using
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a phase-contrast microscope (Cat. No: CX43, Olympus,
Tokyo, Japan), and the cell numbers were counted.

2.8 Assessment of Cells Metabolic Status

Seahorse XF24 Analyzer (Cat. No: XF24, Agilent
Technologies, Santa Clara, CA, USA) were used to assess
the metabolic status of the cells. To measure the extracellu-
lar acidification rate (ECAR), the Mito Stress Test kit (Cat.
No: 103010-100 Agilent Technologies, #103,015, Santa
Clara, CA, USA) was applied after siRNA treatment. Af-
ter enableing the cells to acclimate to the temperature and
pH equilibration, the cells were loaded into the XF24 Ana-
lyzer and measurements from T = 0 to T = 100 min were
recorded. The injection procedure was as follows: first,
oligomycin (Cat. No: 103010-100 Agilent Technologies,
#103,015, Santa Clara, CA, USA) at the concentration of
1 µM; next, carbonyl cyanide m-chlorophenylhydrazone
(Cat. No: 103010-100 Agilent Technologies, #103,015,
Santa Clara, CA, USA) at the concentration of 1 µM; then,
rotenone (Cat. No: 103010-100 Agilent Technologies,
#103,015, Santa Clara, CA, USA) and antimycin A (Cat.
No: 103010-100 Agilent Technologies, #103,015, Santa
Clara, CA, USA) at the concentration of 0.5 µM.

2.9 Patients

OS tissues were all surgically resected from 12 pa-
tients at Honghui Hospital between January 2023 and
March 2023. The inclusion criteria were as follow: a patho-
logical diagnosis of OS and tumor resection, while the ex-
clusion criteria were as follow: metastasis, recurrence, in-
complete clinical data, or an unknown diagnosis. Adja-
cent tissues (n = 12) were collected from the same patients.
Informed consent was obtained from all patients in this
study. This study was approved by the Ethics Committee
of Honghui Hospital (Approval Number: 202303051) and
was conducted with the Declaration of Helsinki in accor-
dance.

2.10 Quantitative Real Time Polymerase Chain Reaction
(qRT-PCR)

Total RNA was isolated from 143B cells and human
tissues by applying a UNIQ-10 column RNA Extraction
Kit (Cat. No: B511321-0020, Sangon Biotech, China).
Reverse transcription was performed by the RR047 cDNA
Synthesis Kit (Cat. No: K1621, TaKaRa, China). The
qRT-PCRwas conducted on a 7500 Real-Time PCR System
(Cat. No:4362143 Applied Biosystems, Foster City, CA,
USA) using 2× Power SYBR® Green PCR Master Mix
(Cat. No: 4309155, Invitrogen, USA). Gene expression
levels were normalized to GAPDH expression levels.
The following primer sequences were used: TIMMDC1-F
(5′-GGAAGTCCTTGAGGAGCGTC-3′), TIMMDC1-R
(5′-CATCAGCAGGCCTCCTACAG-3′), NDUFAF1-F
(5′-AGTGGCTTCTCCTGGCAAAG-3′), NDUFAF1-R
(5′-TCCCCACGTACACGGAGATA-3′), NDUFAF6-F
(5′-GAACTGGCTCAGGCTGGTTA-3′), NDUFAF6-

R (5′-GTGTGCTTGACTGGCAATGT-3′), CARS2-F
(5′-TGCATTCTGGGCATTTGCAC-3′), CARS2-R (5′-
ACACCATGCAAGGTAGCCTC-3′), NDUFAF3-F
(5′-CTCGCGCTACGTAGCTTGTA-3′), NDUFAF3-R
(5′-TCCTGGTGGAGGGATGAGAG-3′), GAPDH-F
(5′-GAGAAGGCTGGGGCTCATTT-3′), and GAPDH-R
(5′-GTCAAAGGTGGAGGAGTGGG-3′).

2.11 Immunohistochemistry Staining
Surgical specimens of tissues were cut to the thickness

of 4 µm and prepared on slides. Immunohistochemistry
(IHC) were conducted to evaluate NDUFAF6 expression as
follows: Dewaxing and endogenous horseradish peroxidase
was inactivated, then the tissues were subjected to antigen
repair. The tissue was then closed with Blocking Buffer
contained phosphate-buffered solution. then a rabbit anti-
NDUFAF6 antibody (ab150975, abcam, 152 Grove Street,
Waltham, MA 02453, USA) was diluted and incubated. Fi-
nally, the tissues were washed and were murined with sec-
ondary antibody HRP (ab97051, abcam,152 Grove Street,
Waltham, MA 02453, USA).

3. Results
3.1 Metabolic Landscape of OS at Single-Cell Level

To reveal the diversity of cellular components in OS,
analysis of OS scRNA-seq results was conducted. Single-
cell transcriptome data were firstly clustered into 20 ma-
jor clusters with the resolution of 0.5; combining with
the chromosomal copy number variation (CNV) results
that were calculated by inferCNV, malignant cells were
identified [22] (Fig. 1A), and seven main segregated cell
clusters, including cancer-associated fibroblasts (CAFs),
dendritic cells, endothelial cells, malignant cells, tumor-
associated macrophages (TAMs), T cells, and regulatory
T cells (Tregs), were identified (Fig. 1B) using unbiased
clustering of cells by using t-distributed stochastic neigh-
bor embedding (t-SNE) analyses; the cell type of clusters
were defined by singleR [15]. Next, we scanned the seven
major metabolism processes that reportedly to play vital
roles in the tumor progression, including lactatemetabolism
(Fig. 1C) [23], which refers to the metabolic process that
osteosarcoma use lactate as their nutritional source and ob-
tain energy through the tricarboxylic acid cycleas, fatty
acid metabolism (Fig. 1D) [24], retinoic acid metabolism
(Fig. 1E) [25], cholesterol metabolism (Fig. 1F) [26], bu-
tyrate metabolism (Fig. 1G) [27], aspartate metabolism
(Fig. 1H) [28], and glycolysis (Fig. 1I) [29], which refers to
the metabolism process thatproduce lactic acid through gly-
colysis metabolism , by evaluating the overall expression
levels of related gene sets in each cell. The expression lev-
els of genes that related to lactate, fatty acid, glycerolipid,
butyrate, and glycolysis metabolism were relatively high;
however, the expression levels of cholesterol metabolism-
related genes were relatively low. Subsequently, we fo-
cused on non-malignant stromal and immune cells in the
OS microenvironment and found that the level of lactate
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Fig. 1. Osteosarcoma tumor microenvironment (TME) and metabolism analysis. (A) The hierarchical heatmap shows copy number
variation (CNV) from the osteosarcoma sample. (B) t-distributed stochastic neighbor embedding (t-SNE) plot shows the six cell clusters
from the osteosarcoma sample. (C) t-SNE plot shows the lactate metabolism from the osteosarcoma sample. (D) t-SNE plot shows the
fatty acid metabolism from the osteosarcoma sample. (E) t-SNE plot shows the retinoic acid metabolism from the osteosarcoma sample.
(F) t-SNE plot shows the cholesterol metabolism from the osteosarcoma sample. (G) t-SNE plot shows the butyrate metabolism from the
osteosarcoma sample. (H) t-SNE plot shows the aspartic metabolism from the osteosarcoma sample. (I) t-SNE plot shows the glycolysis
metabolism from the osteosarcoma sample. (J) t-SNE plot shows the two T cell subclusters. (K) Dot plots showing the T cell signature
gene expression across the two T cell subclusters. (L) t-SNE plot shows the lactic acid metabolism across the two T cell subclusters.
(M) t-SNE plot shows the glycolysis metabolism across the two T cell subclusters. AUC, area under the curve; CAFs, cancer-associated
fibroblasts.
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Fig. 2. Metabolism analysis of regulatory T cells (Tregs). (A) t-SNE plot shows the hypoxia metabolism across the two T cell
subclusters. (B) t-SNE plot shows the two Treg cell subclusters. (C) Dot plots showing the Treg cell signature gene expression across
the two T cell subclusters. (D) t-SNE plot shows the lactic acid metabolism across the two Treg cell subclusters. (E) t-SNE plot shows
the glycolysis metabolism across the two Treg cell subclusters. (F) t-SNE plot shows the hypoxia metabolism across the two Treg cell
subclusters.

metabolismwas relatively low in T cells and dendritic cells,
level of fatty acid metabolism was relatively high in den-
dritic cells, level of retinoic acid metabolism was relatively
high in dendritic cells, level of cholesterol metabolism
was relatively high in Tregs and TAMs, level of butyrate
metabolism was relatively high in dendritic cells, level of
aspartic acid metabolism was relatively high in Tregs, and
level of glycolytic metabolism was relatively high in TAMs
and Tregs.

Based on the previously reported key role of
metabolism in the functional activation of T cells and Tregs
[30,31], we further subdivided these two cell types. The
results showed that T cells could be divided into two sub-
clusters (Fig. 1J). As shown in Fig. 1K, cluster 0 T cells
were defined as depletion T cells, according to the high ex-
pression levels of T cell depletion-related markers, includ-
ing programmed cell death protein 1 (PDCD1), cytotoxic
T-lymphocyte-associated protein 4 (CTLA4), and hepatitis
AVirus Cellular Receptor 2 (HAVCR2) [32], and cluster 1 T
cells were recognized as functional T cells based on the high
expression level of TNF Receptor Superfamily Member
14 (TNFRSF14), which is known as a marker of antigen-
presenting cell (APC) T cell activation [33]. Next, com-
bined with previous description of the T cell metabolism
features in TME [34], the key metabolic characteristics of

these two T cell subsets were observed, including lactic
acid, glycolysis, and hypoxia metabolism [35]. The level
of lactic acid metabolism was relatively low in depletion T
cell and functional T cell clusters (Fig. 1L). The glycolysis
metabolism level was relatively high in depletion T cells
and relatively low in functional T cells (Fig. 1M). The hy-
poxia metabolism level of was relatively high in depletion T
cell and functional T cell clusters (Fig. 2A). Tregs also were
divided into two subclusters (Fig. 2B). As shown in Fig. 1,
cluster 0 Treg cells were defined as Interleukin 10 (IL10)
+Tregs, according to the highly expression of IL10. Clus-
ter 0 Treg cells were defined as CD52 +Tregs (Fig. 2C), ac-
cording to the high expression level of CD52. The level of
lactic acid metabolism was relatively high (Fig. 2D), level
of glycolysis metabolism was relatively low (Fig. 2E), and
level of hypoxia metabolism had a high degree of hetero-
geneity in Tregs (Fig. 2F).

3.2 Lactic Acid Metabolism and Communication
Characteristics of OS Malignant Cell Subclusters

Previous studies have shown that lactate regulates bi-
ological functions of tumor cells and multiple types of im-
mune cells in the tumor microenvironment through his-
tone lactylation [36]. Therefore, we also examined the ex-
pression profiles of histone lactylation-related regulatory
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genes, including Histone Deacetylase 1 (HDAC1) and Hi-
stone Deacetylase 3 (HDAC3) [37]. The results showed
that HDAC1 expression level was relatively high in en-
dothelial cells, whereas HDAC3 expression level was rela-
tively high in Tregs (Fig. 3A). To further observe the het-
erogeneity of lactic acid metabolism in tumor cells, we first
extracted tumor cells and divided them into five subclus-
ters (Fig. 3B), combined with the expression of cell mark-
ers and singleR results (Fig. 3C), OS cluster 1 was de-
fined as TIMP3+MMP13+ cluster, OS cluster 2 was de-
fined as MMP9+HMGA1+ cluster, OS cluster 3 was de-
fined as BIRC5+STMN1+ cluster, OS cluster 4 was de-
fined as SPARCL1+NDUFA4L2+ cluster, and OS cluster
5 was defined as CTSK+CD68+ cluster. Additionally, the
results of pseudo-differentiation analysis showed that OS
cluster 1 was a relatively low differentiation cluster. The
OS cluster 2 was defined as a relatively highly differenti-
ated cluster (Fig. 3D,E). The overall evaluation results for
lactic acid-related genes showed that in cluster 2 the overall
level was higher, whereas in cluster 1, the overall level was
low (Fig. 3F). Further, a pseudo-differentiation heatmap
showed that multiple lactic acid metabolism-related genes,
including PER2, BCKDHA, ETHE1, HMGCL, MPC1,
LYRM4, PNKD, and SOD1, were highly expressed at the
end stages of differentiation, while genes including SCU,
NDUFS8, CHCHD10, CLPB, NDUFA10, and NDUFAF4
were highly expressed at the early stage of differentia-
tion (Fig. 3G). In addition, the distribution of lactic acid
metabolism-related genes on the chromosomes was ob-
served. The results showed that these genes were evenly
expressed on each chromosome, and relatively more ex-
pressed on chromosomes of 1, 2, and 12 (Fig. 3H). Sub-
sequently, we conducted an intercellular communication
analysis targeting lactate metabolism-related genes. The
results showed that the top 20 most relevant cytokines tar-
geted lactate metabolism-related genes in cluster 2 OS cells
(Fig. 3I). Interestingly, MIF was universally highly corre-
lated with all the target genes (Fig. 3J). In addition, the dot
plot results also showed a higher expression level of MIF
gene in OS cluster 2; the results also show that the expres-
sion level of TIMP1 was higher in OS cluster 1, and that
the expression levels of ITGAM, CXCL2, PTDSS1, PTPRC,
andMIF were also higher in OS cluster 2 (Fig. 3K).

3.3 Lactic Acid Metabolism-Related Molecular
Subgrouping of OS Samples

Based on the high heterogeneity in lactate metabolism
among different cell clusters at the single-cell level, we fur-
ther used lactate metabolism-related genes for the unsuper-
vised molecular typing of OS transcriptome samples and
divided them into three subtypes, two of which were de-
termined because a group with a small sample size was
eliminated (Fig. 4A–C). We further verified the results of
the single cell analysis by analyzing the infiltration of vari-
ous cell types in transcriptome samples by firstly extract-
ing markers of various cell subtypes including OS clus-

ter 1, OS cluster 5, Tregs, and T cells (Fig. 4D–J). Func-
tional enrichment result of OS cluster included ribosomal
large subunit, ribosomal RNA (rRNA) metabolic process,
rRNA processing, cellular respiration, oxidative phospho-
rylation, cytoplasmic translation, aerobic respiration, ribo-
some biogenesis, ribonucleoprotein complex, Adenosine
triphosphate (ATP) metabolic process, mitochondrial ma-
trix, large ribosomal subunit, collagen-containing, extracel-
lular matrix, inner mitochondrial membrane, protein com-
plex, cell-substrate junction, focal adhesion, ribosome, mi-
tochondrial inner membrane, electron transfer activity, ri-
bonucleoprotein complex binding, oxidoreduction-driven
active, transmembrane transporter activity, proton trans-
membrane transporter activity, cadherin binding, unfolded
protein binding, and collagen binding. These marker genes
were utilized for ssGSEA to further compare the tissue con-
tent of various cell types in different molecular subtypes
of OS samples, and the results show that cluster 2 exhib-
ited significantly higher proportions of OS cluster 4 cells,
OS cluster 5 cells, OS cluster 2 cells, and T cells, whereas
the abundance of OS cluster 3 cells and Tregs was rela-
tively greater in cluster 1 (Fig. 4K). To further explore the
molecular characteristics between clusters, we comprehen-
sively assessed the differences in the immune microenvi-
ronment by conducting an immune infiltration analysis be-
tween lactate metabolism clusters 1 and 2. Cluster 2 exhib-
ited significantly higher proportions ofmultiple types of im-
mune cells, including activated dendritic cells, eosinophils,
gamma delta T cells, immature B cells, myeloid-derived
suppressor cells (MDSCs), natural killer cells (NK cells),
plasmacytoid dendritic cells, regulatory T cells, T follicu-
lar helper cells, and type II T helper cells (Fig. 4L). Thus,
we defined cluster 2 as immune-hot cluster and cluster 1
as immune-cold cluster. GSVA was consistently used to
further explore the functional differences associated with
cluster-specific differentially expressed genes (DEGs) be-
tween the two clusters. Furthermore, the GSVA enrich-
ment results showed significant functional differences be-
tween the two groups. Specifically, the GSVA-GO results
showed that differentially enriched functions included mes-
senger RNA (mRNA) 3-end processing, ruffle membrane,
positive regulation of organelle organization, regulation of
supramolecular fiber organization, negative regulation of
cytoskeleton organization, phospholipid translocating AT-
Pase complex, structural constituent of nuclear pore, nu-
clear export signal receptor activity, positive regulation of
RNA splicing, regulation of clathrin-dependent endocyto-
sis, regulation of receptor-mediated endocytosis, and regu-
lation of endocytosis (Fig. 4M). The GSVA-KEGG results
showed that the differentially enriched functions included
nitrogen metabolism, Fc gamma R-mediated phagocyto-
sis, Erbb signaling pathway, adherens junction, small cell
lung cancer, inositol phosphate metabolism, endocytosis,
sulfur metabolism, histidine metabolism, primary bile acid
biosynthesis, biosynthesis of unsaturated fatty acids, and
oxidative phosphorylation (Fig. 4N).
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Fig. 3. Lactic acid metabolism characteristics of osteosarcoma (OS) malignant cell subclusters. (A) Dot plots shows the lactylation-
related regulatory genes expressed across the osteosarcoma sample. The size of dots indicates the proportion of cells expressing the
marker, the spectrum of color represents the mean expression levels of the markers. (B) t-SNE plot shows the five OS subclusters. (C,D)
Cell trajectory plot shows the five OS subclusters. (E) Heatmap shows the top differentially expressed genes in OS subclusters. (F)
t-SNE plot shows the Lactate Metaibolism Genes (LAMGs) from the osteosarcoma sample. (G) Pseudo-temporal differentiation locus
of the LAMG expression in OS clusters. (H) Chromosome locus analysis of genes in LAMGs. (I) Heatmap of ligand–target LAMG
interactions in the niche cell-OS cluster 2 cell communication. (J) Top ligand–receptor interaction pairs in the niche cell-OS cluster 2
cell communication. (K) Dot plots show the LAMG interaction-related genes expressed across the osteosarcoma sample.

3.4 Construction of LRG-Based OS Prognostic Model
To identify the high diagnostic value of LAMGs, two

proven machine learning models, the RF and SVM mod-
7
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Fig. 4. Clustering different microenvironment subtypes of osteosarcoma based on LAMGs. (A–C) Consensus clustering identified
three distinct clusters of OS with different LAMG expression patterns. (D) Circle plot of Gene Ontology (GO) pathway activities of the
T cells cluster markers. (E) Circle plot of GO pathway activities of the Tregs cluster markers. (F) Circle plot of GO pathway activities
of the OS cluster 1 markers. (G) Circle plot of GO pathway activities of the OS cluster 2 markers. (H) Circle plot of GO pathway
activities of the OS cluster 3 markers. (I) Circle plot of GO pathway activities of the OS cluster 4 markers. (J) Circle plot of GO pathway
activities of the OSCs subcluster 5 markers. (K) Single-sample gene set enrichment analysis (ssGSEA) scoring and differential analysis
of marker genesets. (L) ssGSEA scoring and differential analysis of 22 immune cells. (M) GSVA-GO analysis of LAMG clusters. (N)
GSVA-KEGG analysis of LAMG clusters. “*” represents for p value under 0.05 and “**” represents for p value under 0.01. GSVA,
Gene Set Variation Analysis; KEGG, Kyoto Encyclopedia of Genes and Genomes; OSC, osteosarcoma cells.
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Fig. 5. Screening of the hub genes. (A) SVM-RFE screening of candidate diagnostic genes. (B,C) Error graph of the random forest
(RF) models. (D) Pseudo-temporal differentiation locus of the hub genes in OS. (E) The RidgePlot illustrating the correlation between
the hub gene expression and cell cycle. (F) Dot plots shows the hub gene expression across from the OS clusters. (G) Sample clustering
heatmap of weighted gene coexpression network analysis (WGCNA) analysis. (H) Scale independence analysis of WGCNA. SVM,
support vector machine; RFE, recursive feature elimination; RMSE, root mean square error.

els, were utilized based on the expression profiles of the
OS cohort. The results show that we constructed an SVM
prediction model that included 40 LAMGs (Fig. 5A) and
an RF prediction model with LAMG expression of TIM-
MDC1, NDUFAF1, NDUFAF6, CARS2, and NDUFAF3
(Fig. 5B,C). Subsequent pseudo-time trajectory analysis
showed that LAMGs, including NDUFAF6 and NDUFAF3,

were highly expressed at the end stage of OS differentiation
(Fig. 5D). The cell cycle-related expression analysis results
showed a relatively low expression level of NDUFS8 in the
G1 phase, but it was high in theG2Mand S phases (Fig. 5E).
Expression levels of CARS2 and NDUFAF6 were relatively
high in OS cluster 2 (Fig. 5F). Moreover, all were used to
construct the WGCNA (Fig. 5G,H, and Fig. 6A–C). The
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Fig. 6. WGCNA analysis. (A) Merged dynamic analysis of WGCNA. (B) Module trait of WGCNA analysis. (C) Screening of genes in
brown module. (D) The Venn diagram displays the intersection of the results of the three gene sets.

networkwas constructed using a soft thresholdβ = 9, and 14
modules were identified (Fig. 4A). Among these modules,
the brown module showed the most significant correlation
with lactic acid metabolic scores (cor = 0.41, p< 0.01) and
exhaustion T cell scores (cor = –0.64, p < 0.01), and was
considered the key module in this study (Fig. 4B). Com-
bined with the candidate hub gene screening thresholds for
GS and MM, 257 genes were identified for further analysis
(Fig. 4C). Next, we intersected the gene set obtained from
the machine learning methods with the WGCNA gene set
(Fig. 6D) and obtained the key gene, NADH:Ubiquinone
Oxidoreductase Complex Assembly Factor 6 (NDUFAF6),
for further analysis.

3.5 Screening and Characterization of the Key Gene,
NDUFAF6

We validated the correlation between hub genes and
immune cell infiltration, revealing that the expression of
NDUFAF6 was negatively correlated with monocytes (R =
–0.29, p = 0.0031; Fig. 7A,B). Furthermore, the correla-
tion between NDUFAF6 and potential drugs was validated.
Chelerythrine, ifosfamide, methylprednisolone, nelarabine,
PX-316, ribavirin, and vorinostat were screened as potential
drugs targeting NDUFAF6 in OS (Fig. 7C–I). Afterwards,
a differential functional annotation analysis was performed
between the NDUFAF6-high and NDUFAF6-low expres-
sion groups of the transcriptome data. The top GSEA-GO
enrichment analysis results included negative regulation of
map kinase activity, regulation of receptor recycling, re-
nal system vasculature development, ribosomal large sub-
unit assembly, substantia nigra development, cell body
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Fig. 7. Immune, drug sensitive, and function enrichment analysis of NDUFAF6. (A,B) Correlation analysis between NDUFAF6 and
infiltration scores of immune cells. (C–I) Correlation analysis between NDUFAF6 and drug sensitive scores. (J) GSEA-GO analysis of
NDUFAF6. (K) GSEA-KEGG analysis of NDUFAF6. GSEA, gene set enrichment analysis.

membrane, exoribonuclease complex, MHC protein com-
plex, sequence-specific DNA binding of core promoter, and
sodium channel activity (Fig. 7J). The top GSEA-KEGG
enrichment analysis results included alanine aspartate and
glutamate metabolism, antigen processing and presenta-
tion, arachidonic acid metabolism, base excision repair,
drugmetabolism, cytochrome p450, xenobiotic metabolism
by cytochrome p450, retinol metabolism, ribosomes, RNA
degradation, and spliceosomes (Fig. 7K).

3.6 In vitro Lactate or siNDUFAF6 Treatment Regulates
OS Cells Survival

To determine whether lactate expression and exoge-
nous siNDUFAF6 were involved in the OS cells survival ,
lactate and siNDUFAF6 were separately treated with lac-
tate 143B cells (Fig. 8). The CCK-8 assay showed that
the viability of 143B cells decreased after siNDUFAF6
treatment and decreased under LA+siNDUFAF6 treatment
(Fig. 8A,B). Transwell assays showed that cell invasive-
ness was significantly decreased in the LA+siNDUFAF6
treatment group (Fig. 8C,D). We further examed the role
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of NDUFAF6 in metabolic reprogramming under the con-
dition of TME by evaluating the changes of Extracellu-
lar Acidification (ECAR) parameters. The results showed
that the glycolytic ability and glycolytic reserve of os-
teosarcoma cells decreased after the siNDUFAF6 treat-
ment (Supplementary Fig. 1A). qRT-PCR results indi-
cate that the NDUFAF6 and TIMMDC1 expression lev-
els significantly decreased after LA+siNDUFAF6 treat-
ment (Fig. 8E), it is also find that the expression of ND-
UFAF6 in OS cells reduced after adding chelerythrine
(Supplementary Fig. 1B).

3.7 Higher Expression Level of NDUFAF6 in Tumors in
OS Patients and Lower Immune Score Group

The NDUFAF6 expression level in each patient was
determined using qRT-PCR and IHC. The expression level
of NDUFAF6 in OS tissue group and lower immune score
group were respectively higher than that in the adjacent tis-
sue group (nine cases, Fig. 8F) and higher immune score
group (five cases, Fig. 8G). IHC results also confirmed that
the protein expression levels of NDUFAF6 OS tissue group
were respectively higher than that in the adjacent tissue
group (Supplementary Fig. 1C).

4. Discussion
Metabolic reprogramming is a hallmark of cancer cells

and has recently been identified as a key factor in tumor
progression [38]. However, the metabolic profile of OS re-
mains unclear [39]. Various metabolic markers, including
elaidic acid, docosahexaenoic acid, and octadecanoic acid,
were expressed differentially between OS lung metastases
development and nonmetastatic state, as a consequence of
hypoxia and the shift from consumption of carbohydrates
and amino acids to lipids [40], concomitantly, the levels
of glucose, glucose phosphate, and gluconolactone were
decreased, while uridine and uracil increased during the
metastatic phase as a consequence of metabolic shunting
towards ribose [41]. OS also illustrates the role of glu-
tathione pathway downregulation and high hypoxic levels
during metastasis [42]. In this study, we found that the
genes expression levels related to lactic acid, fatty acid,
glycolic metabolism, butyric acid metabolism, and glycol-
ysis metabolism were relatively high in malignant OS cells.
This is consistent with previous findings that glycolysis
promotes tumor invasion and metastasis [43]. cholesterol
metabolism and its metabolites can also promote tumor in-
vasiveness [44]. Butyrate affects the metabolism of OS
cells by regulating cell differentiation and the expression of
anti-inflammatory mediator-related genes [45]. At present,
increasing evidence shows that multiple types of immune
cells in the tumor microenvironment are similar to tumor
cells, and the abnormal metabolism of cells is caused by
the combined action of various factors that have a profound
influence on tumor immunity [46]. Our results show that
T cells in OS tissues are composed of activated T cells
and exhausted T cells. These two subtypes show distinct

metabolic profiles, including lactic acid, glycolysis, and hy-
poxia metabolism, indicating that lactic acid metabolism is
highly involved in the biological processes of activation and
exhaustion of T cells and that lactic acid dampens the func-
tion of T cells by suppressing T cell cytokine production
and restraining the redox system of T cells [47]. Hypoxic
metabolism also shows high heterogeneity in Treg cells, and
it has been proven that hypoxia favors Tregs in terms of dif-
ferentiation, suppressive recruitment, and function [48].

Similar to other fatty acids, L-lactic acid can also form
the corresponding fatty acyl-CoA and L-lactyl-CoA. Zhao
et al. [49] first reported that lactic acid is an important epi-
genetic regulatory molecule; histones can undergo lactate
modification K (L-la) and regulate the expression of genes
related to macrophage polarization during immune activa-
tion [50,51]. Previous studies have also examined the po-
tential regulatory effects of HDACs on lactate modifica-
tion and found that Class I HDACs (HDAC 1-3) are the
most effective lysine lactate modification erasers, in which
HDAC1 and 3 play a role in cell de-lactate activity [37].
Our results also revealed highly heterogeneous expression
of HDAC1 and 3 in the OS microenvironment. Our re-
sults on tumors and tumor-infiltrating T cells suggest that
lactic acid metabolism in OS and lactic acid itself in the
microenvironment may play an important role in the pro-
gression of OS. The role of lactic acid in oncogenesis and
progression has long been underestimated because it is pri-
marily considered as a waste product of glycolysis or a
marker of poor prognosis [42,52]. In recent years, lactic
acid has been found to play a key role in promoting tumor
growth, angiogenesis, immune escape, invasion, metasta-
sis, metabolic regulation, and cell interactions in the TME
[53,54]. For example, tumor cells produced lactic acid can
be secreted into the extracellular environment to promote
cancer progression [7]. The proton-coupled lactate efflux
system in tumor and tumor-associated stromal cells regu-
lates survival signaling and prevents immune surveillance
of tumor cells to promote tumor progression. Extracellular
acidosis inhibits T cell-mediated immunity, and neutraliza-
tion of tumor acidity may enhance the antitumor effects of
immunotherapy [55]. To further explore the key role of lac-
tic acid metabolism in OS cells, we divided malignant OS
cells into five subgroups. OS cluster 2 had significantly
high glycolysis and lactic acid metabolism levels, and the
results of marker genes functional enrichment in OS clus-
ter 2 showed that functions including mitochondrial ma-
trix, inner mitochondrial membrane, and oxidoreduction-
driven activity were highly enriched, suggesting that lactic
acid metabolism is related to the functions of mitochondrial
metabolism. The high metabolic heterogeneity within solid
tumors may be caused by vascular integrity and proximity
to the vasculature that transports oxygen and nutrients [56].
Well-vascularized tumor subregions can access a variety of
nutrients, whereas poorly perfused areas utilize glucose as
their main carbon source [57]. Lactic acid metabolism can
affect the oxidation state of cells, leading to the conversion
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Fig. 8. In vitro and patient experiment. (A,B) 143B cell viability after treatment with siNDUFAF6 or LA. (C,D) Transwell experiment
treatment with siNDUFAF6 or LA. (E) qRT-PCR validate the expression of NDUFAF6, TIMMDC1, and NDUFAF3 with different treat-
ment. (F) The NDUFAF6 expression level in OS and normal tissue. (G) NDUFAF6 expression levels in different patient groups. (H)
Mechanism diagram. “*” represents for p value under 0.05, “**” represents for p value under 0.01,“***” represents for p value under
0.001, and “ns” represents for p value over 0.05. qRT-PCR, quantitative reverse transcriptase polymerase chain reaction. LA, lactic acid.

13

https://www.imrpress.com


of glucose to pentose phosphate pathway and the biosynthe-
sis of hexosamine. The innermost cells of the tumor are in
a state of high oxygen deficiency and high lactic acid con-
centration, resulting in high lactic acid metabolism in the
tumor cell population in this region. Therefore, we suggest
OS cluster 2 as the cell cluster in this position. In addition,
research has shown that tumor cells within tumors cooper-
ate in a metabolic “symbiosis”. For example, tumor cells
in hypoxic regions consume glucose by anaerobic glycoly-
sis and release lactic acid, which is then utilized by tumor
cells in adjacent oxygen-containing tumor regions to fuel
the tricarboxylic acid cycle and form a biological process
called lactate shuttles [58]. We also found that amino acid
levels in the core of the tumor were higher than those in
the periphery, and it is assumed that peripheral cancer cells
release these amino acids as an energy source for internal
tumor cells [57]. The role of cytokines in the regulation of
tumormetabolism has been gradually discovered, for exam-
ple, IL4 and IL13 in pancreatic cancer promote glucose uti-
lization. Our research suggests that MIF plays a crucial role
in the metabolic communication of OS cells. MIF, as an au-
tocrine growth factor, has been discovered to be involved in
cholesterol metabolism in a variety of diseases. The expres-
sion of MIF has a vital influence on adipocyte metabolism
and immune regulation [59]. MIF is involved in the regu-
lation of malignant phenotypes in various types of cancers
by activating a variety of signaling pathways. An abnormal
increase in MIF expression level improves the migration,
proliferation, and invasiveness of gastric, breast, and lung
cancer cells [60–63]. CXCL2/MIF-CXCR2 signaling acti-
vation in bladder cancer cells intensifies the accumulation
and expansion of MDSC in the TME [64].

GSVA results showed that differentially enriched
functions include nitrogen metabolism and the Erbb sig-
naling pathway. The metabolites of glycolytic metabolism
on the one hand have basic functions as major energy
and biosynthetic sources, and on the other hand are also
involved in the regulation of immune cell reprogram-
ming metabolic pathways to meet energy and biosyn-
thetic requirements during immune cell activation. Var-
ious lymphocytes in tumor cells, including inflammatory
M1 macrophages, transition from oxidative phosphoryla-
tion to glycolysis to adapt to the TME [65]. Oncogene
ErbB2 has been shown to enhance the Warburg effect by
activating heat shock factor 1 and regulating lactate dehy-
drogenase A [49]. ErbB2 overexpression increases glucose
uptake and lactic acid production [66]. To further explore
the molecular characteristics between clusters, we compre-
hensively assessed the differences in the immune microen-
vironment by conducting an immune infiltration analysis
between lactate metabolism cluster 1 and cluster 2. Clus-
ter 2 exhibited significantly higher proportions of multiple
types of immune cells, including activated dendritic cells,
eosinophils, gammadelta T cells, immature B cells, MD-
SCs, NK cells, plasmacytoid dendritic cells, regulatory T
cells, T follicular helper cells, and type II T helper cells.

Thus, we defined cluster 2 as immune-hot cluster and clus-
ter 1 as immune-cold cluster. We further validated the re-
sults of the single-cell analysis by analyzing the infiltration
of various cell types in the transcriptome samples and show
that cluster 2 exhibited significantly higher proportions of
OS cluster 4 cells, OS cluster 5 cells, OS cluster 2 cells,
and T cells, whereas the abundance of OS cluster 3 cells
and Tregs was relatively greater in cluster 1. These results
suggest that lactate metabolism is involved in the TME reg-
ulation. Insights into LAMGs may facilitate the discovery
of the mechanisms regulating tumor immunity and pave the
way for future TME studies. Although numerous studies
support a relationship between tumor lactate metabolism
and immune escape in the tumor microenvironment [23],
the specific molecules responsible for this relationship have
not been identified. Genes including TIMMDC1 and NDU-
FAF1 were screened as hub genes. TIMMDC1 (C3orf1) is
a four-pass membrane protein located in the mitochondrial
inner membrane. It is suggested that TIMMDC1 is associ-
ated with multiple members of mitochondrial complex I as-
sembly factors, reduced mitochondrial respiration, reduced
glycolysis activity, and the AKT/GSK3β/β-catenin signal-
ing pathways [67]. In T cells, the inhibition of mitochon-
drial electron transport complex I assembly by knocking
down the chaperone NDUFAF1 blocked ROS production.
Complex I-derived ROS are converted into hydrogen per-
oxide signals by mitochondrial superoxide dismutase, and
the inhibition of complex I assembly by NDUFAF1 knock-
down prevents activation-induced T cell death [68].

Our in vitro expression results showed that knock-
down of NDUFAF6 decreased OS cell viability and inva-
siveness. It is reported that mitochondria can actively mi-
grate to certain subcellular regions with high energy re-
quirements along cytoskeleton filaments and undergo mi-
tochondrial fission to meet the needs of cell migration,
invasion and cell proliferation, so we assume that NDU-
FAF6 can enhance the invasion and growth ability of os-
teosarcoma cells through these mechanisms [69]. The pa-
tient experiment showed that expression level of NDU-
FAF6 is higher in OS tissue. The expression level of ND-
UFAF6 significantly correlated with the monocyte infil-
tration level. One subtype of monocytes, also known as
patrolling monocytes (PMos), has been recognized as po-
tentially relevant to OS; unlike classical monocytes that
promote tumorigenesis and metastasis, nonclassical PMos
have been shown to decrease breast metastasis [70]. Al-
though there is limited research on how NDUFAF6 reg-
ulates immune processes in OS, our results suggest that
molecules involved in lactic acid metabolism and immune
processes in OS may be potential targets for the develop-
ment of new therapeutic strategies. Lactate accumulation
has been shown to be associated with increased cancer re-
sistance andmalignancy [71]; thus, screening drugs that tar-
get lactate metabolism for combination therapy has a key
potential role in the efficacy of chemotherapy for OS. We
identified chelerythrine and vorinostat as potential drugs
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that target NDUFAF6. Chelerythrine, an IL-2 inhibitor,
selectively inhibits the interaction between IL-2 and IL-
2Rα by directly binding to IL-2 and preventing the trans-
formation of infantile CD4 T cells into CD4CD25Foxp3
Treg cells. The combination of chelerythrine and PD-1 in-
hibitors increases the antitumor activity in melanoma mice
[72]. The histone deacetylase inhibitor suberanilohydrox-
amic acid (vorinostat) is a clinically effective drug against
mutant TP53 tumor cells. Vorinostat and PENAO syner-
gistically reduce the viability of neuroblastoma cells and
induce apoptosis independent of the TP53 state. The com-
bination of vorinostat and PENAO significantly delays tu-
mor progression in preclinical neuroblastoma mice [73].
Functional enrichment analysis of NDUFAF6 showed that
the potential functions of NDUFAF6 include MHC pro-
tein complex, glutamate metabolism, drug metabolism cy-
tochrome p450, antigen presentation, metabolism of xeno-
biotics by cytochrome p450, and retinol metabolism, ribo-
some spliceosome, which is consistent with the finding that
NDUFAF6 is involved in abnormal lactate metabolism and
tumor immunity associated with OS.

5. Conclusions
Lactic acid metabolism patterns in OS revealed

metabolic reprogramming phenotypes relevant to the tu-
mor microenvironment, and NDUFAF6 was identified as
an LRG biomarker (Fig. 8H).
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