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Abstract

Background: Gliomas are characterized by aggressive behavior, leading to severe disability and high mortality. Ubiquitin-like modifier
activating enzyme 2 (UBA2) is a subunit of the E1-activating enzyme involved in the SUMOylation (SUMO, small ubiquitin-related
modifier) of numerous proteins. Although the abnormality of UBA2 is linked to the progression of various tumor types, the role of UBA2
in glioma is still unknown. Methods: A bioinformatic analysis using several public databases was conducted to examine the expression
level, clinicopathological correlations, and prognostic significance of UBA2 in glioma. The correlation between UBA2 expression and
drug sensitivity in cancers was also explored. Multiple cellular experiments were conducted to validate the role of UBA2 in glioma.
Results: Analysis of multiple databases and cellular experiments revealed that UBA2 was overexpressed in glioma tissues and cell lines,
respectively. UBA2 expression in gliomas correlated with World Health Organization (WHO) grade, IDH gene status, 1p19q deletion,
histological type, and immune cell infiltration in glioma. UBA2 expression in carcinomas also correlated with drug sensitivity. Kaplan-
Meier analysis revealed that high expression of UBA2 predicted poorer survival in glioma patients. A nomogram model containing
UBA2 expression was constructed for clinical practice. Knockdown of UBA2 was observed to suppress glioma cell progression and
sensitize glioma cells to irradiation in vitro. Conclusion: Overall, this research showed that UBA2 might be involved not only in the
development of glioma but also in the regulation of immunity, drug sensitivity, and radiosensitivity. Therefore, UBA2may be a potential
target for therapy and a candidate biomarker for glioma diagnosis and prognosis.
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1. Introduction
Gliomas are the most frequent primary intracranial tu-

mors and are characterized by aggressive behavior, lead-
ing to severe disability and a high rate of mortality [1].
They are typically classified into two subgroups: low-grade
glioma (LGG; grade 2 and 3) and glioblastoma multiforme
(GBM; grade 4) [2]. Several molecular markers, includ-
ing 1p19q codeletion and isocitrate dehydrogenase (IDH)
mutation are instrumental in the classification, prognosis,
and treatment of gliomas [3]. The 2021 World Health Or-
ganization (WHO) Classification of Tumors of the Cen-
tral Nervous System subdivided adult-type diffuse glioma
into three types based on histologic patterns and molec-
ular markers: (1) astrocytoma, IDH-mutant; (2) oligo-
dendroglioma, IDH-mutant, and 1p/19q-codeleted; and (3)
glioblastoma, IDH-wildtype [4]. The prognosis for patients
with glioma remains poor, despite the availability of many
treatment options, including surgical resection, chemother-
apy, radiotherapy, and immunotherapy [5].

Small ubiquitin-related modifiers (SUMOs) are a
large family of conserved proteins shared by all eukary-
otic organisms [6]. SUMOylation is a posttranslational
protein modification involved in several biological activi-
ties, including transcription and cell signaling [7]. A series
of events mediated by the SUMO E1 activation enzyme,
E2 conjugation enzyme, and several E3 ligases result in
SUMOylation [8]. The essential elements of E1, responsi-
ble for the activation of protein SUMOylation, are SUMO-
activating enzyme subunit 1 (SAE1) and ubiquitin-like
modifier activating enzyme 2 (UBA2) [9]. Of note, several
studies have shown that UBA2 expression is strongly cor-
related to the progression of pancreatic, lung, kidney, and
colorectal cancers as well as being overexpressed in a va-
riety of malignancies [7,10–14]. These findings imply that
UBA2 is a promising therapeutic target for the management
of cancer. However, the role of UBA2 in glioma is still un-
known.
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The aim of this research was therefore to clarify the
expression level of UBA2 in glioma, as well as its clini-
copathological correlations and prognostic significance. In
addition, the correlation between UBA2 expression and
drug sensitivity in cancer was also examined. To ac-
complish this, a bioinformatic analysis of various public
databases was conducted. A series of in vitro cellular exper-
iments further explored the function ofUBA2 in glioma. In-
dividualized treatment of gliomas is still being investigated,
and there is an urgent need for more research on different
targets. The results of the present work show thatUBA2 is a
promising prognostic biomarker and a potential therapeutic
target in glioma. These findings may be important for the
management of future glioma patients.

2. Materials and Methods
2.1 Data Collection, Preprocessing, and Expression
Analysis

The UCSC Xena online tool (https://xenabrowser.ne
t/datapages/) was used to compile data from the Cancer
Genome Atlas (TCGA) and the Genotype-Tissue Expres-
sion (GTEx) RNAseq databases in transcripts per million
(TPM) format, and together with prognostic data for glioma
[15]. UBA2 protein levels were analyzed using the Univer-
sity of Alabama at Birmingham Cancer Data Analysis Por-
tal (UALCAN, https://ualcan.path.uab.edu/), and the afore-
mentioned results were verified using the Gene Expression
Profiling Interactive Analysis (GEPIA, http://gepia.cancer
-pku.cn/) database [16,17]. Finally, the diagnostic receiver
operating characteristic (ROC) curve was used to determine
the ability of UBA2 expression to distinguish between tu-
mor and normal tissue. Youden’s index was used to de-
termine the cut-off value for UBA2 expression to classify
tumor and non-tumor brain tissue.

2.2 Prognostic Value of UBA2 in Glioma and the
Nomogram Prognostic Model

The median value of UBA2 mRNA expression in 698
glioma patients from the TCGA dataset was used as the cut-
off value to classify patients into low and high expression
groups. Kaplan-Meier (K-M) survival analysis was con-
ducted using the R packages “survminer” and “survivor”,
and survival curves were plotted for both groups. The
study endpoints were disease-specific survival (DSS), over-
all survival (OS), and progression-free interval (PFI). A co-
hort dataset was also retrieved from the Chinese Glioma
Genome Atlas database (CGGA, http://www.cgga.org.cn/)
in order to perform survival analysis [18]. Univariate anal-
ysis using Cox proportional risk regression modelling was
first performed to study the link between UBA2 expression
and OS. Other clinical and pathological prognostic factors
were also evaluated. Subsequently, variables with p values
< 0.1 were included in multivariate Cox regression analy-
sis to determine independent correlates of OS. The results
were visualized by drawing forest plots using the R package

“ggplot2”. To assist clinicians in predicting the OS of pa-
tients, we constructed a prediction model using the R pack-
age “rms” and drew a calibration curve. The nomogram
allows visualization of the correlation between each pre-
dictor and survival outcome. Each predictor corresponds
to a scale of scores, and the sum of the scores for all factors
corresponds to the probability of OS at different times. We
also developed and validated the DSS and PFI prediction
models using the same approach.

2.3 Immune Cell Infiltration and the Tumor
Microenvironment in Gliomas

Immune infiltration was first evaluated based on the
single sample gene set enrichment analysis (ssGSEA) al-
gorithm provided in the R package “Gene Set Variation
Analysis (GSVA)” and using previously published mark-
ers for 24 immune cells types [19,20]. Subsequently, im-
mune cell infiltration was determined using the xCELL,
CIBERSORT, MCPcounter, and TIMER algorithms with
the R package “IOBR” [20–26]. The stromal, immune, and
estimate scores were then calculated using the R package
“ESTIMATE” [19].

2.4 Prediction of Drug Sensitivity
The RNAs associated with Drug (RNAactDrug, http:

//bio-bigdata.hrbmu.edu.cn/RNAactDrug/) database was
used to explore the relationship between UBA2 mRNA ex-
pression and drug sensitivity. This online tool contains
the Cancer Cell Line Encyclopedia (CCLE), the Genomics
of Drug Sensitivity in Cancer (GDSC, formerly known as
CGP), and the CellMiner databases. The computational
analysis of resistance (CARE) algorithm utilizes compound
screening data to identify biomarkers of response to tar-
geted therapies. This contains the Cancer Therapeutic Re-
sponse Portal (CTRP), CCLE, and CGP databases, and re-
sults in a CARE score that reflects drug sensitivity [27].

2.5 Cell Culture
Three human glioma cell lines (A172, U251, and

U87) and one human normal astrocyte cell line (HA1800)
were investigated in this study. The glioma cell lines
were obtained from the Institute of Modern Physics, Chi-
nese Academy of Sciences (Lanzhou, China), while the
HA1800 cell line was obtained fromMingzhoubio (Ningbo,
China). Short Tandem Repeat (STR) analysis was per-
formed to identify the cell lines. All the cell lines were
mycoplasma-negative and were cultured at 37 °C with 5%
CO2 in Dulbecco’s Modified Eagle Medium with 1% peni-
cillin/streptomycin (Solarbio, Beijing, China) and 10% fe-
tal bovine serum (FBS, ExCell Bio, Soochow, China).

2.6 RNA Interference
Lentiviruses containing short hairpin RNA

targeting UBA2 (shUBA2) and negative control
(shNC) were obtained from Hanbio (Shanghai,
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China). The shRNA sequences were: shUBA2-1, 5′-
GCCTGATTGATCTGGATACTATTGAT-3′; shUBA2-2,
5′-GCCTAGGAAAGGACGTTGAATTTGAA-3′; and
shNC, 5′-TTCTCCGAACGTGTCACGTAA-3′. U87 cells
were transfected with shUBA2 or shNC lentiviruses in the
presence of 1 µg/mL polybrene for 24 h. Stably transfected
cells were selected 72 h later using 2 µg/mL puromycin.

2.7 Western Blotting
Total protein was extracted from cells using radioim-

munoprecipitation assay lysis buffer containing a ser-
ine protease inhibitor (1% phenylmethylsulfonyl fluoride).
Proteins were subsequently separated by electrophoresis
on a 10% sodium dodecyl sulfate-polyacrylamide gel, and
then transferred onto a polyvinylidene fluoride membrane
(Millipore, Cork, Ireland). After blocking for 1 h in
5% non-fat milk in tris-buffered saline and Tween 20
(TBST, Solarbio, Beijing, China), the membrane was in-
cubated overnight at 4 °C with primary antibody against
β-actin (1:2000 20536-1-AP, Proteintech, Wuhan, China)
or UBA2 (1:2000 ab185955, Abcam, Cambridge, UK).
Following three TBST washes, the membranes were in-
cubated for 1 h at room temperature with secondary anti-
bodies, washed with TBST, and then developed with su-
per enhanced chemiluminescence (ECL) detection reagent
(Yeasen, Shanghai, China).

2.8 Quantitative Real-Time Polymerase Chain Reaction
(qRT-PCR)

TRIzol reagent (Ambion, Carisbad, CA, USA) was
used to extract total RNA from cells. This was then reverse
transcribed to generate cDNA using the SweScript RT First
Strand cDNA Synthesis Kit (Servicebio, Wuhan, China).
Quantitative Real-Time Polymerase Chain Reaction (qRT-
PCR) was conducted using Bio-rad CFX management and
2×SYBR Green qPCR Master Mix (Servicebio, Wuhan,
China). The PCR primer sequences were: UBA2, forward
5′-GCTGGGTTGATAGTATTGGAAGG-3′ and reverse
5′-CTTTATGGACATTCAGCCGCAC-3′; β-actin, for-
ward 5′-CACCCAGCACAATGAAGATCAAGAT-3′ and
reverse 5′-CCAGTTTTTAAATCCTGAGTCAAGC-3′.
The 2−∆∆Ct method was employed to quantify mRNA
levels, with β-actin serving as the internal control.

2.9 Cell Irradiation
Cells were irradiated using an X-RAY generator (X-

RAD 225, North Branford, CT, USA). The dose rate was
set to 2.0–3.0 Gy/min (225 KV/13.3 mA, 0.2 mm Al filter),
and source-skin distance was 40 cm.

2.10 Colony Formation Assay
For the colony formation assay, a single cell suspen-

sion containing an appropriate number of cells was placed
in 60-mm petri dishes. The medium was replaced every 4
days. After 2 weeks of incubation, the cells were fixed in

ethanol and 0.1% concentration of crystal violet (Solarbio,
Beijing, China) was used to stain the colonies.

2.11 Cell Counting Kit-8 (CCK-8) Assay
Cells were seeded at 4 × 103 cells/well into 96-well

plates and 10 µL of Cell Counting Kit-8 (CCK-8) reagent
(Yeasen, Shanghai, China) was added at 0, 24, 48, and 72 h
to measure cell proliferation using the CCK-8 assay. After
incubation for 2 h, absorbance was measured at a wave-
length of 450 nm.

2.12 Cell Apoptosis and Cycle Assay
Cells were seeded into 6-well plates (2 × 105 cells

per well) and grown for 48 h. Apoptosis was then mea-
sured using flow cytometry and an Annexin V-FITC/PI cell
apoptosis analysis kit (Meilunbio, Dalian, China). For the
cell cycle assay, cells were fixed in 70% ethanol at –20
°C overnight, stained with DNA staining solution (Lianke-
bio, Hangzhou, China) at room temperature for 30 min,
and evaluated by flow cytometry. Modfit LT software5.0.9
(Verity Software House, Bedford, MA, USA) was used to
perform cell cycle analysis.

2.13 Cell Migration and Invasion Assay
The cell migration assay was performed using 24-

well transwell chambers (Corning, Kennebunk, ME, USA).
Briefly, 3 × 104 cells in serum-free medium were added to
the upper chamber, and medium containing 15% FBS was
added to the lower chamber. Upper chamber cells were re-
moved after 24 h of culture with a damp cotton swab, fixed
in methanol, and stained with 0.1% crystal violet (Solar-
bio, Beijing, China). For the cell invasion assay, the up-
per chamber was coatedwith 1:8Matrigel (BDBiosciences,
San Jose, CA, USA), and the remaining experimental pro-
cedure was similar to that of the cell migration assay. Fi-
nally, the invasive and migrated cells were photographed
using a light microscope (Olympus, Tokyo, Japan).

2.14 Statistical Analysis
The student’s t test or Mann–Whitney U rank-sum test

was used to compare UBA2 expression between tumor and
normal tissues, depending on the results of the normality
test of the samples. These tests were also used to determine
correlations between UBA2 expression and clinicopatho-
logical variables. The log-rank test was used to perform
a K-M survival analysis. The Pearson or Spearman’s test
was used for correlation analysis. R software 4.2.1 (Ross
Ihaka and Robert Gentleman, Auckland, New Zealand) and
GraphPad Prism 9.4.0 (Dotmatics, Boston, MA,USA)were
employed for all statistical calculations and data visualiza-
tions, with the specific R package described in the preced-
ing sections. All p-values in this study were tested using a
two-tailed test, with p < 0.05 denoting the statistical sig-
nificance. All data was presented in the format of means±
standard deviation.
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3. Results
3.1 UBA2 Overexpression in Glioma

Pan-cancer analysis of the TCGA-GTEx database re-
vealed that UBA2 was overexpressed in multiple cancers
relative to corresponding normal tissues, including glioma
(Fig. 1A–C). In the GEPIA, UALCAN, and Clinical Pro-
teomic Tumor Analysis Consortium (CPTAC, https://prot
eomics.cancer.gov/programs/cptac) databases, UBA2 ex-
pression was substantially higher in glioma compared to
normal tissues (Fig. 1D–F). UBA2 protein and mRNA ex-
pression in glioma (A172, U251, and U87) and astrocyte
(HA1800) cell lines were detected using Western blotting
and quantitative real-time polymerase chain reaction (qRT-
PCR) assays. Compared to the typical astrocyte cell line,
glioma cell lines expressed significantly higher levels of
UBA2 protein and mRNA (Fig. 1G,H). Furthermore, the
diagnostic ROC curve showed that UBA2 expression could
effectively differentiate between glioma and normal tissues
(Area Under Curve = 0.867, Fig. 1I). The expression level
of UBA2 was 5.81 at the maximum Youden’s index, indi-
cating this was the optimal cut-off value for distinguishing
between glioma and normal tissues (Supplementary Fig.
1). These findings demonstrate that UBA2 is overexpressed
in glioma cell lines and tissues.

3.2 The Relationship Between Glioma Clinicopathological
Parameters and UBA2 Expression

The relationship between UBA2 expression and vari-
ous clinicopathological parameters in glioma patients was
analyzed using the TCGA database (Supplementary Ta-
ble 1). UBA2 expression in glioma was associated with
WHO grade, IDH gene status, histological type, and 1p19q
deletion, but not with patient sex, race, or age. UBA2 ex-
pression was higher in WHO grade 4 gliomas compared to
WHO grade 2 and 3 gliomas (Fig. 2A). Additionally, UBA2
expression was higher in glioblastoma than in astrocytoma,
oligoastrocytoma, and oligodendroglioma (Fig. 2C). Pa-
tients with 1p19q non-codeletion and IDH-wildtype, both
of which are indicators of poor prognosis, showed highly
elevated expression of UBA2 (Fig. 2B,D). Together, these
findings indicate that UBA2 expression is associated with
the malignant progression of glioma.

3.3 High UBA2 Expression Predicts Poor Survival in
Glioma Patients

K-M analysis to explore the association between
UBA2 expression and survival in glioma patients from
the TCGA database. Patients with high UBA2 expression
showed significantly worse OS, PFI, and DSS than those
with low UBA2 expression (Fig. 3A–C). Further subgroup
analyses revealed that high UBA2 expression was associ-
ated with poorer OS in patients with WHO grade 2 glioma,
oligodendroglioma, and IDH mutant glioma, as well as in
both male and female patients, aged ≤60 years old, and
White individuals (Fig. 3D–J). Similar results were ob-

tained following analysis of data from the CGGA database
(Fig. 4A,D,H–J). Notably, the association between UBA2
expression and OS in the CGGA database was also found
in WHO grade 3 glioma, anaplastic astrocytoma, gliomas
with 1p19q non-codeletion, and glioma with methylated or
unmethylated methylguanine methyltransferase (MGMT)
promoter (Fig. 4B,C,E–G). These findings indicate that
high UBA2 expression predictes poor survival in glioma
patients.

3.4 UBA2 is a Prognostic Biomarker in Patients with
Glioma

To further examine whetherUBA2 is a prognostic fac-
tor for glioma, data from the TCGA database was used to
perform univariate and multivariate Cox regression analy-
ses. IDH status, patient age, WHO grade, 1p19q codele-
tion, sex, and UBA2 expression levels were all signifi-
cantly associated with OS in univariate analysis (Fig. 5A).
Multivariate analysis further revealed that patient age, IDH
status, and WHO grade were independent prognostic fac-
tors (Fig. 5B). Next, a nomogram was constructed using
WHO grade, IDH status, age, and UBA2 expression level
to predict 1-year, 3-year, and 5-year OS in glioma patients
(Fig. 5C). The calibration curve demonstrated consistency
of the observed results with the predicted values (Fig. 5D).
Using this method, nomograms for PFI and DSS and their
respective calibration curves were also created (Fig. 5E–H).
Taken together, these results indicate thatUBA2 is a promis-
ing prognostic biomarker for glioma.

3.5 Relationship Between UBA2 Expression and
Tumor-Infiltrating Immune Cells in Glioma

In light of the prognostic significance of tumor-
infiltrating immune cells in gliomas, we next evaluated
whether UBA2 expression was related to immune cell in-
filtration. The ssGSEA computational tool was used to
compare the distribution of 24 distinct immune cell sub-
populations between the high and low UBA2 expression
groups. As shown in Fig. 6A, activated dendritic cells
(DC), induced DC, macrophages, neutrophils, T helper
cells, gamma delta T cells, and T helper type 2 cells were
markably increased in the high UBA2 expression group. In
contrast, CD8 T cells, DC, mast cells, natural killer (NK)
CD56 bright cells, NK CD56 dim cells, plasmacytoid DC,
follicular helper T cells (Tfh), Th17 cells, and T-regulatory
cells were markedly lower in the high UBA2 expression
group (Fig. 6A). Validation was performed with four al-
gorithms, all of which yielded the same results as above
(Fig. 6B). The ImmuneScore, EstimateScore, and Stroma-
lScore values were all higher in the UBA2 high expression
group compared to the low expression group, with all show-
ing a positive linear correlation (Fig. 6C–H). These findings
indicate that UBA2 expression is linked to immune cell in-
filtration in glioma.
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Fig. 1. Expression of UBA2 in glioma tissues and cell lines. UBA2 mRNA expression between tumor and normal samples in (A)
pan-cancer, (B) GBM, and (C) LGG from TCGA and GTEx database. (D) UBA2 mRNA expression between tumor and normal samples
in GBM and LGG from GEPIA database. (E) UBA2 mRNA expression in GBM between tumor and normal samples from UALCAN
database. (F) UBA2 protein expression in glioblastoma between tumor and normal samples from CPTAC database. (G) Western blotting
and (H) quantitative real-time PCR analysis of UBA2 in normal astrocyte and glioma cell lines (***p < 0.001, A172 vs HA1800, n
= 3; ***p < 0.001, U251 vs HA1800, n = 3; ***p < 0.001, U87 vs HA1800, n = 3). (I) Diagnostic ROC curve of UBA2 by TCGA
and GTEx database. (*p < 0.05, **p < 0.01, ***p < 0.001, ns presented no significance). UBA2, ubiquitin-like modifier activat-
ing enzyme 2; GBM, glioblastoma multiforme; TCGA, the Cancer Genome Atlas; GTEx, Genotype-Tissue Expression; GEPIA, Gene
Expression Profiling Interactive Analysis; UALCAN, University of Alabama at Birmingham Cancer Data Analysis Portal; CPTAC,
Clinical Proteomic Tumor Analysis Consortium; PCR, polymerase chain reaction; ROC, receiver operating characteristic; ACC, adreno-
cortical carcinoma; BLCA, bladder urothelial carcinoma; BRCA, breast invasive carcinoma; CESC, cervical squamous cell carcinoma
and endocervical adeno carcinoma; CHOL, cholangio carcinoma; COAD, colon adenocarcinoma; DLBC, lymphoid neoplasm diffuse
large B-cell lymphoma; ESCA, esophageal carcinoma; HNSC, head and neck squamous cell carcinoma; KICH, kidney chromophobe;
KIRC, kidney renal clear cell carcinoma; KIRP, kidney renal papillary cell carcinoma; LAML, acute myeloid leukemia; LGG, low-grade
glioma; LIHC, liver hepatocellular carcinoma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; MESO, mesothe-
lioma; OV, ovarian serous cystadenocarcinoma; PAAD, pancreatic adenocarcinoma; PCPG, pheochromocytoma and paraganglioma;
PRAD, prostate adenocarcinoma; READ, rectum adenocarcinoma; SARC, sarcoma; SKCM, skin cutaneous melanoma; STAD, stomach
adenocarcinoma; TGCT, testicular germ cell tumors; THCA, thyroid carcinoma; THYM, thymoma; UCEC, uterine corpus endometrial
carcinoma; UCS, uterine carcinosarcoma; UVM, uveal melanoma; FPR, false positive rate; 95% CI, 95% confidence interval.
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Fig. 2. Associations between UBA2 expression and clinicopathological parameters. Violin plots indicating UBA2 expression in
different (A) WHO grade, (B) IDH status, (C) histological type, and (D) 1p/19q co-deletion status from the TCGA database. (*p< 0.05,
***p < 0.001). WHO, World Health Organization; IDH, isocitrate dehydrogenase; TPM, transcripts per million; WT, wildtype.

3.6 Relationship Between UBA2 Expression and Drug
Sensitivity

The relationship between UBA2 expression and drug
sensitivity was analyzed using the RNAactDrug database.
The calculated values showed a relationship betweenUBA2
expression and the IC50 of drugs. Sensitivities to Nilo-
tinib, Erlotinib, Panobinostat, Sorafenib, Topotecan, and
Irinotecan were all positively associated with UBA2 ex-
pression (Fig. 7A). A total of 6, 124, and 35 compounds
from the CCLE, CTRP, and CGP databases, respectively,
were screened by CARE (Fig. 7B). Twenty of these com-
pounds contained in at least two of the databases were se-
lected for visualization and to label their targets, includ-
ing drugs such as Nilotinib, Sorafenib, Axitinib, Vorinostat,
Linifanib, Navitoclax, Cabozantinib, Imatinib, Quizartinib,
Abraxane, Topotecan, and Panobinostat. These drugs are
already on the market or have been used in clinical trials
(Fig. 7C). The findings show that UBA2 expression is as-
sociated with the drug sensitivity of cancers.

3.7 UBA2 Knockdown Inhibits U87 Cell Progression

To further examine the involvement of UBA2 in
glioma development, lentiviruses carrying short hairpin

RNA were used for stable knockdown of UBA2 in U87
cells (shUBA2-U87) and for the negative control (shNC-
U87). Both the protein and mRNA levels of UBA2 were
markedly lower in shUBA2-U87 cells, as determined by
Western blotting and qRT-PCR (Fig. 8A,B). U87 cells with
the shUBA2-1 sequence were selected for subsequent ex-
periments. The CCK-8 assay showed that knockdown of
UBA2 significantly slowed the proliferation of U87 cells
(Fig. 8C). shUBA2-U87 cells also showed fewer colonies
in the colony formation assay (Fig. 8D). The cell apoptosis
assay revealed a significantly higher number of apoptotic
shUBA2-U87 cells compared to shNC-U87 cells, suggest-
ing that silencing of UBA2 plays a role in cell apoptosis
(Fig. 8E). UBA2 knockdown in U87 cells significantly in-
creased G0/G1 phase cells observed in the cell cycle assay,
while reducing the S phase cells (Fig. 8F). Furthermore,
shUBA2-U87 cells showed greatly reduced migration and
invasion capacities (Fig. 8G). Taken together, these find-
ings demonstrate thatUBA2 knockdown suppresses the pro-
gression of glioma cells.

3.8 UBA2 Knockdown Sensitizes U87 Cells to Irradiation
The CGGA database was used to determine whether

UBA2 expression was associated with the outcome of
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Fig. 3. The survival curves of UBA2 high- and low-expression groups in glioma patients fromTCGA database. The survival curves
of (A) OS, (B) PFS, and (C) DSS. The survival curves of OS in (D) WHO grade 2, (E) oligodendroglioma, (F) IDH-mutation, both (G)
male and (H) female, (I) age ≤60, and (J) white subgroups. OS, overall survival; PFS, progression-free survival; DSS, disease-specific
survival.

glioma patients after radiotherapy. Individuals with high
UBA2 expression levels had a markedly poorer progno-
sis compared to those with low expression (Fig. 9A). We
also investigated whether UBA2 knockdown would sensi-
tize glioma cells to irradiation. The colony formation assay
and CCK-8 assay revealed that UBA2 knockdown together
with irradiation suppressed cell colony formation and pro-
liferation (Fig. 9B,C). Moreover, the cell apoptosis assay
revealed a higher apoptotic rate in irradiated shUBA2-U87
cells than in irradiated shNC-U87 cells (Fig. 9D). In sum-
mary, these findings imply that UBA2 knockdown can sen-
sitize glioma cells to irradiation.

4. Discussion
Gliomas are a large group of heterogeneous neurolog-

ical tumors. The typing of gliomas is becoming clearer
thanks to advances in molecular genetic testing and sev-
eral clinical trials. Traditional and new treatment protocols
are becomingmore precise and standardized. These usually

involve comprehensive assessment of the patient’s clinical
presentation, general condition, prognostic factors, and side
effects after surgery and chemoradiotherapy. The results
of molecular pathology and genetic examinations can pro-
vide important prognostic information, as well as guiding
the choice of radiotherapy and chemotherapy. Mutations
in IDH1 and IDH2 are associated with favorable prognosis,
and patients with these mutations respond better to alky-
lating agents and radiotherapy [28]. The combined dele-
tion of chromosome 1p19q is also thought to be a favor-
able prognostic indicator and a predictor of greater sensi-
tivity to radiotherapy and alkylating agents [29]. Methy-
lation of the MGMT promoter in glioblastoma also indi-
cates favorable prognosis and a positive therapeutic effect
of temozolomide [30]. Several other molecular markers
such as H3K27, H3G34, a-thalassemiamentalretardation
syndrome X (ATRX ), telomerase reverse tranase (TERT),
and miR181d have also been shown to have both diagnos-
tic and prognostic value.
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Fig. 4. The survival curves of UBA2 high- and low-expression groups in glioma patients from CGGA database. (A) The survival
curves of OS. The survival curves of OS in (B)WHO grade 3, (C) anaplastic astrocytoma, (D) IDH-mutation, (E) 1p/19q non-codeletion,
both (F) MGMT methylation and (G) unmethylation, (H) age ≤60, and both (I) male and (J) female subgroups. MGMT, methylguanine
methyltransferase.

4.1 Role of UBA2 in Malignant Tumors

Several previous studies have reported on the role of
UBA2 in tumor development. Zhang et al. [14] found
that inhibition of UBA2 in clear cell renal cell carcinoma
suppressed cell growth, induced apoptosis, and reduced
the level of crucial enzymes associated with the p53 mu-
tant, c-Myc, and SUMO modification systems. He et al.
[12] reported that UBA2 knockdown in colorectal cancer
cells reduced cell proliferation and concurrently increased
cell apoptosis through regulation of the P53/murine double
minute2 (MDM2)/P21 and phosphatase and tensin homolog
deleted on chromosome ten (PTEN)/phosphoinositide 3-
kinase (PI3K)/protein kinase B (AKT) signaling pathways.
Li et al. [31] reported that knockdown of UBA2 inhib-
ited the invasion and migration of gastric cancer cells by
regulating the Wnt/β-catenin signaling pathway. In the
present study, the majority of malignant tumors expressed
high levels of UBA2. Our bioinformatic analysis and in
vitro experiments showed that glioma tissue and cell lines
expressed high levels of UBA2. Similar to the previous

studies, we found that knockdown of UBA2 reduced the
ability of glioma cells to proliferate, migrate, and invade,
while also enhancing apoptosis and G0/G1 cell cycle ar-
rest. UBA2 expression correlated strongly with IDH status,
histological type, WHO grade, and 1p19q codeletion sta-
tus. Patients with high UBA2 expression had worse prog-
nosis than those with low expression. UBA2 expression
could effectively differentiate tumors from normal tissue,
and predict OS, PFI, and DSS in glioma patients. These
results indicate thatUBA2may be a potentially useful diag-
nostic and prognostic biomarker for glioma. Additionally,
we found that UBA2 expression is linked to drug sensitivity
in cancers, suggesting that it may be a useful target for drug
therapy in tumors, including glioma.

4.2 Immunotherapy of Gliomas and the Potential Role of
UBA2

Immune cell infiltration and immune regulation play a
significant role in influencing the prognosis of glioma [32].
Increased expression levels of inhibitory checkpoint pro-
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Fig. 5. The prognostic value of UBA2 in glioma. (A) Univariate and (B) multivariate Cox hazard regression analyses in glioma. (C)
Nomogram and (D) calibration curves of 1-, 3-, and 5-year OS probabilities. (E) Nomogram and (F) calibration curves of 1-, 3-, and
5-year PFI probabilities. (G) Nomogram and (H) calibration curves of 1-, 2-, and 3-year DSS probabilities. PFI, progression-free interval.
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Fig. 6. Evaluation of the proportions of immune cell infiltration. (A) Immune cell distribution between tumor and normal tissues
by ssGSEA. (B) Correlation patterns of infiltrating immune cells by 4 different algorithms. Correlation of UBA2 expression with (C,F)
stromal, (D,G) immune, and (E,H) ESTIMATE scores. (*p < 0.05, **p < 0.01, ***p < 0.001). ssGSEA, single sample gene set
enrichment analysis; DC, dendritic cells; NK, natural killer; TFH, follicular helper T; CLP, common lymphoid progenitor; CMP, common
myeloid progenitor; HSC, hematopoietic stem cells; MPP, multipotent progenitor; MSC, mesenchymal stem cells; NKT, natural killer T;
MCP, mast cell progenitor.
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Fig. 7. Relationship between UBA2 expression and drug sensitivity. (A) Lollipop chart shows the correlation between UBA2 expres-
sion and drug sensitivity of tumor cells by RNAactDrug. (B) Venn diagram indicates the shared drug of three source using CARE. (C)
Visualization of drugs overlapping in (B) and labeling of their targets. CCLE, Cancer Cell Line Encyclopedia; CTRP, Cancer Therapeutic
Response Portal; CARE, Computational Analysis of Resistance.

teins, programmed cell death protein 1 (PD-1) (and its lig-
and PD-L1), and cytotoxic T lymphocyte-associated pro-
tein 4 (CTLA-4) have been correlated with immune eva-
sion, elevated tumor grade, and poor prognosis in glioma
patients [33]. However, immunotherapy for glioma re-
mains challenging. Nivolumab and pembrolizumab have
proven effective in other solid tumors and are now com-
monly used immune checkpoint inhibitors. However, both
have failed to improve OS in several clinical trials of glioma
[34–36]. Immunotherapy for glioma is still being explored,
with the main focus currently being on immune checkpoint
inhibitors. Recruitment has been completed for a clinical
trial of ipilimumab with temozolomide versus temozolo-
mide alone after surgery and chemoradiotherapy in GBM
(Ipi-Glio/NCT02311920) [37]. In addition to PD-1/PD-L1
and CTLA-4, clinical trials that target other immune check-
points such as T-cell immunoglobulin and mucin domain 3
(TIM3) and lymphocyte-activation gene 3 (LAG3) are cur-
rently ongoing (NCT02658981 and NCT02817633). These
will not be discussed further here as several comprehen-
sive reviews have recently summarized the topic of im-

munotherapy for glioma, we will not go into detail [38–40].
The current study found that UBA2 expression was signif-
icantly correlated with immune cell infiltration and the tu-
mor microenvironment. This suggests that UBA2 is a key
player in immune regulation and may also reflect the status
of the immune microenvironment in gliomas. Furthermore,
it suggests that UBA2 may be a biomarker of the response
to immune checkpoint inhibitors in gliomas, as well as af-
fecting their efficacy.

4.3 UBA2 and Radiosensitization in Gliomas

Although radiotherapy is one of the standard treat-
ment modalities for glioma, its efficacy is limited by ra-
dioresistance [41]. New approaches are therefore needed
to improve the efficacy of radiotherapy for glioma. Sev-
eral studies have shown that SUMOylation or SUMO tar-
gets are associated with the development of radioresistance
in several tumor types. SUMO-interacting motif mimetic
peptides coupled to gold nanoparticles have been observed
to inhibit polySUMO-2/3-dependent protein-protein inter-
actions [10]. The mechanism by which the SUMO path-
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Fig. 8. Knockdown of UBA2 inhibited U87 cells progression. (A) Western blotting, (B) quantitative real-time PCR (***p < 0.001,
shUBA2-1 vs shNC, n = 3; ***p < 0.001, shUBA2-2 vs shNC, n = 3), (C) CCK-8 (**p < 0.01, shUBA2 vs shNC, 24 h, n = 6; ***p <
0.001, shUBA2 vs shNC, 48 h, n = 6; ***p < 0.001, shUBA2 vs shNC, 72 h, n = 6), (D) colony formation (***p < 0.001, shUBA2 vs
shNC, n = 3), (E) cell apoptosis (***p < 0.001, shUBA2 vs shNC, n = 3), (F) cell cycle (**p < 0.01, shUBA2 vs shNC, G0/G1 stage,
n = 3; **p < 0.01, shUBA2 vs shNC, S stage, n = 3), and (G) cell migration and invasion assays (400×) (***p < 0.001, shUBA2 vs
shNC, migration, n = 3; ***p < 0.001, shUBA2 vs shNC, invasion, n = 3) in shNC and shUBA2. CCK-8, Cell Counting Kit-8.
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Fig. 9. Knockdown of UBA2 sensitized U87 cells to irradiation. (A) The survival curves of OS in glioma patients treated with
radiotherapy from CGGA database. (B) Survival fraction of shNC and shUBA2 at different irradiation doses (**p < 0.01, shUBA2 vs
shNC, 1 Gy, n = 3; ***p < 0.001, shUBA2 vs shNC, 2 Gy, n = 3; ***p < 0.001, shUBA2 vs shNC, 4 Gy, n = 3). (C) CCK-8 (***p <

0.001, shUBA2 vs shNC, 72 h, n = 6; ***p< 0.001, shUBA2+4 Gy vs shNC+4 Gy, 72 h, n = 6; ***p< 0.001, shNC+4 Gy vs shNC, 72
h, n = 6) and (D) cell apoptosis assays in shNC and shUBA2 or in combination with 4 Gy irradiation (***p < 0.001, shUBA2 vs shNC,
n = 3; ***p < 0.001, shNC+4 Gy vs shNC, n = 3; ***p < 0.001, shUBA2+4 Gy vs shNC, n = 3), respectively (***p < 0.001). HR,
hazard ratio; OD, optical density; PI, propidium iodide; FITC, fluorescein isothiocyanate.

way sensitizes cancer cells to irradiation could therefore
be via control of the DNA damage response. SUMO-
specific proteases modulate the radiosensitivity of cancer

cells through their involvement in various cellular processes
[42–45]. Additionally, the combination of SUMOylation
inhibitors such as 2-D08 and ML-792 with radiotherapy
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may improve the outcome of cancer patients [46]. SAE1 or
UBA2 is a subunit of the E1-activating enzyme involved in
the SUMOylation of numerous proteins. The results of the
present study are similar to a previous investigation which
found that knockdown of SAE1 enhanced the radiosensitiv-
ity of colorectal cancer cells [47]. We found that knock-
down of UBA2 sensitized glioma cells to irradiation, indi-
cating that it may be a target for the radiosensitization of
gliomas.

4.4 Strengths and Limitations

To our knowledge, this is the first study to correlate
the expression of UBA2 in glioma with clinicopathologi-
cal factors, immune cell infiltration, drug sensitivity, and
radiosensitivity. UBA2 is overexpressed in gliomas, and is
also closely associated with IDH status, histological type,
WHO grade, and 1p19q codeletion status. The prognosis of
glioma patients with high UBA2 expression is worse than
that of patients with low expression. These findings suggest
that UBA2 expression is associated with the progression of
gliomas and patient outcomes. It is well-known that the oc-
currence and advancement of glioma are related to immune
cell infiltration, which has been shown to influence tumor
progression and prognosis [48]. Our results showed that
UBA2 expression was positively correlated with several
immune cell types, includingmacrophages, neutrophils, ac-
tivated DC, induced DC, and T helper cells, but negatively
correlated with CD8 T cells, DC, mast cells, NK CD56
bright cells, and NK CD56 dim cells. These findings sug-
gest that UBA2might participate in regulating immune cell
infiltration in glioma. The major tumor-infiltrating cells are
macrophages and neutrophils, and the infiltration and polar-
ization of these cells are the main causes of chemotherapy
and radiation resistance in gliomas [49]. Glioma-associated
macrophages (GAMs) act critically in enhancing tumor pro-
gression and can alter drug resistance, promoting resistance
to radiotherapy and establishing an immunosuppressive en-
vironment [50,51]. The current study showed that UBA2
expressionwas related to drug sensitivity in cancers, includ-
ing glioma. The efficacy of radiotherapy in glioma appears
to be constrained by cellular resistance to irradiation [41],
with the present study finding thatUBA2 knockdown sensi-
tized glioma cells to irradiation. In summary, it seems rea-
sonable to speculate that UBA2 might be involved in drug
and irradiation resistance by regulating immune cell infil-
tration in gliomas.

Several potential biases and shortcomings of this study
must be addressed prior to clinical translation. Firstly, pub-
lic databases such as TCGA and CGGA, contain only lim-
ited clinical information. In particular, they lack data on
surgical margins/extent of resection, which is a key deter-
minant of prognosis. Moreover, the TCGA database con-
tains only GBM and LGG cohorts. Despite these being
the predominant pathological types, they are not completely
representative of glioma. In order to validate our findings,

future studies should include a larger size of clinical sam-
ples and more detailed clinical information. Secondly, the
involvement of UBA2 in glioma was not fully elucidated,
and further investigations into the molecular mechanisms
involved are warranted.

5. Conclusions
This study found that UBA2 has diagnostic and prog-

nostic value in glioma. UBA2 may also be associated with
tumor progression, immune cell infiltration, drug sensitiv-
ity, and radiosensitivity in glioma. It could therefore be a
potential target for therapy, as well as a biomarker for the di-
agnosis, prognosis, immune response, drug sensitivity, and
radiosensitivity of gliomas. This study provides new in-
sights into the role of UBA2 in the growth and regulation of
gliomas. The findings should contribute to the individual-
ized treatment of glioma and may also help to guide clinical
practice.
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