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1. ABSTRACT

Intracellular signal transduction pathways play a
crucial role in a variety of cellular processes, such as
differentiation, proliferation, or apoptosis, and the reversible
phosphorylation of their components is a major regulatory
mechanism to control their activities. While much has been
learned about the contribution of kinases, the involvement of
phosphatases in these events is less clear and has only
recently received more investigative attention. The
availability of various natural product inhibitors of
phosphatases has helped enormously to gain insight into the
role that these enzymes exert in various signal transduction
processes. This review will focus on serine/threonine protein
phosphatase type 2A (PP2A) and will present findings
pertaining to its involvement in cellular signal transduction
pathways. Since the majority of these studies were done
with the use of phosphatase inhibitory compounds, some
pros and cons of their application will be presented.

2. INTRODUCTION

Control of cellular growth and differentiation is a
prerequisite for the proper development of higher eukaryotic
organisms. Extracellular molecules, such as hormones or
growth factors, are important agents in determining this
control. The genetic response of cells to these molecules
often requires signal receptors, signal transduction (second
and third messengers), and usually alterations in the activity
of transcription factors which activate or repress target
genes. The importance of adequate regulation of these signal
transduction pathways has been emphasized by the finding
that many protein products of protooncogenes are
components of this network. If mutated or inappropriately
expressed, they become oncoproteins that are able to cause
unrestricted cellular growth and carcinogenesis (1).

A hallmark of these growth-regulatory signal
transduction pathways is the reversible phosphorylation of
proteins. Many growth factor receptors are kinases; upon
binding of their respective ligand, their enzymatic activity
becomes activated and initiates kinase cascades that transmit
the signal to the nucleus. There, the gene-proximal targets,
transcription factors, are being phosphorylated and cause
changes in the activity of gene expression. As a
consequence, the altered pattern of gene expression will
generate the respective phenotypic response, such as, for
example, cell proliferation, differentiation, or apoptosis (2,
3).

Many of the (proto)oncogene products are
kinases, and it has been demonstrated that this enzymatic
activity is an absolute requirement for their normal function,
as well as for the process of tumorigenic transformation by
these proteins. Similarly, several tumor suppressor gene
products are strictly regulated by reversible phosphorylation
reactions as well. For example, the retinoblastoma (RB)
protein is active (growth suppressive) when it is
unphosphorylated, but becomes inactivated by
hyperphosphorylation (4, 5).

While the role of protein kinases in the above
mentioned processes has been well established, the
contribution of protein phosphatases is less clear and has
only recently received more investigative attention. However,
the finding that some phosphatases are crucial components
of pathways that regulate cellular growth and therefore may
play a role in the process of tumorigenic transformation, has
brought them to the forefront of cancer research (6). So far,
only very few phosphatases have been directly implicated in
the etiology of tumors: the dual-specificity protein
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Table 1. Inhibition of Phosphatases by Okadaic Acid
Phosphatase3 IC50 (nM) References

PP1 20-100 (11, 13-15)
PP2A 0.1-1.0 (11, 13, 14)
PP2B >5000 (16, 17)
PP2C no1 (16, 17)

PP3 3.0-5.0 (18)
PP4 0.2 (19)
PP5 <1.0 (20)
PP6 n.d.2 (21)
PP7 no1 (22)
1 no inhibition, 2 not determined, 3 two novel type 2C protein
phosphatases, wip1 and FIN13, are insensitive to okadaic
acid (23, 24)

Table 2. Inhibition of PP2A by Natural Product Inhibitors
Inhibitor IC50 (nM) References
Okadaic Acid 0.02-2.0 (11, 14-16, 30)
Calyculin A 0.25-7.3 (14-16, 30)
Nodularin1 0.03-1.0 (14, 31, 32)
Microcystin-LR1 0.04-2.0 (14, 33-35)
Tautomycin 10-23.1 (14, 33, 36, 37)
Fumonisin B1 3x105 (38)
Cantharidin 160 (39, 40)
Thyrsiferyl2 4-16x103 (41)
Motuporin 0.1 (42)
Fostriecin 3.0-40 (43, 44)
1 not cell permeable; liver cells appear to have an uptake
system capable, of transporting this compound,
2 Thyrsiferyl-23-acetate

phosphatases CDC25A and CDC25B, which are able to
transform cells in culture (7), and thus can be classified as
oncogenes; the dual-specificity protein phosphatase PTEN
(MMAC1) which is frequently found mutated or deleted in
advanced cancers and behaves like a tumor suppressor gene
(8). A further important regulator of signal transduction and
cell growth is the serine/threonine protein phosphatase type
2A (PP2A) which will be discussed in detail below.

3. NATURAL PRODUCT INHIBITORS OF
PHOSPHATASES

One compound that has proven to be extremely
useful for the study of gene regulation by phosphatases is
okadaic acid, a complex polyether derivative of a 38-carbon
fatty acid. It is synthesized by marine dinoflagellates and
accumulates in filter feeding organisms such as shellfish or
the black sponge Halichondria okadaii from which it was
first isolated (9, 10). Okadaic acid is a recognized threat to
human health through its ability to cause diarrhetic shellfish
poisoning. Its only cellular targets that could be identified so
far are certain members of the serine/threonine protein
phosphatase family, including PP2A (see table 1). Okadaic
acid binds to the catalytic subunit and inhibits its enzymatic
activity (11). Because of this specific repression of
phosphatase activity, okadaic acid quickly became a

ubiquitous tool to investigate the cellular functions of the
respective okadaic acid-sensitive phosphatases (12).

Okadaic acid inhibits different phosphatases
differentially, i.e. the concentration of the drug that inhibits
phosphatase activity by 50% (IC50) varies greatly among
the different members of this enzyme family (see table 1).
Cellular effects that are observed in response to low
concentrations of okadaic acid are often contributed to the
inhibition of PP2A, as this particular phosphatase is
inhibited at subnanomolar concentrations of the drug.
However, this conclusion could be misleading, because
there are other, less abundant phosphatases that are also
affected by low okadaic acid concentrations, such as PP4
and PP5 (see table 1). Furthermore, PCR analysis indicated
there are more phosphatases of this type yet to be
discovered (25). Therefore, the cellular or molecular
consequences of okadaic acid treatment, even at low
concentrations, cannot be ascribed unequivocally to the
inhibition of one particular phosphatase (12, 26).

In addition to okadaic acid, several other naturally
occurring compounds have been found that are also able to
inhibit phosphatase activity (see table 2). Although these
inhibitors constitute a structurally diverse group of toxins
that are produced by different organisms, computational
analysis revealed that many of them possess similar three-
dimensional motifs that are involved in binding to the
phosphatase catalytic subunit (14, 27, 28). As is the case
with okadaic acid, the inhibitory potency of the different
compounds varies greatly among the different types of
phosphatases. For example, the IC50 of tautomycin is
approximately 10-fold higher for PP2A than for PP1,
whereas the reverse is true for microcystin; fostriecin
inhibits PP2A >10,000-fold more potently than PP1 (see
refs. in table 2). Because of these differential effects, the
combinatorial use of various phosphatase inhibitors may
prove helpful to further narrow the list of candidate
phosphatases that may be involved in the cellular processes
under investigation (29).

It has to be kept in mind, however, that there is
significant variation among the published IC50 values, which
are dependent on the concentration of phosphatase as well
as on the type of substrate used (17). Furthermore, these
values are derived from measurements performed in vitro,
i.e. by the use of cellular lysates or purified enzymes. To
study the role of phosphatases in signal transduction
pathways and gene regulation, these inhibitors need to be
added to cells in culture. In this case, however, the efficient
concentrations are significantly higher, and therefore the
IC50 values do not reliably apply to these cell culture
conditions. For instance, the published IC50 for okadaic
acid is around 1 nM with respect to PP2A activity in vitro
(when added to diluted cellular lysate) (11, 15, 30), whereas
in cell culture (when added to growing cells) the IC50 was
found to be 30 nM and nearly 1 microM for NIH3T3
fibroblasts and MCF-7 breast cancer cells, respectively (45,
46).

Another caveat has to be considered when
interpreting results obtained with the use of phosphatase
inhibitors. It cannot be completely excluded that these
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compounds exhibit certain effects on cellular processes due
to their potential interaction with yet unknown, non-
phosphatase targets. Okadaic acid has been extensively
studied, and no other cellular targets have been identified so
far. However, some of the other phosphatase inhibitors do
affect the activity of non-phosphatase proteins; most
notably fostriecin, which inhibits partially purified type II
topoisomerase, although at much higher concentrations (47).

Potential unknown targets of phosphatase
inhibitors might contribute to the paradox that some of these
compounds have tumor promoting activity, whereas others
exhibit antitumor activity. Alternatively, or in addition, it may
be of importance which combination of the various
phosphatases is targeted by a certain inhibitor. Okadaic
acid, calyculin A, microcystin-LR, and nodularin are potent
tumor promoters or liver carcinogens (48-52), whereas
tautomycin has not been found to promote tumors on
mouse skin or rat glandular stomach (37). Moreover,
fostriecin, cantharidin, and cantharidin derivatives have
demonstrated antitumor properties (40, 53-55). Fostriecin in
particular exhibits antitumor activity against a wide spectrum
of tumor cells in vitro, and is under evaluation as an
antitumor drug in clinical trials (56-58).

4. SIGNAL TRANSDUCTION PATHWAYS
AFFECTED BY OKADAIC ACID

Originally, it was suspected that the tumor
promoting activity of okadaic acid was due to its regulation
of the same pathway that is affected by the well-established
phorbol ester tumor promoters, namely the protein kinase C
(PKC) pathway (50, 59, 60). The idea was that activation of
PKC by phorbol esters initiated a kinase cascade that lead
to the increased phosphorylation/activation of various
downstream components of this signal transduction
pathway. Similarly, okadaic acid, through the inhibition of
phosphatases that dephosphorylate/inactivate the same
components, would generate the same net effect, namely the
increased activity of this pathway. Further support for this
hypothesis was provided by the finding that several growth-
regulatory genes that are activated by the phorbol ester 12-
O-tetradecanoyl-phorbol-13-acetate (TPA) are also
activated by okadaic acid (see detailed references in (12)).
Most prominent among these genes are the proto-oncogenes
c-fos and c-jun (61-64), whose protein products are able to
interact and form the heterodimeric transcription factor AP-
1 (65). And indeed, either agent, TPA or okadaic acid,
causes increased AP-1 expression and activity (66-70). (For
a detailed list of growth-regulatory genes that are regulated
by okadaic acid, see ref. (71)). Activation of the c-fos gene
is regulated through the reversible phosphorylation of
ternary complex factor (TCF) by kinases of the mitogen-
activated protein kinase (MAPK) family, and both agents,
TPA and okadaic acid, stimulate TCF via the activation of
the MAPK pathway (72). There are further examples of
transcription factors that are activated by TPA and by
okadaic acid. For example, the activity of nuclear factor
kappa B (NF-kappaB) is stimulated by either agent (73, 74).
Activation of NF-kappaB requires the degradation of protein
inhibitors, IkappaB-alpha and IkappaB-beta, which is

induced by the hyperphosphorylation of these proteins. It
has been demonstrated that treatment of cells with okadaic
acid or calyculin A results in the increased phosphorylation
and subsequent degradation of these NF-kappaB inhibitors
(75, 76). In the case of IkappaB-alpha, increased
phosphorylation appears to be mediated through the
(indirect) activation of ERK1, a member of the MAPK
family, in response to okadaic acid treatment (76).
Activation of the MAPK pathway by okadaic acid has been
described by several groups (77-79).

However, while several cellular responses to drug
treatment have been documented that are similar between
okadaic acid and phorbol esters, there are also numerous
differences. For example, using high definition two-
dimensional gel electrophoresis, Guy et al. (80) identified 74
proteins that exhibited altered levels of phosphorylation in
response to okadaic acid treatment of human fibroblasts.
However, when the same cells were treated with TPA, a
rather different pattern of protein phosphorylation was
found. Moreover, in other studies physiological differences
between okadaic acid-generated and TPA-generated
transformed cells have been reported (61, 81).

In addition, depending on the experimental
approach, TPA and okadaic acid are able to antagonize
each other’s effects. For instance, it has been well
documented that okadaic acid is able to induce apoptosis in
various primary as well as transformed cells (82-85). In
Balb/c 3T3 fibroblasts, this effect was found to be
dependent on the presence of the p53 tumor suppressor
protein (86), whereas in human breast carcinoma cells p53
function was not found to be required for this process (87).
Further, in H-ras oncogene transformed cells okadaic acid-
induced apoptosis appeared to involve the modulation of
raf-1, PKC, and MAPK activities (88). Interestingly, the
simultaneous treatment of certain breast cancer cell lines
with okadaic acid and TPA has been shown to greatly
diminish the induction of apoptosis by okadaic acid (89).
Similarly, in THP-1 meyloid leukemia cells, cell death
induced by okadaic acid is strongly reduced in the presence
of TPA (90).

The various cellular responses to treatment with
phosphatase inhibitors can differ enormously, and
sometimes even yield contradicting results, which likely is
due to variations in the length of treatment, the applied
concentration, or the cell type used. In this regard, it was
observed that okadaic acid, calyculin A, and cantharidin
were able to prevent apoptosis in short term, but not in long
term experiments (91). Similarly, the level of
phosphorylation of the retinoblastoma (Rb) tumor
suppressor protein, an important regulator of cell cycle
progression, is affected differentially by okadaic acid,
depending on the time of incubation and concentration of
the drug that is used (92-95). Moreover, several groups have
reported okadaic acid as an inhibitor of transformation in
different in vitro transformation assays (96, 97), which is in
contrast to those reports discussed further above that
established this compound as a potent tumor promoter.
Whereas the details of these discrepancies remain to be
investigated, the above data argue against the view that TPA
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and okadaic acid exert their effects through two sides of the
same coin, i.e. the phosphorylation versus the inhibition of
dephosphorylation of the same substrates of signal
transduction pathways.

5. PP2A AS A TUMOR SUPPRESSOR

The finding that okadaic acid is a tumor promoter,
combined with the observation that this compound
efficiently inhibits PP2A, has led to the suggestion that
PP2A, and potentially some other phosphatases, may
function as tumor suppressors (60). It is thought that the
tumor suppressing function could be accomplished by the
enhanced dephosphorylation of activated kinase cascades,
which would revert oncoprotein-activated signaling
pathways back to their inactive state. As many oncogene
products cause the sustained activation of growth-regulatory
kinase cascades, it is a distinct possibility that increased
serine/threonine protein phosphatase activity might
counteract elevated levels of protein phosphorylation and
block cellular transformation (48).

Further support for such a negative role of
phosphatases in growth-regulatory signal transduction
pathways came from observations that treatment of cells
with okadaic acid led to the increased expression of several
proto-oncogenes (see detailed references in (12)). Elevated
expression of such genes had been shown before to
contribute to cellular transformation (1). Thus, these results
suggested that the respective okadaic acid sensitive
phosphatases contribute to the repression of these proto-
oncogenes in normal cells.

Moreover, when added to cells synchronized in
the S phase of the cell cycle, okadaic acid caused an
increase in the enzymatic activity of cyclin-dependent kinase
(histone H1 kinase), an enzyme that is necessary for cell
cycle progression. The drug also stimulated premature
mitosis and increased the phosphorylation of mitosis-
specific proteins (see detailed references in (12). When
added at low concentrations, okadaic acid caused quiescent
fibroblasts to progress to S phase of the cell cycle (98); and
in thyroid cells, the drug increased the fraction of
thyrotropin-stimulated quiescent cells entering S phase (99).
Further, a link between protein phosphatases and cellular
transformation has been established by the finding that small
DNA tumor viruses, such as Simian virus 40 (SV40) and
Polyoma virus, synthesize proteins (small and medium T
antigens) that bind to and inhibit PP2A (100). The currently
available evidence indicates that alteration of phosphatase
activity and subsequent changes in phosphorylation levels is
a crucial step in transformation by these viruses (55, 100).
Another viral protein, E4orf4 of Adenovirus, has been found
to associate with PP2A as well (101).

Further evidence for the involvement of
phosphatases in the neoplastic process has been provided
by the finding that certain cis-platin resistant human cancer
cells are resistant to growth inhibition by okadaic acid, and
exhibit increased phosphorylation of certain nuclear proteins
(102, 103). Resistance to okadaic acid has also been
observed in cells that exhibit the multidrug resistance (mdr)

phenotype (104-108). Mdr cells were established by chronic
exposure of cells to increasing concentrations of okadaic
acid. In this case, two different mechanisms were found to
generate the mdr phenotype.

First, mdr cells had amplified the gene encoding
the 170-kDa P-glycoprotein, which is a drug efflux pump
with broad specificity, i.e. it is capable of extruding
intracellular anticancer agents of diverse structures and
mechanisms of action (105, 106). Consequently, these cells
were not only resistant to okadaic acid and related
phosphatase-inhibitory compounds, but also to other
structurally unrelated anticancer drugs, such as vinblastine,
taxol, or cisplatin. In addition, the activity of P-glycoprotein
appears to be regulated via its phosphorylation status, which
is increased in response to treatment of cells with okadaic
(109). It should be noted, however, that the increased
activity of the P-glycoprotein pump could not be
demonstrated in all okadaic acid resistant cell types; in some
cells no differences could be found in the accumulation or
efflux of okadaic acid between drug resistant and normal
cells (104, 107, 110).

A second mechanism that was found to generate
okadaic acid resistant cell lines is the mutational alteration of
the PP2A catalytic subunit. Upon sequencing of the PP2A
gene from okadaic acid resistant hamster cells, a point
mutation was found that resulted in the exchange of cysteine
269 for glycine (111). This mutation resulted in a PP2A
protein that was much more resistant to inhibition by
okadaic acid than the wild type protein. Further mutational
analysis of this region established that the amino acids 265
to 269 are critical for inhibition of PP2A by okadaic acid
(112). Mdr cell lines that harbored such a mutation of PP2A
were found to express the mdr phenotype in a stable
fashion. In contrast, cell lines without PP2A mutations but
with amplified P-glycoprotein, tended to loose the mdr
phenotype after cessation of long-term drug exposure (110).

In addition to gene amplification, the treatment of
cells with okadaic acid has also generated other genetic
changes in cultured cells, such as mutations endowing
diphtheria-toxin resistance, sister chromatid exchange in the
presence of bromodeoxyuridine, loss of exogenous
transforming oncogenes, and minisatellite mutations (26,
113-116). Although the molecular mechanisms underlying
this genotoxic activity of okadaic acid have not been
elucidated, it is suspected that the alteration of the
phosphorylation status of cellular proteins, and the resulting
changes in the gene expression pattern, might be a crucial
epigenetic event contributing to these processes. In this
regard, it is important to note that okadaic acid induces
elevated and sustained expression of the c-fos proto-
oncogene (63, 105). Since c-fos has been shown to increase
the spontaneous level of chromosomal aberrations (117-
119), it is conceivable that okadaic acid may stimulate these
processes through its continuous activation of c-fos
expression. Furthermore, since okadaic acid exerts its effect
on c-fos expression through inhibition of PP2A (120, 121),
one could envision that PP2A, through its negative effects
on the c-fos gene, may contribute to the maintenance of
genomic integrity. Thus, these observations give further



Role of PP2A in signal transduction

1266

credence to the idea that PP2A indeed may act as a tumor
suppressor.

6. EXPERIMENTALLY INCREASED PP2A
ACTIVITY

The down-regulation of phosphatase activity by
the use of various natural product inhibitors has yielded lots
of preliminary insight into phosphatase function, although
this approach has been rather restricted due to the
simultaneous effects on several different enzymes (see
further above). A different avenue has been pursued with the
use of the small tumor (T) antigens of polyomavirus or
SV40. These proteins have been found to form stable
complexes with PP2A and reduce its enzymatic activity (55,
100, 122), and therefore have served as rather specific tools
to analyze in more detail the involvement of PP2A in signal
transduction pathways. For example, introducing SV40
small T antigen into cells has helped establish a negative role
for PP2A in the regulation of the mitogen activated protein
(MAP) kinase pathway (78, 123). (The details of these
interactions will be discussed elsewhere in this volume and
thus will not be pursued here.)

The opposite experimental approach, the stably
increased expression of selected protein phosphatases,
would also be helpful to further study their role in signal
transduction pathways. However, these types of studies
have proven difficult to accomplish. Although it has been
shown in mammalian cells that PP2A can be efficiently
expressed after transfection of an expression vector
containing the cDNA of the catalytic subunit of PP2A (124),
there appears to be a potent autoregulatory mechanisms that
keeps the overall amount of PP2A protein (catalytic
subunit), as well as its enzymatic activity, at constant levels
(125). As a consequence, it seems very difficult to establish
cell lines with significantly increased overall activity of
PP2A.

The observed autoregulatory control of PP2A
expression may also provide an explanation for earlier
seemingly contradictory findings by others who investigated
PP2A expression. For example, in various mammalian cells
and in fission yeast it has been shown that the level of PP2A
protein remains constant throughout the cell cycle (126-
128). In contrast, analyzing the amount of mRNA, others
have demonstrated increased PP2A mRNA levels during the
early stages of G1 in mammalian cells (129, 130). Moreover,
Kakinoki et al. (131), by performing partial hepatectomy,
presented evidence of almost constant levels of PP2A
protein in regenerating liver, despite a 30-fold increase in
PP2A mRNA. These observed discrepancies between
elevated mRNA levels and rather constant protein levels can
now be explained by the finding of a potent autoregulatory
mechanism of PP2A synthesis that appears to work at the
level of translation (125). In addition, in human keratinocytes
a post-translational level of PP2A regulation was suggested
(132).

In order to neutralize and overcome the
autoregulatory feedback loop of PP2A expression, different

experimental approaches may be useful. For example,
microinjection studies have been used to introduce into cells
various components of the phosphatase holoenzyme (121,
133). It is likely that in these experiments the large amount of
microinjected protein is able to overwhelm any
autoregulatory mechanism, at least for a short time, and
induce the respective cellular responses. Experiments of this
type, although limited by the small number of cells that can
be used per experiment, have indeed provided valuable
insights into phosphatase function (121, 134-136).

A further strategy to manipulate PP2A activity in
cells was recently presented by Ruediger et al. (137). These
authors generated an N-terminal mutant of the regulatory A
subunit that was able to bind to the catalytic C subunit, but
not to the regulatory B subunit. Expression of this A subunit
mutant in cells resulted in an increase in the amount of PP2A
core protein (A-C heterodimers) and a decrease in the
amount of PP2A holoenzyme (B-A-C heterotrimers).
Concomitantly, the relative activity of PP2A towards two
different substrates, phosphorylase-a and a retinoblastoma
(Rb) peptide, was altered. In the case of phosphorylase-a,
PP2A activity was slightly stimulated, whereas with Rb
peptide a significant inhibition of phosphatase activity was
obtained (137). This differential effect of PP2A enzymatic
activity generated consequences at the molecular and cellular
level as well: transcription from the human
immunodeficiency virus (HIV-1) long terminal repeat (LTR),
as well as virus production, was inhibited in these cells
(137). Thus, these results demonstrated that the
manipulation of PP2A subunits, other than the catalytic C
subunit, may be a useful experimental approach to
manipulate PP2A expression and activity in living cells.

7. INTERACTION OF PP2A WITH OTHER
REGULATORY PROTEINS

The involvement of PP2A in intracellular signal
transduction pathways can be inferred most directly from
experiments that establish the interaction of this enzyme with
other cellular regulatory components. For example, most
recently it was found that the trimeric PP2A holoenzyme can
form a stable complex with Ca2+- calmodulin-dependent
kinase IV (CaMKIV) (138). In this interaction, PP2A serves
to ensure the transient nature of CaMKIV activation: after
the kinase has phosphorylated its substrates, CaMKIV
activity is down-regulated by PP2A. Thus, this association
of a phosphatase with a kinase, where PP2A functions as
the negative regulator of CaMKIV, allows tight control of
the corresponding signal transduction pathway.

In other studies, PP2A has been shown to interact
with casein kinase 2alpha (CK2alpha) in mitogen starved
cells (139). CK2alpha was found to negatively regulate the
activity of the mitogen-activated protein kinase (MAPK)
pathway. This inhibition appears to be mediated through the
phosphorylation/activation of PP2A by CK2alpha, and the
subsequent dephosphorylation/deactivation of MAPK
kinase (MEK) by PP2A (78, 139). Because the MAPK
pathway is one of the major growth regulatory pathways,
these findings provide yet another example of the apparently
crucial role of PP2A in cellular growth control.
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Several other cellular signaling proteins have been identified
that interact with PP2A (140-142). Notably HOX11, a
homeo box gene product which is able to transform cells,
associates with the catalytic subunit of PP2A (143). This
interaction is thought to affect alterations of cell cycle
progression induced by HOX11.  In other studies, the
translation termination factor eRF1 (eukaryotic release factor
1) has been found complexed with PP2A, which may serve
to bring the phosphatase into contact with putative targets
among the components of the translational apparatus (144).

In addition, the recruitment of PP2A to signal
transduction pathways and other regulatory events may be
regulated through its B-type subunits, which may add yet
another layer of control and specificity. In this regard, it has
been found that the B’alpha and the B’beta subunits of
PP2A form complexes with cyclin G, a protein whose
expression is regulated by the tumor suppressor p53 (145).
Because induction of p53 protein appears to be required for
this complex formation, the existence of specific cross-talk
between PP2A and p53-mediated pathways has been
suggested (145).

8. CONCLUSIONS

Great strides have been made towards a more
complete understanding of phosphatase function in cellular
signal transduction. However, because in most studies
okadaic acid or other phosphatase inhibitors were used, it
was often not possible to unequivocally establish which of
the various drug-sensitive phosphatases was responsible for
the observed effects. Rather, a combination of various
approaches is necessary in order to characterize the precise
roles of phosphatases in signal transduction pathways. For
example, biochemical and immunological analysis together
with cellular studies may be most useful. Moreover, the
recent discoveries of complexes consisting of a kinase and a
phosphatase suggest a tight coupling of activators with their
respective inactivator; thus, the analysis of this type of
interaction may lead the way to further unravel the
contribution of various phosphatases to the regulation of
cellular signal transduction pathways.
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