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1. ABSTRACT

The fetotoxic effects of maternal ethanol (E)
consumption have been documented for over two decades,
yet the mechanisms underlying this devastating
phenomenon remain uncertain. The wide variety of
cellular/biochemical effects of E on fetal tissues is itself a
puzzle and strongly suggests that fetotoxic responses to E
reflect a multifactorial setting. Many of these responses can
be conceptually connected to effects on membrane
structure and function. Representative of this, are studies in
our laboratory documenting E effects on fetal cell
replication, membrane transport systems, membrane
fluidity, Na+-K+ pump expression, and EGF receptor
expression. Recent studies have provided evidence that
oxidative stress may be one mechanism by which E
produces these membrane-related events.  We initially
observed E-induced oxidative stress in cultured fetal rat
hepatocytes, the latter exhibiting morphological and
biochemical signs of mitochondrial damage. E increased
H2O2, O2

-, lipid peroxidation products, along with signs of
membrane damage. Supplementation with antioxidants or
agents that enhance glutathione stores reversed these
effects. E was found to inhibit activities of mitochondrial
respiratory chain components (a potential source of the
enhanced levels of H2O2, and O2

-) and this could be
reversed by antioxidant treatment. Subsequent studies have
documented oxidative stress and membrane lipid
peroxidation in fetal brain and liver (gestation day 19)
following a two day maternal E consumption and in
gestation day 14 and 17 "embryos" immediately following
a single dose of E to the pregnant dam.

The means by which E can induce oxidative
stress in fetal cells is under investigation. We have
examined effects of E on activities of key antioxidant
enzymes and found no depressant responses. However, the
low levels of antioxidants in fetal tissues and an
exaggerated response of fetal mitochondria to prooxidant
stimulation in vitro, suggest that fetal cells are strongly
predisposed to oxidative stress. Additionally, recent studies
have suggested that fetal tissues are likewise prone to the
formation and subsequent accumulation of at least one
toxic lipid peroxidation product, 4-hydroxynonenal.

We conclude that maternal E consumption
induces oxidative stress in fetal tissues and that this is
responsible for some toxic responses to E. Additionally, the
low antioxidant defenses in fetal tissues and accumulation
of toxic aldehyde products of lipid peroxidation predispose
the fetus to oxidative damage.

2. INTRODUCTION

A major cause of birth defects today is maternal
consumption of ethanol. The maximal expression of this
teratogenic response is the Fetal Alcohol Syndrome (FAS),
first labeled as such in 1972 (1) and first, formally reported
by Lemoine, P., et al (2).  These and subsequent accounts
(3) reported high incidence of pre- and postnatal growth
retardation, developmental delay, a specific pattern of
craniofacial abnormalities and limb and cardiac defects.
Currently, diagnosis of this syndrome is characterized by 1.
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growth retardation, 2. CNS abnormalities (which may
include abnormal brain morphology, neurological
abnormalities, developmental and intellectual impairment),
and 3. the characteristic pattern of craniofacial
abnormalities (1-3). These are mostly associated with
sustained heavy maternal ethanol consumption. However, a
number of epidemiological studies over the past decade
have provided evidence that more moderate maternal
ethanol consumption may be connected with lasting
behavioral and intellectual dysfunctions (3). The minimal
amount of consumed ethanol needed to elicit adverse
outcomes is and will likely continue to be controversial,
due to the complex nature of consumption patterns,
difficulties in documenting use, and the plethora of other
social and concomitant drug use variables.  Also, the
pattern of consumption may be relevant. A 1990
prospective study (4) found "binge" consumption of five or
more drinks on at least one occasion to be associated with
lasting effects on IQ and learning problems.

Our initial efforts in this field utilized the
Sprague Dawley rat either treated with ethanol (via gastric
intubation) at specific times during gestation to mimic a
"binge" setting or fed the Lieber DeCarli liquid diet
throughout gestation as a "chronic" model (5,6). A
consistent finding in both the ethanol-exposed rodent fetus
and neonate was decreased body weight combined with
parallel decreases in heart, liver, and kidney growth.  Brain
weight was also decreased if the fetus had been exposed to
ethanol throughout gestation or to a 3 day binge late in
gestation. These studies were in the middle to late 1970s
and this period marked the emergence of a large number of
reports detailing (describing) the impact of ethanol on fetal
and neonatal growth and development. Most models
utilized rodents with an ethanol-related growth inhibition
being reported for both mice and rats (6,7) by far more
laboratories than can be cited here. Maternal ethanol intake
by nonhuman primates has also been reported to generate
reduced fetal growth but no abnormal facial characteristics
were detected (8).

3. MECHANISMS UNDERLYING FETAL
ALCOHOL SYNDROME

The most striking aspect of a review of the FAS
literature is the extensive variety of effects that ethanol has
on fetal tissue (9). How a single compound such as ethanol
could directly effect such a diverse range of
cellular/biochemical events is puzzling and seems unlikely.
It makes far more intuitive sense if ethanol were to
primarily alter one or two basic cellular processes (eg
membrane integrity, energy production and/or produce
factors  which secondarily affect these basic processes) that
are key to cellular order. Such a "disruption" would then
produce the observed secondary cascade of events often
credited to the drug itself. A central causal factor has not
been confirmed, but the fetus occupies a unique setting in
which its viability is totally dependent upon its host (the
mother), many of whose biological systems are also
affected by ethanol. Thus, when probing the mechanistic
basis for FAS, we are likely addressing a multifactorial or,
at least dual, event in which the fetotoxic effects of ethanol

may be derived from direct effects both on fetal cells (these
key cellular processes) as well as via secondary effects on
the maternal/placental functions.

3.1. Indirect Effects:  Fetal hypoxia
This school of thought is derived from studies

indicating that maternal ethanol intake may restrict
placental blood supply, thereby reducing oxygen supply to
the fetus (10,11). Infusing ethanol (2 to 4 g/kg) into the
monkey has been found to reduce fetal blood pressure,
heart rate, and induce acidosis (12). In the rat, microsphere
studies confirm an ethanol-related decrease in placental
blood flow (13). This concept has not been confirmed by
the one Doppler study done in humans, however the dose
and duration of exposure to ethanol were well below those
thought to be overtly teratogenic and the patient did not
serve as her own control (14).  A role for Prostaglandins.
Prostanoids are established mediators of pregnancy and are
requisite for "normal" fetal development (15).  However,
exogenously administered prostaglandin (PGE) can be
teratogenic (16) and compounds which inhibit PGE
synthesis have been shown to offer protective effects
against the fetotoxic effects of ethanol (17-19).
Accordingly, prostanoids may play a causal role in FAS.
This could be a direct effect on fetal tissues or it may be
connected to altered regulation of umbilical and placental
blood flow. PGE is produced by both the umbilical and
placental vessels whose blood flow is regulated by
prostacyclin/thromboxane actions (20,21) and PGE
inhibitors reduce oxygen-induced constriction of umbilical
arteries (22).  The relevance of this to the current
discussion is the possibility of reperfusion-related  injury
and associated oxidative stress that could be generated in
the maternal-fetal axis by disruptions of utero/placental
blood flow.

3.2. Direct Effects on Fetal Tissue
Ethanol exposure in the absence of maternal

influences produces a variety of toxic and potentially toxic
responses in fetal tissues. A fully comprehensive discussion
of these is not germane to the present review (see another
review for many of these (9), however we will present
several previously documented adverse responses to
ethanol that might be derived from ethanol-mediated
oxidative stress. Potentially important, may be that many of
the effects of ethanol on cultured fetal cells that we have
observed can be connected to  alterations in membrane
structure and/or function.

Cell replicative capacity and EGF receptor
dynamics. Cell replicative capacity is clearly a central
factor in fetal growth and development. Cell replication is,
in turn, subject to autocrine, paracrine and endocrine
control by a variety of growth factors. Of the  many peptide
growth factors regulating cell replication, epidermal growth
factor (EGF) has been implicated in growth regulation at
virtually all stages of development from the blastocyst (23)
to the neonate (24). In our hands, the rat fetal hepatocyte
cultured in defined media requires only EGF (optimally 2
ng/ml) to replicate and ethanol blocks this replication (25).
This replicative block is accompanied by increased surface
expression of both high and low affinity EGF receptors
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which may be caused by impaired internalization of the
occupied EGF receptor (26). This is a response also
produced in cultured fetal rat hepatocytes by another
compound that blocks replication, TGFBeta1 (27).

Membrane fluidity and composition. There is an
extensive body of evidence that ethanol alters fluidity and
composition of various cell membranes (28).  This has been
linked, albeit not conclusively, to altered conformation of
membrane proteins, which could include such key elements
as growth factor receptors, enzymes, and neurohormone
receptor complexes (29). While ethanol-related alterations
in cell membrane fluidity occur, their functional
significance remains to be established. However,
membrane fluidity changes as factors in the pathogenesis of
FAS are intuitively attractive in that they could represent a
single underlying mechanism by which ethanol may
generate such a wide variety of altered membrane events
requisite for cell viability and function. In this regard, we
have found that in cultured fetal hepatocytes exposed to
ethanol, measures of membrane fluidity are altered in
parallel with changes in membrane-related functions such
as Na+-K+ pump expression (30) and EGF receptor
internalization (26).

4. OXIDATIVE STRESS, LIPID PEROXIDATION,
AND REACTIVE ALDEHYDE PRODUCTION

Oxygen, while central to life, is potentially toxic.
In its ground state, it possesses two unpaired electrons with
parallel electronic spins. Such a setting makes a two
electron reduction kinetically unlikely, however sequential
one-electron reductions do occur, generating oxygen free
radicals. In the biological setting, the initial one electron
exchange generates the superoxide anion radical (O2

-). The
protonated two electron reduction produces H2O2 (the
protonated form of the peroxide ion) with the final
protonated four electron product being water. Oxygen free
radicals are known to adversely affect a variety of cellular
elements, proteins, DNA bases and sugars, polysaccharides
and lipids. Since much of our previous work has
documented ethanol effects on fetal cell membranes
(25,26,30-32) and microscopic examinations of ethanol
exposed fetal cells indicated extensive mitochondrial
membrane damage, the issue of ethanol-related oxidative
damage to fetal cell membranes (eg lipid peroxidation)
became a major interest. It is well documented that oxygen
free radicals react with unsaturated membrane lipids,
initiating a self-perpetuating peroxidation process (33).
This reaction can produce loss of membrane function and
ultimately cell death if the damage is sufficient. Ethanol has
been shown to induce lipid peroxidation (34,35) and its
effect on mitochondrial morphology (inner membrane
damage) in our fetal hepatocytes originally led us to
suspect that ethanol produced oxidative stress in these cells.
The studies outlined in the following sections confirm this.

4.1. Ethanol and Oxidative Stress in the Fetus
4.1.1. Oxidative  stress and the fetus

There has previously been little experimental
evidence linking maternal ethanol consumption to oxidative
damage of the fetus. To our knowledge, this  resides in two

reports by Dreosti, et al.(36,37) in which dams were
provided a 20% ethanol solution as a sole source of water
throughout gestation. This regimen increased
malondialdehyde (MDA) content of fetal liver
mitochondria (as we have observed in cultured fetal
hepatocytes (10)) but had no effect on MDA content of the
microsomal fraction of fetal liver or on either fetal or
maternal brain. The 2 day "binge" regimen that we have
utilized estimated MDA in post nuclear fractions rather
than the two organelle enriched isolates (38), but it is in
general agreement with the prior report (36) except that we
found both MDA and dienes to be increased in fetal brain.
Evidence that might indirectly support ethanol-induced
oxidative stress in the fetus was included in a report by
Reyes, E., et al (39), which indicated that chronic maternal
ethanol consumption can reduce GSH content of fetal brain
and liver. Our short term exposure regimen (outlined
below) supported this, but the earlier report by Dreosti, et
al (37) found no evidence that chronic consumption of
ethanol altered GSH of either fetal liver or brain. Once
again, varied ethanol intake patterns used by these two
groups (ethanol in  drinking water vs ethanol in a liquid
diet) might explain this difference.

4.1.2. Ethanol-induced oxidative stress in cultured fetal
hepatocytes

Our prior studies with cultured FRH illustrated
that ethanol-related increases in H2O2, O2

- and membrane
lipid peroxidation were paralleled by signs of cell
membrane damage (leakage of LDH, ALT, 54Cr) and
blockade of cell replication (25,38).  The enhanced cellular
leakage implies damage to cell membrane components that
could compromise fetal cell function. This was
accompanied by increased levels of two markers of lipid
peroxidation, MDA and conjugated dienes (figure 1).
Additionally, the morphological and biochemical signs of
mitochondrial damage were associated with depressions of
complex I and IV activities along with decreased ATP
synthesis (40).  A conceivable importance of  the latter
ethanol effect is that inhibition of mitochondrial respiratory
chain components has been shown to stimulate production
of reactive species, hence this could be the origin of the
increased levels of H2O2 and O2

- (38,41). It is relevant that
this occurs in a tissue with microsomal P450 systems that
are so poorly developed that they likely contribute little to
the generation of reactive oxygen species.  Potentially of
greater significance is the inhibitory effect of ethanol on
cultured fetal cell replication/growth as this could be the
mechanism underlying the numerous observations of
impaired growth and replication of fetal and neonatal brain
cells associated with in utero ethanol exposure (42-44).
Importantly, the ethanol induced block of cell replication
and concomitant membrane lipid peroxidation could both
be mitigated by augmenting cellular antioxidant capacity
(figure 1) along with reversal of the impaired mitochondrial
respiratory chain components when mitochondrial reduced
glutathione (GSH) levels were normalized (38).  This is
strong documentation that ethanol induced oxidative  stress
can impact negatively on vital fetal cell functions
(replication, membrane integrity, and mitochondrial energy
production) and it implies that compromised antioxidant
status could be one underlying mechanism.



Ethanol, oxidative stress, reactive aldehydes, and the fetus

544

Figure 1. Ethanol effects, oxidant stress, and antioxidant
supplementation on cultured fetal rat hepatocytes. Cells
were cultured with or without ethanol (2 mg/ml) for 24
hours. Antioxidants included with some samples were s-
adenosylmethionine (0.1 mMolar) to normalize cellular
reduced glutathione (GSH) and vitamin E (alpha-
tocopherol) (0.1 mMolar) (ref. 38). Values are expressed as
means +/- SEM for 5 to 7 values per point. These data were
presented, in part in Hepatology 18, 648-659, 1993;
Permission granted.

Figure 2. Brain MDA formation following a 2 day in utero
ethanol exposure. Dams (Sprague Dawley rats) were
intubated with ethanol (4 gm/kg) at 12 hour intervals on
days 17 and 18 of gestation and one hour prior to sacrifice
on gestation day 19. Pair-fed controls received isocaloric
dextrose to balance the ethanol and lab chow according to
the ethanol treated rat  to which they were paired. Ad lib
control rats received lab chow. n= 12 pregnancies; 3 assays
per pregnancy (ref.55). Values are expressed as means +/-
SEM. These data were presented, in part in Alcoholism:
Clinical and Experimental Research 19, 714-720, 1995;
Permission granted.

4.1.3. Ethanol-induced oxidative stress in the fetus
The ultimate effects of an ethanol-induced

prooxidant setting and the resulting enhanced membrane
lipid peroxidation on fetal development and viability has
yet to be established. However, the potential for damage is
substantial. It is well documented that the fetus/embryo is
exquisitely sensitive to oxidative stress, the generation of
which can cause a spectrum of responses ranging from
structural malformations to embryonic death (45-47).
Some or much of this might be related to lipid peroxidation

since its products (such as reactive aldehydes) and the
intermediate radicals formed in the peroxidation process
are known to adversely affect a variety of cellular functions
key to growth. These later events, which are also observed
with ethanol or acetaldehyde exposure, include cytoskeletal
disruption (48,49), mitochondrial dysfunction  (50-53), and
alteration of membrane protein receptors and subsequent
signal transduction (31,54).

Recent studies in our laboratory have
documented evidence of oxidant stress in fetal brain and
liver following short-term maternal ethanol consumption
(55).  Pregnant rats were administered ethanol (4 gm/kg) by
gavage twice a day on days 17 and 18 of gestation and
sacrificed on day 19 one hour following a final dose of
ethanol. This "binge" model increased both MDA and
conjugated diene levels in fetal brain (figure 2) and in fetal
liver. This treatment modestly decreased GSH in both fetal
brain and liver (19% and 10%, respectively) but had no
effect on vitamin E content of either organ. Additionally, it
was found that a single exposure to ethanol, in utero, was
sufficient to increase MDA levels in whole "embryos" at
earlier stages of gestation, days 17 and 14 (figure 3 for day
14). Thus, short-term in utero ethanol exposure can elicit
oxidative stress in the fetus, however the origin of this and
its effects on fetal development remain to be established. It
is difficult, at this juncture, to connect the small decreases
in brain and liver GSH following this ethanol exposure
regimen to the observed oxidative stress. However,  long-
term  in utero ethanol exposure might generate a greater
GSH depletion that could generate or exacerbate oxidant
stress in the fetus.

4.2.Antioxidant Defenses and the Fetus
4.2.1. An absence of reduced antioxidant defenses
following short-term ethanol exposure

There is substantial evidence that ethanol can
deplete at least some important antioxidant defense
systems. With respect to hydrophilic nonenzymatic
antioxidants, there are reports that ascorbic acid excretion
is stimulated by ethanol (56) and that ethanol decreases
tissue GSH (57,58).  Additionally, ethanol consumption
(acute and chronic) has been reported to decrease alpha -
tocopherol content of rat liver (59) and human plasma (60).
Clearly, these could be factors contributing to our
observations of oxidative damage to membrane lipids
following maternal ethanol intake, however no clear cause
and effect connections between these events have been
established. We have not yet monitored ascorbate in fetal
tissues, however our ethanol exposure regimen did not
decrease alpha -tocopherol  levels in fetal brain or liver and
the effect of the modest 10% to 19% depletion of total
organ GSH cellular antioxidant defenses is probably slight,
at best.  More recent studies have investigated effects of the
two day ethanol exposure regimen on activities of fetal
liver or brain catalase, superoxide dismutase (both cytosolic
and mitochondrial), glutathione peroxidase, and glutathione
S-transferase (61).  No inhibitory effects were found. To
the contrary, activities of these antioxidant enzymes were
mostly enhanced, a setting often seen in oxidative stress.
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Figure 3. Effect of a single in utero exposure to ethanol on
MDA content of day 14 whole embryos. Dams (Sprague
Dawley rats) were intubated with ethanol (4 gm/kg) and
sacrificed at 2, 3, or 6 hours thereafter. Malondialdehyde
(MDA) levels were assayed in homogenates of whole embryos
grouped for each pregnancy. n= 20 dams and 228 embryos; 5
dams per point; 3 assay values per pregnancy (ref. 55). Values
are expressed as means +/- SEM. These data were presented,
in part in Alcoholism: Clinical and Experimental Research 19,
714-720, 1995; Permission granted.

Figure 4. Comparison of GSH and vitamin E content of
fetal and adult brain and liver. Dams (Sprague Dawley rats)
were sacrificed on gestation day 19. GSH and vitamin E
were assayed in homogenates of brain and liver. n= 9 sets
of  tissues and pregnancies for GSH measures and 8 for
vitamin E (ref. 55). Values are expressed as means +/-
SEM. These data were presented, in part in Alcoholism:
Clinical and Experimental Research 19, 714-720, 1995;
Permission granted.

4.2.2. Developmentally compromised antioxidant status
predisposes the fetus to oxidative stress

Fetal tissues generally possess lower activities
and levels of oxidative defenses than the adult (62,63) and
might thereby be more sensitive to oxidative stress
produced by ethanol. The former was confirmed by our
studies. alpha-tocopherol levels in 19 day fetal brain and
livers are only 14% to 20% of those in the corresponding
adult tissues (figure 4) while GSH content of these two

fetal organs were about one half of adult values (figure 4)
(61).  Similar patterns exist for most of the key antioxidant
enzyme systems in brain and liver. In the day 19 fetal brain,
glutathione S-transferase and glutathione peroxidase
activities are only 41% and 12% of adult values,
respectively. In the fetal liver, this pattern is respectively,
31% and 11% of activities in adult liver (figure 5) (61).
Clearly, such low antioxidant defenses could predispose
these fetal tissues to oxidative stress and the resulting
damage.

4.3. 4-Hydroxynonenal, its toxic effects and its
generation by ethanol
4.3.1. Oxidative Stress, lipid peroxidation, and 4-
hydroxynonenal production

Aldehydes are generated as by-products of lipid
peroxidation, a complex, self sustaining reaction in which
polyunsaturated fatty acids (PUFAs) of the membrane
bilayer are converted to reactive/unstable lipid
hydroperoxides (figure 6) (64).  Secondarily, these
compounds can be converted to a wide variety of products
(such as aldehydo-, keto-,epoxy-) by scission, fission,
rearrangement, and oxidative reactions (64).  There are a
variety of aldehydes produced by chain cleavage and
recurrent oxidative reactions (64,65), with one of the best
studied groups being 4-hydroxyalkenals, especially 4-
hydroxynonenal (HNE). The greatest yields of HNE have
been shown to be generated from linoleate and arachidonic
acids (figure 6), thus one might expect membrane fractions
rich in these two PUFAs to be the most facile in producing
HNE. This could be relevant to the ethanol exposed fetus as
short-term ethanol exposure has been reported to increase
PUFA content of adult liver mitochondria (66) and there
are a variety of gestational changes in fetal tissue
phospholipid molecular species (67).  Additionally, HNE is
metabolized by enzyme species that are less well developed
in the fetus than in the adult (see below).

4.3.2. Toxic responses to HNE.
HNE is generally considered to be the most toxic

aldehydic product of lipid peroxidation (for a review see
Esterbauer, H., et al (68)) due to its high reactivity towards
cellular macromolecules (69-71).  Thus, there is
documentation of a wide variety of  toxic "functional"
responses to HNE. Most germane to the fetal setting are
effects that can be connected to cell replication/cell cycle
progression and mitochondrial function. HNE produces
replicative block of cultured neuroglial cells, possibly
caused by crosslinking to cytoskeletal proteins (72), alters
cell cycle progression and granulocytic differentiation (73),
modifies monocyte migration and chemotactic responses
(74), and inhibits synthesis of DNA, RNA and protein
(75,76).  Studies by a co-investigator on this proposal and
others have documented a variety of effects of HNE on key
mitochondrial functions. These include inactivation of
enzymes such as Na+-K+-ATPase and adenine nucleotide
translocator (77,78), inhibition of mitochondrial
transcription machinery (79) and alteration of
mitochondrial membrane fluidity (80).  With respect to
ethanol, there is evidence from both clinical observation
and laboratory studies that exposure to ethanol causes
tissue damage and dysfunction, particularly in the liver,
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Figure 5. Comparison of glutathione-dependent antioxidant
enzyme activities in fetal and adult brain and liver. Dams
(Sprague Dawley rats) were sacrificed on gestation day 19.
Enzyme activities were determined in homogenates of
brain and liver. n= 10 values and assays from tissues
obtained from 10 pregnancies (ref. 61 for the liver data).
Values are expressed and mean +/- SEM. These data were
presented, in part in Alcohol 13:1-6, 1996; Permission
granted.

Figure 6. Formation of 4-hydroxynonenal from linoleic and
arachidonic acid components of cell lipids.

Figure 7. Metabolism of 4-hydroxynonenal in liver by
three enzyme systems.

with the mitochondria being target organelles (81-83). The
mechanisms underlying these hepatotoxic effects of ethanol
remain unclear, however there is tantalizing evidence that
oxidative stress and subsequent generation of aldehyde
peroxidation products produced (HNE specifically), play a
role (84-87).  Studies in our laboratory have found that in
utero and ex utero ethanol exposure increases HNE levels
in fetal and neonatal liver.

4.3.3. Production of HNE in fetal liver exposed to
ethanol

Recent studies in our laboratory have found that a
two day "Binge" exposure to ethanol strikingly enhances
HNE content of whole fetal liver and of liver mitochondria.

This exposure regimen increased HNE content of fetal liver
homogenates by 300% while likewise increasing HNE in
adult liver by about 200% (data not shown). Marked
increases in MDA levels were also seen in both adult
(181%) and fetal (160%) tissues. Comparable responses
were seen in isolated mitochondria, always with higher
values in fetal liver mitochondria than in those from the
adult tissue. When isolated mitochondria from adult and
fetal liver were exposed to  another prooxidant (t-butyl
hydroperoxide) in vitro, mitochondria from fetal liver
generated 3.5 times more HNE than did those from adult
liver (data not shown).  Since the three enzyme systems
primarily involved in the metabolism of HNE are lower in
fetal tissues than in adult, we investigated the possibility
that low metabolic elimination of HNE in fetal liver is
connected to the higher steady-state levels of the aldehyde
the fetal tissue.

4.3.4. Adult and fetal differences in metabolism of HNE
The metabolism of HNE occurs primarily (but

possibly not entirely) by three enzymatic systems, aldehyde
dehydrogenase (ALDH), glutathione S-transferase (GST)
and alcohol dehydrogenase (ADH) (figure 7). This concept
has been based on the identification of primary products of
these three reactions, 4-hydroxy-2-nonenoic acid, for
ALDH, 1,4-dihydroxy-2-nonene, for ADH and a
glutathione-HNE-conjugate for the GST-catalyzed reaction
(68,88,89).

In our laboratory, using inhibitors of these three
enzyme systems, we confirmed that in fetal and adult liver,
these pathways account for over 90% of HNE catabolism.
This is illustrated in figure 8 where 75 nmoles of HNE
were added to one ml of  adult or fetal liver homogenate
and HNE remaining after various time intervals (5 minutes
for this figure) was determined. Each enzyme system was
driven by addition of specific cofactors for the system,
NAD for ALDH, NADH for ADH, and GSH for GST and
the enzyme inhibitors added were disulfiram (DIS) for
ALDH,  pyrazole (PYR) for ADH, and ethacrynic acid
(E.A.) for GST. When all 3 inhibitors were included in the
incubation, only 5% or less of the added HNE was
metabolized (bars to the far right of figure 8). The lower
capacity of these systems for HNE metabolism in the fetal
liver is apparent from comparison of the bars for fetal and
adult samples (open vs hatched) representing samples
containing no inhibitors. For adult liver, over 90 % of all
HNE was metabolized within the 5 minute incubation while
for fetal liver homogenates, this value was 47%, 39% and
85% for incubations supplemented with NAD (ADH),
NADH (ALDH), or GSH (GST), respectively. This
adult/fetal difference was confirmed by time courses which
quantitated net metabolism in both whole liver
homogenates and in isolated mitochondria (data not shown
but submitted to Hepatology for publication). Additionally,
in fetal liver homogenates  pyrazole had little effect on
HNE metabolism indicating a low activity of ADH towards
this substrate, while the striking inhibitory response to E.A.
suggested a major role for HNE conjugation with
glutathione. Thus, these studies imply that low metabolism
of HNE may be one mechanism underlying its higher
accumulation in fetal liver than in adult and additional
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Figure 8.  Metabolism of 4-hydroxynonenal by adult and
fetal liver homogenates. Dams (Sprague Dawley rats) were
sacrificed on gestation day 19. 75 n moles of 4-
hydroxynonenal were added to one ml volumes of
homogenates of adult or fetal liver. The reaction was
terminated by addition of acetonitrile/acetic acid (24/1) five
minutes after initiation of the reaction and the remaining 4-
hydroxynonenal determined. Cofactors (noted under the x
axis) for the reactions (noted above the corresponding bars)
were added to each reaction; 1.0 mMolar for NAD and
NADH and 100 uMolar for GSH. Inhibitors for the specific
reactions were disulfiram (DIE), pyrazole (PER), and
ethacrynic acid (E.G.). The data points are means +/- SEM.,
n= 6 adult livers and 6 sets of fetal livers from 6
pregnancies.

experiments (90)  suggest that fetal liver mitochondria may
be more prone to HNE formation than the organelle from
adult liver under identical oxidant stress conditions.

5. SUMMARY

Generation of oxygen free radicals is a given
component of aerobic life, however the elegant interactive
detoxifications present in tissues are generally sufficient to
prevent significant damage. The fetus, on the other hand,
represents a system which may possess extraordinary
sensitivity to oxidative stress. It is a body of rapidly
replicating and differentiating (mostly in the embryonic
stage) cells, a setting which places high demand on
metabolic energy production. These are the very processes
which generate the electron fluxes which produce reactive
oxygen species. Additionally, fetal tissues contain higher
levels of iron and copper than the adult yet they have lower
levels of non-enzymatic and enzymatic detoxification
systems needed to blunt the oxidative assault. The data
presented here suggest that low antioxidant defenses may
be an important factor that predisposes these tissues to
oxidative stress. Studies in our laboratory have provided a
variety of evidence that ethanol can produce oxidative
stress in cultured fetal cells and in fetal brain and liver
following short-term maternal ethanol consumption. In
cultured fetal rat hepatocytes, oxidant-related damage
caused by ethanol exposure can be mitigated by
augmenting/normalizing antioxidant defenses. The only
antioxidant system that appears to be compromised by
ethanol is GSH stores, however this is only slight in the in
vivo setting. An additional factor contributing to ethanol-

related damage could be production of reactive aldehyde
products of lipid peroxidation. In vivo exposure to ethanol
strikingly enhances HNE content of fetal liver and two
underlying mechanisms for this may be low metabolism of
this toxic aldehyde and a predisposition to its formation.
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