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1. ABSTRACT

Combined regimens of classical antiviral
treatments have not, until now, lead to the eradication of
HIV-1. A specific anti-HIV immune response may have to
be boosted or transferred to patients after suppression of
viral replication, in order to eradicate residual infected cells
from their sanctuaries. Cytotoxic T cells engineered to
express recombinant chimeric receptors can be redirected
against HIV-infected cells and could represent the basis of
a new type of immunotherapy. Several HIV epitopes have
been targeted successfully in vitro. Two types of binding
domains (antibody fragments, CD4) fused with various
signal transducing units (zeta chain of the CD3 complex, Fc
epsilon RI gamma chain) have been tested for their ability
to redirect effector cells to HIV infected lymphocytes.
CD4-zeta-expressing myeloid and natural killer cells
conferred SCID mice protection against challenge with
tumor cells expressing HIV-env.

Finally, the safety of the adoptive transfer of
syngeneic CD4- zeta -modified T cells in HIV-infected
individuals is currently under evaluation.

2. INTRODUCTION

The elaboration of strategies of adoptive cellular
immunotherapy is based on the current interpretation of the
immune mechanisms that are, or should be, responsible for
controlling HIV-1 replication during acute and chronic
infection.

Several studies have provided evidence supporting
that HIV specific CD8+ CTLs would play a crucial role in
controlling virus replication and preventing disease
progression. The expansion of HIV-1 specific CTLs
following primary infection correlates with a sharp
decrease of viral replication (1) (2), which progressively
rises again with the decline of HIV-specific CTL activity
(3). Conversely, lack of progression has been associated
with high frequencies of CTL precursors endowed with
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broad specificities (4). It was recently shown that higher
frequencies of HIV-1-env-specific CTLs correlate with
lower levels of plasma HIV-1 RNA and PBMC-associated
infectious virus (5). HIV-1 specific CTLs were found in
individuals with repeated exposure to the virus, and that did
not become infected (6) (7). In vitro studies have
confirmed that purified CD8+ cells have the ability to
inhibit the cellular cycle of replication of HIV (8). Finally,
during primary or chronic SIV infection, viral replication is
not controlled in monkeys depleted of CD8+ T cells (9). It
is therefore accepted that through the development of a
vigorous CTL response earlier after infection, HIV-1
specific CTLs could be able to eradicate HIV-1 infection in
certain transiently infected patients and would at least be
able to contain HIV-1 spread in most other cases. However,
in most cases, the host response ultimately fails to control
HIV replication and disease progression. The progression
of HIV infection despite the development of specific host
CD8+ CTL responses to HIV, implies that cellular-based
immunotherapeutic strategies should have to overcome
significant obstacles in order to be effective.

To induce CTLs, vaccination with live attenuated
viruses has been proposed and indeed appears to be
effective in animal models (10) but such an approach
presents too many risks to be widely proposed to healthy
humans. Synthetic vaccines would probably be safer but
should consist in a mixture of many different T cell
epitopes in order to prevent viral escape. An appropriate
epitope mix could be optimized for a given individual but
will not be effective in other, unrelated, individuals because
of HLA restriction.

Although vaccines have failed to elicit neutralizing
antibody responses against field isolates of HIV-1 (11),
appreciation of the complementary nature of T cell and
antibody-based immunotherapy stimulated interest in
developing new approaches that would combine the
advantages of both arms of the immune response and
minimize limitations of each kind of therapy.
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3. ANTI-HIV T BODIES: RATIONALE

The T body approach uses a chimeric receptor
made of an antibody variable region (Fv) as the
extracellular, recognition domain spliced to the TCR
constant domain or any T cell signalling receptor
subunit as transmembrane and intracellular domains.
Such chimeric receptors, when expressed in T cells,
confer on them antibody specificity and redirect T cells
to any predefined target in a non-MHC restricted
manner (12). This approach has been proven successful
for tumor therapy in model systems (13).

The expected advantages of that type of strategy in
the fight against HIV are numerous. Firstly, the T bodies
would have a relatively high avidity for HIV, yet, T bodies
bearing high affinity receptors migth not necessarily
represent the neutralizing ones, in vivo. While HIV-specific
antibodies are always found in the serum of HIV patients,
their neutralizing potential appears to be limited. There
seems to be a good correlation between efficient
neutralization and high affinity of interaction between the
antibody and the epitope expressed on the virus itself or on
the surface of infected cells (14). On the other hand, the
nature of the epitope that is targeted appears to be less
important. In comparison, T cells make use of receptors
endowed with particular fast off-rates of dissociation from
their cognate ligands (15). It was therefore proposed (16)
that several non-neutralizing HIV-specific antibodies could
be “recycled” as effective T cell receptors. Indeed, we have
shown that an antibody that could not neutralize efficiently
a particular HIV variant, could still be used to construct
chimeric T-bodies that specifically recognize that variant
(16).

Secondly, specific cytolytic activity is not MHC
restricted, therefore, a wider range of HIV epitopes can be
targeted on the surface of the infected cells. Furthermore,
the recognition via the chimeric receptor will not be
affected by HIV-1 induced down-regulation of HLA class I
antigens (17).

Thirdly, cytotoxic cells engineered in that way could
be more effective than the soluble antibody at controlling
cell to cell spread of the virus, which probably represents
the main mode of transmission in solid tissues such as the
lymphoid organs. Lymphoid tissues have been
demonstrated to contain large amounts of trapped virus
particles and serve as a chief site for ongoing HIV
replication in CD4+ T cells and macrophages (18). Soluble
antibodies have a limited capacity of diffusion into solid
tissues, and even when rendered bispecific, they remain
bound to target and effector cells for only 10-80 hours
(when they are proteolytically degraded) (19). In contrast
chimeric receptors are expressed by transduced CTLs for
the life time of host cells (20) and T bodies would be able
to migrate inside the virus sanctuaries that are represented
by solid organs. Moreover, they could be induced to secrete
soluble antiviral cytokines at sites of viral replication.

Lastly, CTLs can be redirected against a variety of B
cell epitopes (and, not necessarily neutralizing epitopes) in
order to limit the possibilities of viral escape.
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4. IN VITRO EXPERIMENTS

Antibody based targeting and cell mediated
cytolysis have been combined by grafting effector cells
with a chimeric receptor composed of an antigen-binding
domain joined to transmembrane and signal transducing
domains that initiate cellular activation after receptor cross-
linking by antigen. The first chimeric antibody/receptor
design consisted in the replacement the TCR V alpha and V
beta regions by Vi and VI, antibody domains (21-25).
Subsequently, a simplified design used the single chain Fv
(scFv) of an antibody as the extracellular recognition unit
of the chimeric receptor (26). The basis for this design
results from the observation that fusion proteins utilizing
signaling chains carrying a motif for tyrosine kinase
activation mediate T-cell receptor signal transduction (27)
(28) (29) (30) (31). Both the Fc epsilon RI gamma chain
(26) (32) and CD3 zeta chains (26) (33) (32) (20) have
been successfully used as signal transducing units.

The only HIV products expressed at the surface
of infected cells are MHC-bound peptides and the envelope
protein of HIV-1 (gp120-gp41 complex) (34-36). Although
antibodies that bind particular MHC-peptides complexes
have been described (37), there are no antibodies available
that would interact with complexes of MHC and HIV-
derived peptides. Hence, T-bodies can only be redirected
against the native envelope protein of HIV-1, no other
native HIV proteins are displayed on intact cells. It should
be noted that only productively infected cells express the
HIV envelope, while latently infected cells do not express
detectable amounts of it. Furthermore, HIV gp120-gp41
complex is only expressed during late stages of the HIV
replication cycle (38, 39), in cells that start to actively
produce virus. Strategies that would nevertheless enable the
targeting of latently infected cells are discussed below.

Various HIV-binding domains have been used to
construct chimeric T cell receptors. In an attempt to
circumvent escape mechanisms based on the numerous
mutations occurring during viral replication, CD4 (the high
affinity co-receptor for gpl20) was first chosen as
extracellular domain for the design of a first generation of
anti-HIV c¢TCR called 'universal receptor' (UR). Such
chimeric receptors would interact with gp120 expressed on
infected cells irrespectively of the viral strain. Romeo and
Seed described chimeras composed of CD4 extracellular
domains (aa 1-369) fused to the transmembrane and
intracellular domains of TCR/CD3 (zeta) or IgGFc
receptor-associated gamma chain signal transducing
elements. They showed that those chimeras are capable of
directing CTLs to recognize and kill cells expressing gp120
(30).

Roberts and al. have reported the construction of
two types of such universal receptors with extracellular
domains interacting with the envelope glycoprotein (env)
of HIV-1. The env-specific moiety of those chimeric
receptors was represented by, as previously, the
extracellulars domains of CD4 or by antibody fragments
(derived from the anti-gp41 98.6 MoAb (40) (41) or from
the gp120-specific human MoAb 447-D (42)). Single chain
variable domains of antibodies (ScFv) are generated by
joining the VY and V7, regions of a monoclonal Ab (mAb)
via a flexible linker (43). Both types of cTCR are able to
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initiate an efficient effector T-cell response against HIV-
infected cells, including cytokine secretion, proliferation
and cytolytic activity upon interaction with target cells
expressing surface viral antigen (44). It was also
demonstrated that such UR bearing CD8+ T cells can
inhibit HIV-1 replication in vitro (45).

One concern is that CD4-zeta receptors might
possibly put the UR-expressing cells at risk of being
infected themselves. Indeed, T cells engineered to express
high surface levels of CD4 could potentially represent in
vivo anew cellular reservoir of virus.

Our group therefore focused on ScFvs to
construct HIV-specific receptors. Very few human
monoclonal antibodies endowed with broad neutralizing
properties have been so far described (46) (47) (48). We
have chosen to target gp120 because it is expressed on the
surface of HIV infected cells. In addition, the epitope
recognized by bl2 mAb (46) presumably projects more
from the surface of the infected cell than the gp41 epitopes,
and could therefore be better presented to effector T cells

(16).
5. ANIMAL MODELS

Hege et al. have described the generation of T
cell-independent systemic immunity in SCID mice
reconstituted with CD4-zeta -expressing myeloid and NK
cells following bone marrow transplantation (50). It is the
first study demonstrating the efficacy of such an
hematopoietic stem cells-based immunotherapy approach
in vivo. Gene modification of hematopoietic stem cells
(HSC) may be preferable to modification of terminally
differentiated effector cells, such as T or NK cells. Indeed,
multiple effector cells can be simultaneously redirected
using a stem cell approach (by passing the requirement to
isolate and express mature effector cells, which may
negatively impact on their in vivo trafficking or function.
Such an approach may also provide long lasting memory
cells and, thereby, could serve as a renewable source of
gene modified effector cells, allowing a prolonged antigen-
specific immune surveillance.

6. CLINICAL USE

The safety and efficacy of adoptive T-cell
therapy in humans have been established in the prophylaxis
against viral diseases caused by CMV (52) and EBV (53)
as well as in the treatment of hematological malignancies
and melanoma (54).

Extrapolation of the data obtained from animal
models in which tumor or viral infections can be eradicated
by adoptive transfer of antigen specific T-cells, together
with the findings from clinical studies using adoptive
transfer into human subjects, suggest that patients may

have to receive cell dosages on excess of 10 antigen-
specific lymphocytes to obtain a therapeutic anti-viral
effect. Cells grafted with a chimeric receptor are
particularly suited to evaluation in a clinical trial, and can
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be used to obtain large populations of antigen specific T
cell within a few weeks, in contrast to the long time
required for selection, characterization and expansion of
CTLs with native specificity for target antigen.

The in vivo life span of gene modified T cells
was studied in HIV-discordant syngeneic twin pairs in
which peripheral blood lymphocytes from the healthy twin
were retrovirally transduced with the neo gene (55). This
marker gene was detected by PCR in both blood and lymph
nodes for at least 25 weeks post infusion demonstrating the
possibility of adoptive T-cell therapy in this disease .

A study of the adoptive transfer of syngeneic
gene modified CD8' lymphocytes in HIV-infected
identical twins was started in 1995 (56). The goal of this
protocol is to redirect cytotoxic T cells against HIV
infected target cells, using the CD4-zeta chimeras described
above (table 1). This study was designed to determine the
safety and activity of healthy UR expressing T cells after
transfer to HIV-1-infected individuals. In an initial phase
/11 study, PBMC obtained from HIV-1-seronegative donor
twins were enriched for CD8+ expression, activated with
IL-2 and anti-CD3, and transduced with a murine retrovirus
containing the CD4-zeta gene. Following dose escalation,
30 HIV-1-infected twins received up to 6 infusions over 1
year of either 10'° CD4- zeta transduced or control CD8+ T
cells (57). In a second study, designed to test the effects of
providing HIV-1-specific CD4+ T cells help, 17 twins
subsequently received 3 additional:infusions of 10 CD4-
zeta-modified CD4+ and CD8+ T cells, at 2 weeks
intervals (58). In this latter study, preactivated modified T
cells+were detected in 21/21 recipients of ge}le-modiﬁe%
CD8 T cells alone, with peak levels of 10 copies/10
PBMC in 16 patients. Nevertheless, rapid clearance of
modified cells was seen in 9 recipients. In contrast, all 17
recipients of gene-modified CD4+ and CD8+ T cells
showed prolonged, high level persistence of gene-marked
cells. Fractions of circulating gene-‘{narked C]634+ and
CD8+ T cells ranged from 10" to >10 copies/10 PBMC,
increased with time in some patients, and persisted for 100
days. No treatment-limiting side effects related to the cells
were observed. Therefore, adoptive transfer of genetically
engineered, HIV-1-specific T cells appears to be safe.
Compared to gene-modified CD8+ T cells alone, CD4+ and
CD8+ T cells given together resulted in increased cell
survival in the circulation, and provided preliminary
evidence of in vivo proliferation of the engineered cells.
Moreover this study demonstrated tissue trafficking by
finding CD4-zeta T cells in rectal-mucosa-associated
lymphoid tissue in 2 patients.

7. PROBLEMS IN SOLUTION

The therapeutic efficiency of UR-T cells might
benefit from the elucidation of certain mechanisms of HIV-
1 immunopathogenesis. Mechanisms that can result in a
decrease of natural HIV-1 specific CTL activity such as
loss of wvirus specific help, viral escape, or clonal
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Table 1. Summary of engineering of anti-HIV effector cells

Extracellular domain Expression vector Effector Target Read out Ref.
cells
4 extracellular Ig-like recombinant Cytotoxic human T Hela cells expressing HIV-env Specific lysis (29)
domains of human CD4 (1-  vaccinia virus cell line WH3
369)
4 extracellular Ig-like retroviral vector Human CD8+ CTLs Human 293 or CEM cell lines Specific lysis (44)
domains of human CD4 (1-  (kat-system) Human NK cells expressing env (I1IB) Inhibition of HIV (49)
372) HIV-IIIB Infected CD4+ T cells replication
JR-CSF infected monocytes Specific lysis (32)
HIV-1 1IB infected CEM, Raji-env
ScFv from the gp41-specific  retroviral vector Human PBMC HIV-1 HIB infected CEM Specific lysis (44)
human MoAb 98.6. (40) (kat-system) Env-expressing human cell line 293.
(41)
4 Ig-like domains of the retroviral vector Murine Bone Marrow  Raji-cells expressing HIV-env (HXB2)  Protection of SCID mice (50)
CD4 receptor (1-372) (kat-system) progenitor cells from Raji-env challenge
ScFv from the gp120- retroviral vector Murine Bone Marrow ~ Murine Bone Marrow progenitor cells Lack of activity dueto low (50)

specific human 447-D (42)  (kat-system) progenitor cells

ScFv from the gp120 pRSV-neo plasmid Cytotoxic murine
specific human antibody hybridoma MD45 (51)
IgG1b12(46)

BHK cells expressing primary strains-
derived env.

expression level.

Gp120 induced 1L-2
secretion

(16)

exhaustion, may also limit the in vivo use of engineered T
cells.

The CD4+ T helper deficiency itself could represent an
important limiting factor in these hosts (59). A correlation
between the decline of CD4 T cells and loss of HIV-
specific CD8 T cell responses during the progression of
AIDS has been reported (60). The maintenance of a CD4+
T helper-cell response is concomitant with vigorous CTL
response in long term non progressors (60). Strategies
aimed at providind help to the transferred CD8+ CTLs
were established, like concomitant infusion of IL-2 or T
helper cells, genetically modified to resist to HIV (61),
genetic modification of the CD8+ CTL with chimeric
receptors containing cytoplasmic domains of the interleukin
2 receptor (62) to be able to function in a CD4 deficient
environment.

Indeed, signaling through the chimeric receptor, without
appropriate signals of coactivation, could induce an in vivo
state of anergy of the transduced cells. Therefore, these
cells would have to be preactivated or costimulated in order
to fully respond to chimeric receptor engagement. It was
recently proposed by Finney and al. to bypass that
requirement for a cosignal by improving the design of
chimeric receptors in such way that they could deliver both
primary and costimulatory signals. They showed that the
intracellular costimulatory signaling domain of CD28 can
be fused with the zeta chain from the TCR/CD3 complex
(63). In the same way the generation of double transfectants
simultaneously expressing scFv-CD28 and scFv-zeta
chimeras demonstrates that antigen-specific co-stimulatory
signals can also synergize with signals mediated through
chimeric zeta chains to secrete maximal levels of
interleukin-2 (64).

In vitro selection of transduced T cells requires
coexpression of a resistance gene that could elicit an
immune response in vivo. Although transfer of autologous
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CD8+ HIV-specific T cell clones modified to express the
hygromycin phosphotransferase gene (HyTK) is limited by
the induction of a potent HyTK specific CTL response (65).
It should be noted that similar responses were not reported
after the infusion of specific CTLs expressing the neo gene
(66-72). It can also be argued that transduced T cells are
likely to change their in vivo homing properties following
the in vitro activation required in order to get the cells
cycling before retroviral transduction, or during
propagation in tissue culture. Nevertheless, it could be
shown that under such circumstances, at least a fraction of
the transferred HIV-specific cells could migrate to lymph
nodes (73).

If, as suggested above, HIV-specific CTLs are
able to persist and remain functional in vivo, they could
possibly mediate deleterious effects (74). In adult mice
infected with LCMV (75) (76), LCMV-induced neurologic
disease is directly mediated by virus-specific CTL (77). It
might therefore be necessary to have an ability to control

the fate, and/or function, of the cytotoxic CD8+ T cells,
once transferred in vivo. Different strategies have been
developed in order to regulate transgene expression in
eukaryotic cells (78). Tetracycline (Tet)-regulatable system

(TRS) seems to be particularly well suited due to the
relatively low concentrations of tetracycline necessary to
regulate transgene expression (79, 80). Tet-suppressible
expression of a ¢cTCR in T cells has been already
demonstrated in vitro (81).

T bodies could also become anergized in vivo.
The chimeric receptor colud be blocked through direct
interaction with soluble gp160. As previously described,
cTCR expressing T cells can be inhibited in several models
by soluble antigen (24) and it is known that soluble gp160
can be found in the serum of HIV infected patients (82)
(83). Roberts et al. have shown that serum from HIV
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infected donors does not contain sufficient levels of
antibodies or free antigen to inhibit cytolytic activity of
chimeric receptor expressing T cells (44). This issue was
also directly addressed in our laboratory where T cells with
b12 mAb specificity were tested in the presence of soluble
gpl60. We found that 50 microgram/ml are required to
efficiently prevent the activation of gpl60-specific T
bodies, while seric concentration of gpl60 never exceeds
90 ng/ml in HIV patients (83). In patients with low levels
of viremia, the concentration of soluble gpl60 is well
below this level, and it is therefore unlikely that soluble
antigen could effectively modulate the in vivo activity of
anti-HIV speciific T bodies.

Finally, the ability of the transduced T cells to
differentiate into memory cells remains to be shown.

8. FUTURE STRATEGIES

The effector function of the genetically
engineered T bodies should not exclusively rely on their
cytotoxic activity. The chimeric receptor expressing cells
can be induced to secrete endogenous cytokines at the
target site or serve as a platform to carry and release such
transgenic cytokines at the desired site. Rosenberg and al.
modified tumor infiltrating lymphocytes (TIL) with the
gene coding for tumor necrosis factor (TNF) in an attempt
to deliver high concentrations of this tumor suppressive
cytokine to the tumor site without dose limiting systemic
toxicity (66). A T body approach has also been used to
target lymphocytes to tumors and deliver a toxin locally
(84). A similar strategy could be used to deliver anti-HIV
cytokines. CTL expressing chimeric receptors would
migrate through circulation to infected tissues and secrete
interleukins upon activation. In terms of soluble factors, a
possible candidate should be represented by beta interferon
that has been shown to mediate high potent viral effect in
animal models (85, 86).

New combination drug regimens seem to be
increasingly effective (87) but no viral eradication has been
so far obtained (88). The tight control of HIV replication
that is observed in successfully treated patients is
nevertheless correlated with a drastic reduction of the
frequency of anti-HIV CTLs (89). Specific anti-HIV
immune response may be therefore have to be boosted, or
passively transferred in order to prevent the relapse of the
disease after interruption of the antiviral treatment. T
bodies could also be used as vehicles in order to deliver
inhibitory soluble factors (88). It was recently proposed
(90) that latently infected cells could be compelled to
express HIV antigens by injecting patients with stimulators
like anti-CD3 antibodies (for T cells) or GM-CSF (for
macrophages). Upon activation and proliferation, such cells
would become unmasked and cleared from the system by
effector-killer cells.

Transduced T cells may be already used in a
syngeneic setting, but their non-MHC restricted specificity
may authorize their use in unrelated individuals, provided that
the allogeneic response of the host would be inhibited. Such
conditions could be met by immunocompromised patients.
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Future application of this strategy may also
involve the use of “ Universal Donors ” providing T cells
with altered immunogenic properties leading to increased
tolerance in MHC-mismatched recipients (91). A modified
T cell that would combine the features of MHC-
unrestricted specificity with the ability to be transplanted
across MHC barriers, may provide a novel approach to the
treatment of both viral and malignant diseases in
genetically different individuals.

Finally, the strategy of gene transfer into
hematopoietic stem cells or mature effector cells should be
improved as it probably represents the main factor limiting
the possibilities of success of gene therapy. Very efficient
lentiviral systems of gene tranduction have been recently
described (92-95). The potential problem for a wide
application of HIV vectors to human studies is obviously
safety, yet, there might be less restrictions in their use for
gene therapy of HIV infected individuals.
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