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Abstract

Purpose: Numerous studies have emphasised the importance of necroptosis in the malignant progression of colorectal cancer (CRC).
However, whether necroptosis-related genes (NRGs) can be used to predict the prognosis of CRC remains to be revealed. Methods:
Patients with CRC were divided into two clusters based on the expression of NRGs, and prognosis was compared between the two
clusters. A prognostic model was established based on NRGs, and its predictive efficiency was validated using Kaplan-Meier (K-M)
curves, receiver operating characteristic (ROC) curves and a nomogram. Immune infiltration, single-cell and drug sensitivity analyses
were used to examine the effects of NRGs on the prognosis of CRC. Results: The prognostic model served as a valid and independent
predictor of CRC prognosis. Immune infiltration and single-cell analyses revealed that the unique immune microenvironment of CRC
was regulated by NRGs. Drug sensitivity analysis showed that patients in the high- and low-risk groups were sensitive to different drugs.
In addition, H2BC18 was found to play an important role in regulating the malignant progression of CRC. Conclusion: This study
provides novel insights into precision immunotherapy based on NRGs in CRC. The NRG-based prognostic model may help to identify
targeted drugs and develop more effective and individualised treatment strategies for patients with CRC.
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1. Introduction
Colorectal cancer (CRC) is a prevalent malignant gas-

trointestinal tumour worldwide. According to global can-
cer statistics, approximately 1.4 million new cases of CRC
were reported in 2020, with CRC accounting for 9.4% of all
cancer-related deaths [1]. Although remarkable advance-
ments have been made in the prevention, screening and
treatment of CRC in the past decade, the death rate of
patients with CRC remains high [2], with the 5-year sur-
vival rate of patients with metastatic CRC being only 12%
[3]. The main causes of recurrence and death in patients
with CRC are local tumour infiltration, distant metasta-
sis and resistance to existing therapies. Therefore, effec-
tive prognostic biomarkers should be identified and accu-
rate prognostic models should be developed to reduce the
risk of recurrence and death in patients with CRC. Necrop-
tosis, first proposed by Degterev et al. [4] in 2005, is a
novel cell death mechanism that relies on mixed lineage
kinase domain-like proteins (MLKL/PMLKL) activated

by receptor-interacting protein kinase-1/3 (RIPK1/RIPK3).
Numerous studies have shown that necroptosis plays a cru-
cial role in promoting and inhibiting cancer development
[5–7]. However, to date, most studies on CRC have focused
on the anti-tumour effects of typical necroptosis-related
genes (NRGs) such as RIPK1/RIPK3 and MLKL/PMLKL.
For example, Han et al. [8] found that resorcytoxin inhib-
ited tumour growth by inducing necroptosis in CRC cells
through an RIPK3-mediated mechanism and that GDC-
0326 enhanced the anti-tumour effects of the chemother-
apeutic drug 5-fluorouracil (5-Fu) by inducing necroptosis
[9]. With regard to the tumour-specific effects of NRGs
on CRC, Wang et al. [10] found that RIPK1, RIPK3 and
MLKL genes were significantly upregulated and promoted
the proliferation of cancer cells in mice with CRC treated
with radiation therapy. Given that the role of necroptosis in
CRC remains unclear, the effects of NRGs on the progno-
sis of CRC should be further investigated to elucidate the
potential molecular mechanisms and regulatory networks.
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In this study, we investigated differentially expressed
NRGs between CRC and adjacent normal tissues in The
Cancer Genome Atlas (TCGA) datasets and identified two
molecular subtypes of CRC using unsupervised cluster-
ing. Subsequently, the expression patterns of NRGs, en-
riched pathways, tumour microenvironment (TME) char-
acteristics and prognosis were compared between the two
subtypes. A prognostic risk model based on four NRGs,
namely, GABPB1-IT1, H2BC18, HSPA1L andMIR503HG,
was constructed using LASSO–Cox regression, and its pre-
dictive accuracy was evaluated using Kaplan-Meier (K-
M) curves, receiver operating characteristic (ROC) curves
and a nomogram. Immune infiltration analysis showed
that the expression of the four NRGs was markedly as-
sociated with the abundance of activated NK cells and
CD4+ memory T cells. Drug sensitivity analysis indi-
cated that oral PARP inhibitors had better sensitivity in the
high-risk group, whereas LCK inhibitors, third-generation
AKT inhibitors, JNK inhibitors and the third-generation
ABL inhibitor ponatinib were potentially efficacious in the
low-risk group. Finally, single-cell analysis showed that
HSPA1L was highly expressed in fibroblasts and endothe-
lial cells, whereas was highly expressed in epithelial cells,
suggesting that the unique immune microenvironment of
CRC was regulated by NRGs. The results of this study col-
lectively suggest that the NRG-based risk model is a valid
and independent predictor of CRC prognosis and may help
to characterise the immune microenvironment of CRC and
develop potential targeted therapies. Altogether, this study
proposes a novel approach to diagnosing CRC and predict-
ing its prognosis in clinical settings.

2. Materials and Methods
2.1 Data Collection and Collation

We downloaded the RNA-sequencing and clinical
data of 328 tissue samples, including 40 adjacent normal
tissues and 288 CRC tissues, from The Cancer Genome At-
las (TCGA) database (https://www.cancer.gov/ccg/researc
h/genome-sequencing/tcga). The robust multi-array aver-
aging (RMA) algorithm in the ‘affy’ R package (version
1.46.1) [11] was used to process these data. In addition,
batch effects were removed using the ‘sva’ R package (ver-
sion 3.42.0) [12]. Differentially expressed genes (DEGs)
between CRC and normal tissues were identified using the
‘limma’ R package (version 3.42.2) [13], with the screening
criteria set as |logFC| values of ≥1 (FC: fold change) and
corrected p-values of <0.05. NRGs were collected from
the GeneCards database (https://www.genecards.org/), and
a Venn diagram was generated to represent the intersection
between DEGs and NRGs. Genes with correlation coeffi-
cients of >0.2 were used for subsequent analysis.

2.2 Consensus Clustering of NRGs
The ‘ConensusClusterPlus’ R package (version

1.66.0) was used for consensus clustering analysis of

NRGs [14]. Based on the expression of NRGs, two molec-
ular subtypes were generated through K-means clustering.
Gene set variation analysis (GSVA) was performed on
gene sets extracted from MSigDB (C2.Cp.ke.v7.2) [15] to
examine differences in biological functions between the
two molecular subtypes.

2.3 Comprehensive Analysis of the Two Molecular
Subtypes

We compared the prognosis and clinical features of pa-
tients with CRC between the two molecular subtypes. To
compare overall survival (OS) between the two subtypes,
Kaplan-Meier curves were generated using the ‘survival’
and ‘survminer’ R packages (version 4.2.3). The CIBER-
SORT algorithm was used to estimate the immune scores
of 22 immune cell types in each CRC sample based on cell-
specific gene signatures [16].

2.4 Construction of an NRG-related Prognostic Model

The ‘limma’ R package (version 3.42.2) was used to
screen for DEGs between the two molecular subtypes [13],
with the screening criteria set as |logFC| values of ≥1 and
adjusted p-values of <0.05. Patients with CRC were ran-
domly assigned to training (n = 287) and test (n = 41) sets,
which were used to develop a prognostic risk model [17].
Lasso–Cox regression analysis was implemented to reduce
the risk of overfitting and to establish a risk model based on
prognosis-associated NRGs. The prognostic NRG-Score
was calculated based on the risk model as follows [18]:∑n

i Coefi × Ai. In the aforementioned equation, Coefi
represents the risk coefficient and Expi represents the ex-
pression of the gene. The training and test sets were divided
into high- and low-risk groups based on the median NRG-
Score. Kaplan-Meier and receiver operating characteristic
(ROC) curves were plotted to evaluate the generalisability
and predictive accuracy of the model.

2.5 Development of a Predictive Nomogram

The ‘RMS’ package (version 3.6.1) was used to es-
tablish a predictive nomogram based on NRG-Scores and
clinical characteristics of CRC [19]. Column charts demon-
strating NRG-Scores and predicted OS rates were gener-
ated, and calibration curves were plotted to compare the
predicted and actual 1-, 3- and 5-year OS rates [20].

2.6 Combined Analysis of Molecular and Immune
Characterisation of NRG-score

The infiltration levels of 22 types of immune cells
were evaluated based on the expression of the four prognos-
tic NRGs included in the risk model (model genes). A box-
plot was generated to compare the expression of immune
checkpoint genes between the low- and high-risk groups.
In addition, drug sensitivity was compared between the two
risk groups. The ‘pRRophetic’ package (version 4.3.2) was

2

https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.cancer.gov/ccg/research/genome-sequencing/tcga
https://www.genecards.org/
https://www.imrpress.com


used to calculate the half-maximal inhibitory concentration
(IC50) of targeted drugs to evaluate their clinical efficacy
in the two risk groups [21].

2.7 Distribution of Model Genes at the Single-cell Level
The ‘Seurat’ package (version 5.0.1) was used to gen-

erate a Seurat object and remove poor-quality cells. A stan-
dard procedure was used to pre-process the data, and the
percentages of gene count, cell count and mitochondrial
content were subsequently calculated. Cells with <200 or
>6000 genes and with >5% of transcripts derived from
mitochondria were excluded. To normalise the data of
each cell, UMI counts were scaled using a scale factor of
10,000. After the logarithmic transformation of the data,
the ScaleData function was used to analyse corrected nor-
malised data metrics. Principal component analysis (PCA)
was performed using the top 10 variable genes, and the top
5 principal components were visualised and clustered via
UMAP (or TSNE). Cells were clustered using the FindClus-
ters function implemented in the Seurat R package.

2.8 Cell Culture and Transfection
The human CRC cell lines HCT116, HT29 and

HCT15 and the normal human colorectal epithelial cell
line NCM460 were purchased from the Cell Center of
the Institute of Basic Medical Sciences, Chinese Academy
of Medical Sciences. All cells were cultured in DMEM
(Gibco, New York, NY, USA) supplemented with 10%
foetal bovine serum (FBS) (VivaCell, Shanghai, China)
and 1% penicillin-streptomycin (Gibco, New York, NY,
USA) in a humidified environment with 5% CO2 at 37 ℃.
The cells were transfected with siRNAs using Lipo8000TM
transfection reagent (Biyuntian, Shanghai, China) accord-
ing to the instruction manual. All cell lines were validated
by short tandem repeat (STR) profiling and tested negative
for mycoplasma. The target sequences of H2BC18 siRNA
were shown in Table 1.

Table 1. Three target sequences of H2BC1 small interfering
RNA (siRNA).

siH2BC18-242 AAGAUGUCGUUGACGAAGGAGTT
siH2BC18-104 UUCUUCUGCACUUUCGUAACATT
siH2BC18-410 UACUUCGAGCUGGUGUACUUGTT

2.9 Quantitative Reverse Transcription Polymerase Chain
Reaction

For quantitative reverse transcription polymerase
chain reaction (qRT-PCR), total RNA was extracted from
CRC cells using Trizol reagent (Takara, Kyoto, Japan) and
was reverse transcribed using Prime Script RT Master Mix
(Takara, Kyoto, Japan). Quantitative PCR (qPCR) was per-
formed using total 2 µL of mRNA, specific primers and
SYBR Premix Ex Taq II (Takara, Kyoto, Japan). The

mRNA expression of target genes was normalised to that of
GAPDH (internal control) and quantified using the 2−∆∆Ct

method [22]. Primers were synthesised by Sangon Biotech
(Sangon, Shanghai, China). The gene-specific primers se-
quences were shown in Table 2.

2.10 Cell Counting Kit-8 (CCK-8) Assay
The cells were digested utilising 0.25% trypsin and

centrifuged at a speed of 1200 rpm/min for 5 min. The
supernatant was discarded, and the cell precipitate was re-
suspended in 1 mL of a complete medium. Subsequently,
the cells were counted using a Bovine Bow counting plate
(QiuJing, Shanghai, China) with a filled cell. The cell sus-
pensionwas diluted to a concentration of 1× 103 cells/well,
and 200 µL of the cell suspension was added to each well
of a 96-well plate. The cells were maintained in an incuba-
tor, and the original medium was replaced with 100 µL of a
serum-freemedium containing 10%CCK-8 reagent on days
0, 1 and 2. The CCK-8-treated cells were then incubated at
37 ℃ for two hours. Following this, the optical density
(OD) of every well was measured using an enzyme marker
(MCE, South Brunswick Township, NJ, USA) at 450 nm.

2.11 Migration, Invasion and Wound Healing Assays
Migration assay: Cells were cultured in a serum-

free medium overnight. The following day, the cells
were digested using 0.25% trypsin and centrifuged at 1200
rpm/min for 5 min. The supernatant was discarded, and the
cell precipitate was washed thrice with PBS. The cells were
resuspended in 1 mL of a basal medium and counted on
Oxbow counting plates. The concentration of HCT15 cells
was adjusted to 4 × 104 cells/well. A total of 600 µL of a
medium containing 10% FBS was added to a 24-well plate
serving as the lower chamber, and a Transwell insert serv-
ing as the upper chamber was placed into the plate. HCT15
cells were added to the upper chamber (200 µL/well) and
cultured routinely for 48 h. After the media in the Transwell
chamber and plate were discarded, the migrated cells were
washed twice with PBS, fixed with 4% paraformaldehyde
for 30 min and stained with crystal violet for 15 min. A
moistened cotton swab was used to gently remove the cells
from the upper chamber. Thereafter, the cells were pho-
tographed using a Nikon eclipse80i confocal fluorescence
microscope (Nikon, Tokyo, Japan).

Invasion assay: The basal mediumwas used to dilute a
substrate gel at a ratio of 1:8. A total of 60 µL of the diluted
gel was added to the chambers, followed by incubation at
37 °C for 2 h. The subsequent steps were the same as those
for the migration assay.

Wound healing assay: CRC cells were cultured in 6-
well plates until ≥90% confluence was achieved. The sur-
face of the cell monolayer in each well was scratched with
a sterile 200-µL pipette tip. Floating cells were washed
with PBS, and a serum-free medium was added to each
well. Photographs were captured at 0 h, 48 h and 72 h af-
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Table 2. Gene-specific primers for qRT-PCR.
Gene Forward (5′-3′) Reverse (5′-3′)

CDKN2A AGACTTTCGAAGAGGGGGAGCC GCCCATCATCATGACCAGGAACA
GABPB1-IT1 AACCTGATTGGACTGTGGCG GAGAGCAAAACAGTCCGGAGA
H2BC18 CCAAGTACACCAGCTCGAAGTTA GTTGATGGGCAAGTGGGGTGA
MIR503HG AAGGAATCCTCTCCCACCATTT ACTCATTTGGCGGGAAAAC
GAPDH CGGAGTCAACGGATTTGGTCGTAT AGCCTTCTCCATGGTGG TGAAGAC
qRT-PCR, quantitative reverse transcription polymerase chain reaction.

ter the scratches were made, and changes in the area of the
scratches were quantified using the ImageJ software (Image
J2x 2.1.5.0, National Institutes of Health, New York, NY,
USA) [23].

2.12 Western Blotting
Total proteins were extracted from cells and CRC tis-

sues using RIPA buffer (Solarbio, Beijing, China). The ex-
tracted proteins were quantified via BCA assay, separated
on 8–12% sodium dodecyl sulphate–polyacrylamide gels
and transferred to polyvinylidene difluoride membranes.
The membranes were initially incubated with anti-H2BC18
(1:1000, Boiss, Beijing, China) and anti-GAPDH (1:5000,
Bioworld, Nanjing, China) primary antibodies and sub-
sequently incubated with horseradish peroxidase (HRP)-
conjugated anti-rabbit IgG antibody (secondary antibody,
1:5000, Bioworld, Nanjing, China). Finally, protein bands
were visualised using an ECL reagent (Bioworld, Nanjing,
China).

2.13 Immunohistochemical Analysis
The expression of H2BC18 in clinical tissues was as-

sessed via immunohistochemical (IHC) analysis using anti-
H2BC18 antibody (1:500, Boiss, Beijing, China), Paraffin-
embedded tissue blocks were cut into 4-µm-thick sections,
dewaxed, rehydrated using xylene I/II/III and anhydrous
ethanol I/II/III (absolute ethyl alcohol) for 15 minutes each
and washed with PBS two times for 5 minutes each. For
antigen retrieval, tissue slides were placed in a sectioning
rack and slowly immersed into an antigen repair solution.
The solution was boiled on high for 5 min and on low for
20 min. Subsequently, the sections were washed with PBS
two times for 10 minutes each, blocked with 3% bovine
serum albumin (BSA) for 30 minutes at room temperature
and incubated with primary antibodies overnight at 4 °C
in a humidified incubator. The following day, the sections
were washed with PBS (3× 5 minutes) and incubated with
HRP-conjugated anti-rabbit IgG antibody for 30 minutes at
room temperature. Thereafter, the sections were washed
with PBS (3 × 5 minutes) and stained with diaminoben-
zidine (DAB). Finally, the sections were observed under a
white light microscope, and integrated OD (IOD) was cal-
culated using the ImageJ software [23]. Data was expressed
as the average OD (AOD), which was calculated as follows:
IOD/area.

2.14 Statistical Analysis
The R (version 4.2.0) software (New York, NY, USA)

was used for statistical analysis and visualisation of results.
Student’s t-test was used to compare normally distributed
quantitative data and Wilcoxon test was used to compare
non-normally distributed quantitative data between groups.
Statistical significance was denoted as follows: *, p< 0.05;
**, p < 0.01; ***, p < 0.001.

3. Results
3.1 Identification and Classification of Differentially
Expressed NRGs in CRC

The gene expression data of 328 tissue samples, in-
cluding 40 adjacent normal tissues and 288 CRC tissues,
were extracted fromTCGA database. A total of 1831 DEGs
were identified between CRC and adjacent normal tissues
(Fig. 1A); of which, 945 genes were upregulated and 886
genes were downregulated (Fig. 1B). These DEGs were
intersected with 160 NRGs obtained from the GeneCards
database using a Venn diagram, and 18 differentially ex-
pressed NRGs associated with CRC were eventually ob-
tained (Fig. 1C). Subsequently, a consensus clustering al-
gorithm was used to classify patients with CRC based on
the expression of the 18 NRGs. With the optimal k value
of 2, the patients were divided into cluster A and cluster
B (Fig. 1D). Clinical characteristics (Fig. 1E) and NRG
function were compared between the two clusters using
Kaplan-Meier (K-M) analysis, immune infiltration analy-
sis and GSVA. K-M curves showed that patients in cluster
B had shorter OS than patients in cluster A (Fig. 1F). GSVA
showed that cluster A was enriched in pathways related to
inhibition of tumour development, including type I inter-
feron signalling pathway and activation of mitochondrial
autophagy, whereas cluster B was significantly enriched in
tumour-promoting pathways such as DNA replication and
chromatin aggregation (Fig. 1G). The infiltration levels of
22 types of immune cells differed significantly between the
two clusters, with the infiltration levels of activated CD4 T
cells and type 2 T helper cells (Th2) being higher in clus-
ter A than in cluster B (Fig. 1H). These results suggested
that the two clusters had different TME-associated proper-
ties and NRGs prolonged the OS of patients in cluster A by
promoting anti-tumour immunity.
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Fig. 1. Screening and categorisation of overall survival (OS)-related necroptosis-related genes (NRGs) in colorectal cancer (CRC).
(A) Heatmap showing the top 60 differentially expressed genes (DEGs) (n = 1813) between CRC and adjacent normal tissue samples.
(B) Volcano plot showing up-regulated (n = 945) and down-regulated genes (n = 886). (C) Venn diagram demonstrating the intersection
between DEGs and necroptosis-related genes (n = 160). (D) Consensus matrix heatmap defining two clusters and associated regions.
(E) Relationship of clusters A and B with clinicopathologic features and NRGs. (F) Kaplan-Meier curves (log-rank test, p < 0.001) of
OS for clusters A and B. (G) GSVA of NRGs in clusters A and B. (H) Differences in the infiltration levels of 22 types of immune cells
between the two clusters. Asterisks indicate p-values (*, p < 0.05; **, p < 0.01). GSVA, Gene Set Variation Analysis.

3.2 Construction and Evaluation of a Prognostic Model

Although the two molecular subtypes of necropto-
sis were found to have different prognostic and immune
infiltration patterns, these findings are only applicable to
patient populations and are not accurate for assessing the
impact of NRGs on the prognosis of CRC. Therefore,
we established a prognostic model based on the differen-
tially expressed NRGs between clusters A and B for di-
agnosing CRC and guiding treatment. Briefly, we ran-
domly divided patients with CRC into training (n = 287)
and test (n = 41) sets and identified four NRGs signifi-
cantly associated with CRC prognosis, namely, CABPB1-
IT1, H2BC18, HSPA1L and MIR503HG, via LASSO re-
gression analysis. The NRG-Score was calculated based
on these four NRGs as follows: GABPB1-IT1 expression
level × 0.00260 + H2BC18 expression level × 0.01596
+ HSPA1L expression level × 0.02800 + MIR503HG ex-

pression level × 0.01304 (Fig. 2A,B). Based on the me-
dian NRG-Score, patients with CRCwere divided into low-
risk (n = 134) and high-risk (n = 149) groups. NRGs such
as CAMK2A, CASP1, CHMP4A, FTL, H2AC20, H2AC6,
H2AC8, PLA2G4C, RIPK1, STAT5A/B and TRADD were
differentially expressed between the two groups (Fig. 2C).
K-M curves showed that the prediction of prognosis was
better in the low-risk group than in the high-risk group
(Fig. 2D). Similar results were observed in the test set and
the total-sample dataset (Fig. 2E,F). Subsequently, ROC
curves were plotted to assess the predictive ability of the
model. The results showed that the area under the curve
(AUC) values for predicting OS at 1, 3 and 5 years were
0.641, 0.742 and 0.751, respectively, indicating that the
model had excellent predictive ability, especially for 3- and
5-year survival (Fig. 2G–I). To assess the clinical applica-
bility of the NRG-Score, we integrated NRG-Scores and
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clinical characteristics such as age, sex and ISS stage to
establish a nomogram to predict OS at 1, 3 and 5 years
(Fig. 3A). The calibration curve showed that the predicted
OS rates were highly consistent with the actual OS rates, in-
dicating that the nomogram had superior predictive ability
(Fig. 3B).

3.3 Immune Characterisation of Prognostic NRGs in the
CRC Microenvironment

Studies have shown that necroptosis can promote cell
death by enhancing tumour immunogenicity and that ac-
tivation of the necroptotic factor RIPK1/RIPK3 can lead
to upregulation of inflammatory chemokines in the TME,
promoting immune cell activation [24–26]. Therefore, we
investigated the association between the four NRGs and
immune cell infiltration using the CIBERSORT algorithm.
The four NRGs showed a significant correlation with most
immune cells (Fig. 4A). In particular, a negative correla-
tion was observed between the expression of NRGs and the
infiltration levels of activated NK cells and CD4+ mem-
ory T cells (Fig. 4B,C). These results suggested that the
NRG-Score was markedly associated with the presence of
TILs in the microenvironment of CRC and high-risk pa-
tients were susceptible to the immunosuppressive effects
caused by the reduced abundance of activated NK and
CD4 memory T cells in the TME. Furthermore, the expres-
sion of most immune checkpoint genes, including CD274,
CD70, HHLA2 and TNFSF9, was significantly higher in
the low-risk group, and that of the leukocyte-associated
immunoglobulin-producing gene LAIR1 was significantly
higher in the high-risk group (Fig. 4D). These results sug-
gest that low-risk patients may respond better to LAIR1-
targeted therapies, whereas high-risk patients may respond
better to CD274- and CD70-targeted therapies.

3.4 Drug Sensitivity Analysis for NRGs Risk-prognostic
Model

To examine the ability of NRG-Scores to guide the
clinical treatment of CRC, we assessed the sensitivity of
patients in the high- and low-risk groups to potential tar-
geted drugs. The results showed that patients in the low-
risk group responded better to LCK inhibitors (Fig. 5A),
third-generation AKT inhibitors (Fig. 5B), JNK inhibitors
(Fig. 5C) and the third-generation ABL inhibitor ponatinib
(Fig. 5D), whereas patients in the high-risk group responded
better to oral PARP inhibitors (Fig. 5E). Altogether, these
findings suggest that the abovementioned drugs have po-
tential therapeutic value in the treatment of CRC.

3.5 Expression Patterns of NRGs in CRC at the Single-cell
Level

To assess the expression of prognosis-associated
NRGs in the TME of CRC at the single-cell level, we ex-
tracted scRNA-sequencing data from the GSE4158911 and
GSE4158912 datasets. After quality control and filtering,

cells were classified as mast cells, fibroblasts, endothelial
cells, epithelial cells and myeloid cells through dimension-
ality reduction (Fig. 6A,B). HSPA1L was highly expressed
in fibroblasts and endothelial cells, whereas MIR503HG
was highly expressed in epithelial cells. Given that CRC is
a malignant tumour originating from epithelial cells, upreg-
ulated NRGs in epithelial cells may promote the transfor-
mation of normal epithelial cells to malignant tumour cells,
suggesting that NRGs play an important role in the devel-
opment of CRC (Fig. 6C).

3.6 Expression of Prognosis-related NRGs in CRC Cell
Lines

To verify the differential expression and molecular
functions of NRGs in CRC, we assessed the mRNA ex-
pression of the four prognosis-relatedNRGs (GABPB1-IT1,
H2BC18, HSPA1L andMIR503HG) in three CRC cell lines
(HCT15, HCT116 and HT29) and a normal colorectal ep-
ithelial cell line (NCM460). The expression of GABPB1-
IT1 (Fig. 7A), HSPA1L (Fig. 7B) andMIR503HG (Fig. 7C)
was significantly lower in HCT15 and HCT116 cells than
in NCM460 cells but was significantly higher in HT29 cells
than in NCM460 cells. Only the expression of H2BC18
was significantly higher in all three CRC cell lines than in
the normal control cell line (Fig. 7D). Consistently, western
blotting showed that the protein expression of H2BC18 was
significantly elevated in the three CRC cell lines (Fig. 7E).
Clinical tissue samples, including 3 CRC and colorectal in-
flammation tissues, were collected to verify these results.
Immunohistochemical (IHC) analysis showed that the pro-
tein expression of H2BC18 was higher in CRC tissues than
in colorectal inflammation tissues (Fig. 7F). In addition,
IHC data from the Human Protein Atls (HPA) database val-
idated the differential expression of H2BC18 protein be-
tween CRC and colorectal inflammation tissues (Fig. 7G).
Altogether, these results suggest that H2BC18 plays an im-
portant role as a prognosis-associated gene in CRC. There-
fore, in subsequent experiments, we examined the biologi-
cal function of H2BC18 in CRC progression.

3.7 H2BC18 Promotes the Proliferative, Invasive and
Migratory Abilities of CRC Cells

To assess the effects ofH2BC18 on the malignant pro-
gression of CRC, HCT15 cells were transiently transfected
with an siRNA targeting H2BC18. The proliferative, inva-
sive and migratory abilities of CRC cells were examined af-
ter the successful knockdown of H2BC18 (Fig. 8A). CCK-
8 assay showed that knockdown of H2BC18 inhibited the
proliferation of HCT15 cells (Fig. 8B). In addition, wound
healing and transwell invasion assays showed that knock-
down of H2BC18 significantly inhibited the migratory and
invasive abilities of HCT15 cells (Fig. 8B–D). Altogether,
these results suggest that H2BC18 plays an important role
in regulating the malignant progression of CRC.

6

https://www.imrpress.com


Fig. 2. Construction and evaluation of a prognostic model. (A) 1000-fold cross-validation for the selection of LASSO regression
variables. (B) LASSO regression coefficients of necroptosis-related genes. Each curve corresponds to a gene involved in necroptosis.
(C) Expression of 18 OS-associated NRGs in the high- and low-risk groups. (D) Kaplan-Meier (K-M) survival curves for the low- and
high-risk groups in the training set. (E) K-M survival curves for the low- and high-risk groups in the test set. (F) K-M survival curves
for the low- and high-risk groups in the total-sample dataset. (G) Receiver operating characteristic (ROC) curves for predicting 1-, 3-
and 5-year OS in the training set. (H) Receiver operating characteristic (ROC) curves for predicting 1-, 3- and 5-year OS in the test set.
(I) Receiver operating characteristic (ROC) curves for predicting 1-, 3- and 5-year OS in the total-sample dataset. (*, p < 0.05; **, p <
0.01; ***, p < 0.001). LASSO, least absolute shrinkage and selection operator.

4. Discussion
CRC is one of the three most prevalent malignant tu-

mours worldwide [27], with the second-highest mortality
rate [1]. Metastasis and the failure of early diagnosis lead-
ing that the 5-year survival rate of patients with CRC is
<15% [28]. Necroptosis, a novel programmed cell death
mechanism, has been associated with the development of
intestinal diseases and reported to play a dual role in tumori-
genesis. In this study, we investigated the effects of NRGs
on the prognosis of CRC and characterised their specific
expression patterns and molecular functions in CRC.

We analysed the relationship between NRGs and
CRC. In the TCGA dataset, NRGs were found to be dif-

ferentially expressed between CRC and normal adjacent tis-
sues and correlated with the prognosis of CRC. Two molec-
ular subtypes were classified based on the expression pat-
terns of 18 NRGs. These subtypes showed significant dif-
ferences in prognosis, immune cell infiltration and molec-
ular functions of NRGs. In terms of prognosis, patients in
cluster A had longer OS than those in cluster B. In terms
of immune infiltration, the abundance of CD4+ T cells and
Th2 cells was higher in cluster A. Several previous studies
have shown that high infiltration levels of CD4+ T cells are
associated with a favourable prognosis in tumours, such as
lung cancer [29]. Th2 cells can directly block spontaneous
breast cancer development by inducing terminal differen-
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Fig. 3. Development and validation of the nomogram. (A) Nomogram integrating NRG-Scores and clinical characteristics such as
age, sex, TNM and stage for predicting 1-, 3- and 5-year OS. (B) Calibration curve demonstrating the accuracy of the nomogram in
predicting survival at 1, 3 and 5 years. The dashed line represents the performance of an ideal nomogram, whereas the solid green, blue
and red lines indicate the performance of the established nomogram. **, p < 0.01; ***, p < 0.001. TNM, Tumor Node Metastasis.

Fig. 4. Immune characterisation of prognostic NRGs in the CRC microenvironment. (A) Correlation between the expression of
the four NRGs and the abundance of tumour-infiltrating immune cells. (B) Correlation between the abundance of activated Nature
Killer (NK) cells and NRG-Scores. (C) Correlation between the abundance of CD4+ memory T cells and NRG-Scores. (D) Histogram
demonstrating differences in the expression of immune checkpoints between the high- and low-risk groups. Yellow and blue columns
indicate the low- and high-risk groups, respectively (*, p < 0.05; **, p < 0.01; ***, p < 0.001).

tiation of cancer cells [30]. GSVA showed that cluster A
was mainly enriched in pathways associated with the inhi-
bition of tumour development, including the type I inter-
feron signalling pathway and activation of mitochondrial
autophagy [31,32]. On the contrary, cluster B was enriched
in pathways associated with the promotion of tumour devel-

opment, including DNA replication, chromatin aggregation
and nucleosome assembly [33]. Taken together with the
characteristics of immune infiltration of the two subtypes,
these results validated that patients in cluster A had longer
OS.
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Fig. 5. Drug sensitivity analysis in the high- and low-risk groups. (A) Differences in the expression of LCK inhibitors between the
high- and low-risk groups. (B) Differences in the expression of AKT inhibitors between the high- and low-risk groups. (C) Differences
in the expression of JNK inhibitors between the high- and low-risk groups. (D) Differences in the expression of the third-generation ABL
inhibitor ponatinib between the high- and low-risk groups. (E) Differences in the expression of PARP inhibitors between the high- and
low-risk groups.

Furthermore, we developed a prognostic risk model
(NRG-Score) based on four differentially expressed
prognosis-associated NRGs, namely, H2BC18, HSPA1L,
MIR503HG and GABPB1-IT1. Subsequently, a nomogram
integrating the NRG-Score and clinicopathologic features
was established to predict the OS of patients with CRC.
The calibration curve demonstrated that the nomogram had
superior predictive performance, especially for long-term
survival. Unlike in other studies [34], in this study, patients
with CRC were divided into training, test and total-sample
validation sets, and the predictive accuracy and validity of
the prognostic model were verified by evaluating the AUC
values of each group. Altogether, the results suggested
that the prognostic model had better predictive accuracy.
The four NRGs included in the model have been shown to
play important roles in cancer [35–42], suggesting that the
NRG-Score developed in this study is closely related to the
development and prognosis of CRC.

The TME is a complex ecosystem composed of many
different cell populations, and its composition is closely re-
lated to the prognosis and treatment response of patients
with CRC [43]. Many studies have reported that the OS and

progression-free survival (PFS) of patients with CRC can
be predicted based on the type, spatial location and infiltra-
tion levels of immune cells [44–46]. To examine the effects
of the four prognostic NRGs on the immune microenviron-
ment of CRC, patients were divided into high- and low-risk
groups based on the median NRG-Score. The abundance of
tumour-infiltrating immune cells in the TME, expression of
immune checkpoint genes and sensitivity to targeted drugs
were significantly different between the low- and high-risk
groups.

The interaction between immune and cancer cells in
the TME is important for tumour progression and drug re-
sistance [47]. Therefore, we examined the association be-
tween the four NRGs and immune cell infiltration using
the CIBERSORT algorithm. It was found that the expres-
sion of NRGs was significantly associated with the abun-
dance of most immune cells. In particular, the expression
of NRGs was negatively correlated with the abundance of
NK cells and CD4+memory T cells. NK cells performmul-
tiple functions in the human body. Infiltration of NK cell
indicates a better prognosis in gastric cancer and squamous
cell carcinoma, suggesting that NK cells have anti-tumour
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Fig. 6. Analysis of the expression of NRGs in cell clusters using scRNA-sequencing data. (A) Cell clusters annotated in the
GSE4158911 dataset. (B) Cell clusters annotated in the GSE4158912 dataset. (C) Differential expression of two prognostically rel-
evant NRGs in six cell clusters.

activity [48]. CD4 T cells can kill tumour cells directly
through anti-specific [49,50] cytolytic mechanisms or indi-
rectly by modulating the TME. These findings suggest that
the low abundance of activated NK cells and CD4 memory
T cells in the TME of patients in the high-risk group may
lead to a worse prognosis. Single-cell analysis showed the
significantly higher expression of HSPA1L andMIR503HG
in epithelial cells, fibroblasts and endothelial cells, sug-
gesting that these NRGs mediate the depletion of NK and
CD4 memory T cells through epithelial cells and fibrob-
lasts, thus contributing to the immunosuppressive microen-
vironment of CRC. In addition, most immune checkpoint
genes (CD160, CD80, HHLA2 and CD244) were signifi-
cantly lower in the high-risk group, suggesting that patients
in this group may benefit more from immune checkpoint
inhibitor therapy targeting these genes. In order to screen
for potential targeted drugs for the treatment of CRC, Drug
sensitivity analysis was performed to identify potential tar-
geted drugs for the treatment of CRC. The results showed
that patients in the low-risk group were more sensitive to

LCK inhibitors, third-generation AKT inhibitors, JNK in-
hibitors and the third-generation ABL inhibitor ponatinib,
whereas those in the high-risk group were more sensitive
to oral PARP inhibitors, which are effective in inhibiting
DNA repair in CRC cells [51,52] and are currently used to
improve radiosensitivity in clinical practice.

The expression of the four NRGs was evaluated
in three CRC cell lines (HCT15, HCT116 and HT29).
HSPA1L, MIR503HG and GABPB1-IT1 were differently
expressed in the three cell lines. In particular, the expres-
sion of the three NRGs was low in HCT15 and HCT116
cells but high in HT29 cells. This differential expression
may be related to the dual role of necroptosis in CRC and
the heterogeneity among different CRC subtypes. On the
contrary, the expression of H2BC18 was significantly ele-
vated in all three cell lines, suggesting that H2BC18 plays
an important role in regulating the development of CRC.
The protein expression of H2BC18 in CRC cells and tissues
was analysed via WB and IHC analysis and validated using
IHC data from the HPA database. We found that the protein
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Fig. 7. Expression of prognosis-related NRGs in colorectal cancer (CRC) cell lines. (A) Expression of GABPB1-IT1 in CRC cells
versus NCM460 cells. (B) Expression ofHSPA1L in CRC cells versus NCM460 cells. (C) Expression ofMIR503HG in CRC cells versus
NCM460 cells. (D) Expression ofH2BC18 in CRC cells versus NCM460 cells (*, p< 0.05; **, p< 0.01; ****, p< 0.0001; ns means the
difference between the two groups was not statistically significant. Each experiment was repeated three times). (E) Western blotting was
performed to evaluate the protein expression of H2BC18 in three CRC cell lines. (F) Comparison of H2BC18 expression between CRC
tissues and colorectal inflammation tissues via immunohistochemical (IHC) analysis. (G) Comparison of H2BC18 expression between
CRC tissues and adjacent normal tissues using IHC data from the HPA database. Tumor image available from: https://images.proteinat
las.org/7814/18508_A_8_3.jpg and Normal image available from: https://images.proteinatlas.org/48671/113841_A_7_3.jpg.

expression of H2BC18 was higher in CRC cells than in nor-
mal colon cells as well as in CRC tissues than in adjacent
normal tissues. Finally, we preliminarily examined the bi-
ological functions of H2BC18 in the malignant progression
of CRC. The invasive, migratory and proliferative abilities
of HCT15 cells were significantly weaker in the H2BC18-

knockdown group than in the control group, indicating that
the NRG H2BC18 plays a more important regulatory role
in the development of CRC.

In conclusion, we developed and validated the NRG-
Score prognostic model and examined the potential bio-
logical effects of the NRGs included in this model on the
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Fig. 8. H2BC18 regulates the proliferative, invasive and migratory abilities of CRC cells. (A) Western blotting was performed
to detect the efficiency of H2BC18 knockdown in HCT15 cells. (B) CCK-8 assay was performed to examine the proliferative ability
(OD450) of CRC cells after H2BC18 knockdown. (C) Wound healing assay was performed to examine the migratory ability of CRC
cells after H2BC18 knockdown. (D) Transwell assay was performed to examine the invasive and migratory abilities of CRC cells after
H2BC18 knockdown (*, p < 0.05; **, p < 0.01; ****, p < 0.0001).

immune microenvironment of CRC. The model accurately
predicted the OS of patients with CRC and their sensitivity
to common chemotherapeutic agents and improved individ-
ual prognostic monitoring. Therefore, the model may guide
the development of novel NRG-targeted therapies for CRC.

5. Conclusion
In this study, we performed an in-depth analysis of

the expression of NRGs in CRC and identified and charac-
terised twomolecular subtypes based on the expression pat-
terns of NRGs. In addition, we established the NRG-Score
and found that patients with CRCwith lowNRG-Scores had
a better prognosis. On evaluating the available biomark-
ers that could be used for immunotherapy, we found that

patients with high NRG-Scores might benefit more from
immunotherapy. These findings improve our understand-
ing of TME and immune cell infiltration in CRC and may
guide the development of more effective immunotherapies
and targeted therapies. However, this study has some limi-
tations that should be acknowledged. First, elucidating the
precise role of each NRG in CRC requires multi-omic data
and an in-depth understanding of molecular mechanisms.
Second, the four core NRGs warrant further validation in
preclinical studies. Therefore, large-sample, prospective
cohort studies as well as in vivo and in vitro experimen-
tal studies should be conducted to validate the predictive
accuracy of the NRG-Score.
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