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1. ABSTRACT

Biochemical studies have confirmed that
nicotinic acetylcholine receptor mRNA and protein are
expressed early in the development of the fetal central
nervous system. Perinatal administration of nicotine
produces a broad spectrum of effects on brain development,
including inhibition of DNA synthesis, altered ornithine
decarboxylase activity, altered neurotransmitter function,
and significant alterations in cortical morphogenesis.
Catecholamine systems, both in the brain and in the
periphery, are particularly sensitive to prenatal nicotine
exposure. Acute and chronic nicotine administered to
pregnant dams causes alterations in dopamine and its
metabolites in male and female rat fetuses. These changes
can persist into adulthood. Prenatal nicotine exposure also
causes locomotor disturbances in pups, which can have
long-lasting effects. The effect of nicotine on developing
noradrenergic neurons is less clear. Some effects may
include increases in noradrenergic neuronal activity in the
pup and aberrant central release of norepinephrine in
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response to neonatal hypoxia after nicotine exposure in
utero. Catecholamine neurons develop early in ontogeny,
so nicotine induced alterations have the potential to induce
permanent changes. Hence, more research is needed to get
a clearer picture of the effect of nicotine on developing
catecholamine systems. The affects of nicotine on
catecholamine systems in the adult are discussed for
comparison.

2. INTRODUCTION

As the incidence of cigarette use among teenage
girls and young women increases (1,2), the consequences
of maternal smoking on fetal outcome increase in clinical
significance. Maternal cigarette smoking during pregnancy
is highly correlated with a number of adverse outcomes in
their offspring. An overall growth retardation is the most
obvious consequence of prenatal cigarette exposure.
Neurobehavioral disturbances, which manifest as learning
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disabilities, cognitive deficits and hyperactivity (resulting
in a syndrome similar to attention-deficit hyperactivity
disorder-ADHD) are often the most lasting reminders of
tobacco toxicity (3-5). Epidemiological data show that
maternal smoking is a major risk factor for sudden infant
death syndrome (SIDS) (6,7) with maternal smoking
leading to increased perinatal mortality (reviewed by
Behnke & Eyler, 1993 (8)). While there are many
potentially dangerous compounds in tobacco smoke,
nicotine has been found to be one of the principal
neurotoxins (9). Nicotine readily crosses the blood brain
barrier (10) and is secreted into breast milk (11). Other
components in cigarette smoke, such as carbon monoxide
and cyanide, may induce nutritional deficits and hypoxia in
the maternal-fetal unit which may result in indirect changes
in brain growth and development (12).

Evidence for interaction between nicotine and
catecholamines abounds in the scientific literature of the
last 20 years. Tremendous progress has been made using
molecular, cellular and system approaches to understand
nicotine’s effect on the brain and on a myriad of human
diseases. This paper will review nicotine’s effects on brain
catecholamine systems, with a specific emphasis on this
alkaloid’s unique consequences in the developing brain.

3. REVIEW OF CATECHOLAMINE SYSTEMS IN
THE BRAIN

3.1. Introduction to Brain Catecholamine Systems

Dopaminergic, noradrenergic, and adrenergic cell
groups form the primary catecholaminergic (CA)
innervation of the central nervous system (CNS). The cells
of each of these neurotransmitter systems arise from
relatively small, compact nuclei in vertebrates. These were
extensively described by Dahlstrom and Fuxe (13) who
classified them into 14 groups, specified Al to Al4, from
caudal to rostral. Subsequently, these were updated and
extended by Hokfelt er al.(14,15), such that six major
groups of catecholamine cells are now recognized in the
CNS of vertebrates. While somewhat more dispersed in
primates, the general anatomical distribution remains
highly recognizable.

3.2. Overview of Dopaminergic Systems

The vast majority of dopaminergic cells arise
from the midbrain, although some also arise from the
diencephalon. The midbrain dopaminergic neurons of the
substantia nigra pars compacta (SNC, A9 dopaminergic cell
group), and the ventral tegmental area (VTA, A8
dopaminergic cell group) provide substantial dopaminergic
inputs to the cortex, caudate-putamen, nucleus accumbens,
amygdala, and septum (16). The diencephalic DA group is
located within the arcuate nucleus of the hypothalamus. It
projects to the pituitary where it regulates the release of
various pituitary hormones. Primary functions of the
nigrostriatal pathway include sensorimotor integration and
control of motor output. Whereas the mesoaccumbal and
mesocortical  projections are also involved with
sensorimotor integration, the processing involves higher
order motivational and emotional states rather than
proprioceptive information (17). Lesioning of the different
dopaminergic projections induce differing behavioral
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syndromes depending upon the neuronal system lesioned.
For example, dopaminergic lesioning of the prefrontal
cortex leads to cognitive dysfunctions, dopamine depletion
of the mesoseptal dopaminergic projections leads to a
decrease in working memory (18), and lesioning of the
mesoaccumbens dopaminergic projections cause attention
deficit and alterations in locomotor activity (19-21). These
findings give insight to dopamine’s key role in
schizophrenia, Parkinson’s disease, Huntington’s chorea,
manic-depressive  illness, and tardive dyskinesia.
Dopamine is also involved in reinforcement, generation of
pleasure, development of drug addiction, and so forth (16).

3.3. Overview of Noradrenergic System

The primary sources of noradrenergic cells are
found more caudal, in brainstem areas. The noradrenergic
cell group of the locus coeruleus (LC), the A6 cell group, is
thought to be one of the most conserved cell groups of the
brain, being preserved in all vertebrate species (22).
Located in the rostral pons, it projects widely throughout
the neuraxis. Smaller collections of NE neurons are located
in the lateral tegmental system and caudal pons. More
recent anatomical studies suggest a greater degree of
specificity and topographical organization of the LC/NE
system than has been previously appreciated (23). The LC
provides immense noradrenergic inputs to the neocortex,
hippocampus, thalamus, septum, cerebellum and brain
stem. Interestingly, the striatum is nearly devoid of any NE
innervation (24). NE from the LC is important for

attention, arousal, learning, Parkinson’s disease,
Alzheimer’s disease, attention deficit
disorder/hyperactivity, post-traumatic stress disorder,

hypothalamic function and so forth. The adrenergic cells
have a much more limited distribution, but are found in
close association with noradrenergic cells of the lateral
tegmental system and the dorsal medulla, and project to the
hypothalamus, brainstem and spinal cord. Much less is
understood about the role of the central adrenergic system,
but it appears to be involved in neuroendocrine
mechanisms and regulation of blood pressure. We will
focus our attention on the DA and NE systems, since little
is known regarding the central adrenergic system during
development.

3.4. Comparison of Dopaminergic and Noradrenergic
Systems

DA and NE are similar in a variety of ways. In both
the DA and NE systems there are small numbers of cells
projecting to diffuse brain areas. However, the NE projections
are more diffuse. This pattern of broad efferent targets
suggests a global function for these neurotransmitters since
they exert modulatory influences over diverse regions. Indeed,
both systems have en passant synapses as well as the classic
point to point type. DA and NE systems are also similar in that
both use reuptake mechanisms as their primary mode of
termination of neurotransmitter activity, and their receptors are
members of the G-protein coupled family. To generalize, it
seems that these CA systems set the basic tone in regions of
innervation by modulating the excitable state.

Cells from both systems develop very early in

ontogeny. Indeed, DA and NE afferents are the first
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neuromodulatory fibers to arrive at the
neocortex (25). As such, catecholamines may play an
important role during brain development because
alterations of neurotransmitter levels in fetal brain may
induce permanent changes in behavior during adulthood
(26). Administering pregnant rats with drugs that affect
DA or NE transmission may induce modifications in DA or
NE synthesis in the fetal brain (26,27). Drugs that effect
neurotransmission may effect the developmental time
course of the catecholamines systems (28,29). This is
important because catecholamines may modulate neuronal
outgrowth and influence the morphology of neuronal
architecture (30). Hence, nicotine’s effect on the
developing brain, as well as the effect on adult brain, will
be reviewed.

developing

4. NICOTINIC REGULATION OF CATECHOLAMINES

4.1. Nicotinic Receptor Pharmacology

Nicotine is an exogenous ligand for one of the
primary neurotransmitter receptors in the body, the
nicotinic cholinergic receptor (nAChR). The nAChR is a
ligand-gated ion channel found at the neuromuscular
junction (NMJ), within peripheral ganglia, and in the
central nervous system (CNS). The receptor consists of five
subunits, which vary, in their identity. At the NMJ the
nAChHR is comprised of 2 alphas, 1 beta, 1 gamma (eplison
replaces gamma in the mature animal) and 1 delta subunit.
In the CNS they appear to be made up solely of alpha and
beta subunits distinct from those found at the NMJ. Studies
have identified numerous genes encoding subunits for the
nAchR such that 8 alpha subunits (alpha2- alpha9) have
been shown to exist, as well as 3 beta subunits (beta2-
beta4) (31-33). Experiments using various heterologous
expression systems have revealed that the pentameric
subunit configuration of the neuronal nAChR usually
consists of two alpha and three beta subunits, although five
alpha subunits may function as a homomer (34,35).
Different subunit combinations yield receptors with
differing  pharmacological and electrophysiological
response profiles, providing a multitude of receptor
subtypes (36,37). Recently, anatomical analysis identifying
the subunit composition of nAChRs has revealed that
subunit expression is developmentally regulated in a
distinct pattern (38).

Although heterologous recombination studies
may suggest potentially large nAChR heterogeneity, it is
important to confirm such findings in native receptor
systems. In the rat CNS there is a widespread, but discrete,
distribution of nAChR subunit mRNAs and protein (39-44).
Each subunit exhibits a unique pattern of localization, with
many areas of overlap. Immunoprecipitation studies have
indicated that an alphad4/beta2 subunit combination
represents the majority of high affinity [3H]nicotine and
[3H]cytisine binding sites in rat and chick brain (45,46).
However, other subunit combinations are possible (47). An
increasing body of  functional data, both
electrophysiological (48,49) and otherwise (50-52)
indicates that there is considerable diversity of central
nAChRs. However, much more work is required to
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correlate the subunit expression within a single cell and the
corresponding nAChR properties. Indeed, evidence from
studies of peripheral ganglia (53) and central neurons (54)
suggests that alternative subunit combinations may be
differentially trafficked to yield multiple nAChR subtypes
within the same cell.

4.2. Cellular Adaptation to Nicotine

nAChRs are associated with a number of
neuronal cell types in the mammalian nervous system (32).
In adult tissue, nAChRs are present presynaptically on the
nerve terminals of largely excitatory neurons. When
activated by the endogenous ligand acetylcholine (Ach), or
nicotine, or other cholinergic agonists, nAChRs stimulate
the release of acetylcholine, dopamine, noradrenaline and
serotonin, with variable efficacy depending on which cell
type is being examined (50). However, when stimulated by
nicotine rather than Ach, these receptors are activated in a
more persistent manner, due to the lack of a timely
inactivation mechanism. While metabolism does occur, it
proceeds at a relatively slow rate. Even a single exposure
to nicotine, while not considered chronic will act on the
receptor on a much longer time scale than Ach. A single
systemic injection of nicotine can induce mRNA
upregulation of the rate-limiting enzyme, tyrosine
hydroxylase in the rat locus coeruleus, and subsequently
increase nicotine-stimulated NE release up to 4 weeks later
(55). This evidence makes it difficult to assign acute vs.
chronic nicotine effects because many studies have not
allowed adequate time to elapse to fully characterize the
effect of acute nicotine exposure. In contrast to Ach, since
nicotine is not rapidly inactivated, its effect at the receptor
can be considered somewhat persistent and subsequent
phenomena may reflect an adaptive response by the cells.

5. NICOTINIC REGULATION OF CATECHOLAMINES
IN THE ADULT BRAIN

5.1. Dopamine and Nicotine Interactions

In the adult rat, DA neurons of the substantia
nigra/ventral tegmental area (SN/VTA) express mRNA for
a number of different nAChR subunits including alpha3,
alpha4, alpha5, alpha7, and beta2 (39,40,42,56). High
affinity [*H]nicotine binding sites are also localized in this
cell body region and in corresponding terminal fields, and
are decreased by 6-OHDA lesions (57). Both
electrophysiological (58,59) and neurotransmitter release
data (60,61) have confirmed the presence of excitatory
nAChRs on mesolimbic and nigrostriatal DA cell bodies
and terminals. The receptors modulating DA release from
these cells have been extensively characterized
pharmacologically (51,62-65), and have been shown to be
sensitive to antagonism by neuronal bungarotoxin (nBTX)
and to desensitize rapidly. Although there is a general
consensus that these nAChRs contain nBTX-sensitive
alpha3 subunits in combination with beta2 (51,66), their
high affinity for [*H]nicotine and response to chronic
nicotine exposure suggest that other subunits may be
included in their pentameric assembly.

Nicotine can significantly stimulate brain DA
release in the mesolimbic system (67-70), the nigrostriatal
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system (71,72) and the mesocortical system (73) as
measured by in vivo microdialysis. Nicotine can stimulate
dopamine release from nigrostriatal terminals in the
caudate-putamen, and from mesolimbic terminals in the
nucleus accumbens as demonstrated by in vitro
neurotransmitter release assays using brain slices (60,61).
Nicotine can also stimulate dopamine release by acting on
presynaptic nACh receptors on striatal nerve terminals as
demonstrated with striatal synaptosomes (62,63,74).
However, systemic nicotine administration can induce DA
release to a greater degree in the nucleus accumbens than in
the dorsal striatum (75). Intracellular recordings made
from cells in the VTA indicate a direct action of nicotine on
these DA-containing neurons, thereby providing evidence
for the positive reinforcement associated with nicotine
consumption (58). Most recently, Picciotto et al. (76) used
patch-clamp recording to demonstrate that the beta2
subunit of the nAChR is necessary for nicotine stimulated
striatal DA release and in beta2 knock-out mice, self-
administration of nicotine was attenuated. Thus, the beta2-
containing nAChR may be involved in mediating the
reinforcing properties of nicotine.

5.2. Dopamine and Nicotine Interactions: Locomotion

Nicotine’s action on the mesolimbic dopamine
pathway produces enhanced locomotor activity. Dopamine
applied to the nucleus accumbens produced a dose-
dependent increase in locomotion, which could be blocked
by dopamine antagonists (77,78). In addition, injection of
nicotine or nicotinic agonists into the VTA or the nucleus
accumbens can cause hyperlocomotion (79,80), which can
be suppressed by dopamine antagonists (80). Chronic
subcutaneous nicotine treatment has been shown to
potentiate the locomotor response of other dopaminergic
drugs (i.e. amphetamine and apomorphine), indicating that
nicotine stimulation augments dopaminergic activity (81).
Further, the locomotor stimulant effects of nicotine can be
abolished after dopamine depletion by 6-O0HDA lesion of
the mesolimbic dopamine system (82).

Chronic nicotine treatments can induce different
behavioral and biochemical changes, depending on whether
the drug is administered continuously or intermittently.
Whereas continuous exposure leads to tolerance or reduced
drug efficacy (83) intermittent exposure leads to a
sensitization to some of nicotine’s behavioral effects,
including locomotor activity (69,84,85) and drug-seeking
behavior (86). This behavioral sensitization, resulting from
adaptive changes within the brain, is believed to underlie
chronic smoking behavior. Chronic intermittent nicotine
pretreatment results in increased nicotine-induced release
of dopamine in the medial prefrontal cortex (69,87) and
from striatal afferents (50,85,86). However, other studies
have reported no enhanced release from striatal afferents
(67,69,88). A number of factors may underlic the
inconsistency of literature findings on this issue, with mode
of drug treatment perhaps being particularly important.

5.3.Dopamine and Nicotine Interactions: Reinforcement

Nicotine is a positive reinforcer, as clearly
evidenced by self-administration models. Intravenous
nicotine self-administration has been demonstrated in rats,
dogs, squirrel monkeys and humans (89-91). Intermittent
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rather than continuous delivery causes higher rates of lever-
pressing in rats and often the lever-pressing continues until
toxic effects are experienced (89). Intravenous self-
administration of nicotine can be attenuated by nicotinic
antagonists mecamylamine (centrally and peripherally
acting) and chlorisondamine (centrally acting due to
intraventricular injection and poor diffusion across the
blood brain barrier), but not by hexamethonium
(peripherally acting) (92-94). This gives evidence that the
reinforcing effects of nicotine result from action within the
central nervous system, not periphery. Moreover, motor
impairment did not occur in any of the experiments, thus,
the animals were capable of continued lever-pressing if
desired. Voluntary nicotine self-administration was
reduced by both subtype-selective dopamine antagonists,
and 6-OHDA lesions of the ascending mesolimbic
projections from the VTA (94,95). This provides further
evidence that reinforcement depends at least in part on
mesolimbic dopamine.

5.4. Dopamine, Nicotine, and Glutamate Interactions

Nicotine induced c-fos expression can be blocked
by both DI receptor and N-methyl-D-aspartate (NMDA)
receptor blockade, suggesting a convergence of dopamine
and glutamate systems in mediating some of nicotine’s
acute actions (96). Furthermore, NMDA receptor
antagonists also block locomotor and mesolimbic
sensitization induced by chronic, intermittent exposure to
nicotine (86,97), implicating glutamate systems in these
effects. Thus, a complex picture is emerging. McGehee et
al. (98) found that in vitro intracellular recordings indicate
that nicotine acts largely through an indirect, presynaptic
mechanism. Moreover, it has been suggested that nicotine-
induced increases in nigrostriatal terminal excitability is not
a direct effect of nicotine on dopaminergic axons. Rather,
nicotine is stimulating glutamate release which activates
glutamate  heteroreceptors on  dopamine-containing
terminals (99). In support of this finding, nicotine has been
shown to simultaneously increase striatal dopamine and
glutamate (73) and a NMDA receptor antagonist can
significantly reduce nicotine-induced dopamine overflow
(73). Recently, Schilstrdm et al. (100) demonstrated that
DA release in the nucleus accumbens induced by systemic
or intrategmental nicotine is dependent to a significant
extent on concomitant stimulation of NMDA receptors in
the VTA. These observations suggest that nicotine’s
responses are mediated to some extent by activation of
NMDA receptors.

5.5. Norepinephrine and Nicotine Interactions

In contrast to the clear role of nAChRs in
regulating midbrain DA neurons in adult rodent brain, there
has been considerable controversy as to nAChR control of
NE release. In rat, the locus coeruleus (LC) provides the
majority of forebrain NE innervation (24,101), and
expresses mMRNA for a number of nAChR subunits.
However, autoradiographic studies have indicated little
labeling of this brain region by high affinity ligands such as
[3H] nicotine or [3H]cytisine (102-104). Early in vitro
neurotransmitter release studies suggested that nicotine-
stimulated NE release was not sensitive to calcium, and might
therefore be mediated by a non-specific mechanism (59,105).
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Furthermore, initial ionotophoretic studies failed to detect a
direct nicotine-induced activation of LC (106), and an indirect
activation model has been proposed (107). In contrast,
intracellular recording of in vitro brain slices (1080 and in vivo
microdialysis (109) have revealed direct nicotinic activation of
LC cells. Furthermore, calcium-sensitive nicotine stimulation
of NE release from hypothalamic synaptosomes (110),
hippocampal slices (52) and hippocampal synaptosomes (111)
has been identified. In the latter two studies, both direct and
indirect effects of nicotine on hippocampal NE release have
been characterized. The pharmacology of the nAChRs
involved in NE release appears to be quite distinct from that of
nAChRSs on striatal DA terminals.

5.6. Norepinephrine and Nicotine Interactions: Stress
Response

Various physiological effects of nicotine have been
attributed to central activation of the hypothalamic—pituitary—
adrenal axis via brainstem nuclei containing CA neurons.
Nicotine is a potent stimulus for secretion of the stress-
responsive hormones, adrenocorticotropin (ACTH) and
prolactin. The effects of a variety of stressors—cold, ether and
systemic hypotension—depend to some extent on activation of
brainstem NE/E afferents which indirectly release ACTH
(112). Nicotinic stimulation of brainstem CA cells leads to the
release of prolactin and ACTH from the anterior pituitary via
neuronal projections to the paraventricular nucleus (PVN) of
the hypothalamus (112). However it is not entirely clear to
what extent epinephrine, norepinephrine, or both are
responsible for the hormonal release. Administration of
epinephrine or norepinephrine directly into the hypothalamus
leads to prolactin secretion, with epinephrine exhibiting
significantly greater potency (113,114). Using in vivo
microdialysis, it has been shown that nicotine or nicotinic
agonists administered into the fourth ventricle stimulate
norepinephrine secretion in the paraventricular nucleus (PVN)
of the hypothalamus (115). The resulting release of NE in the
PVN, could lead to the release of ACTH secretagogues
because the PVN is the site of corticotropin-releasing hormone
(CRH) neurons involved in initiating ACTH secretion. Further
support for a CA brainstem-mediated effect in the PVN and
subsequent ACTH release can be seen in regional examination
of nicotine-induced c-fos mRNA expression. Valentine et al.
(116) have shown that the level of nicotine-induced c-fos
expression is dose-dependent in the PVN, LC, and nucleus
tractus solitarius (NTS), but that nicotine has greater potency in
the NTS and the CRH region of the PVN. Fu et al. (117) have
also shown that the NTS cells mediate nicotine-stimulated NE
release in the amygdala and hippocampus through nAChRs.
Finally, nicotine has been shown to act on CA neurons in the
NTS, area postrema, and rostral ventro-lateral medulla altering
centrally-mediated cardiovascular responses (118).

6. NICOTINIC REGULATION OF
CATECHOLAMINES IN THE DEVELOPING

BRAIN
6.1. Developmental Appearance of Catecholamine
Neurons: Introduction

Considerable literature (32,119) indicates that
nAChRs in skeletal muscle and peripheral ganglia are
developmentally  regulated. =~ The  pharmacological

characteristics of nAChRs in these systems change with
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age, suggesting a dynamic modulation throughout
development. There have been few studies which have
examined the functional properties of nAChRs in the
developing brain (120). However, a number of studies
have demonstrated developmental changes in CNS mRNA
(121-123) and protein expression (104,124,125).

[*H]Nicotine binding sites are abundant in regions of
developing CA nerve cells, in that there is a high density of
overlap of CA cells and nicotinic binding sites in areas such
as the substantia nigra (9). Ascending and descending CA
projections are continually forming from gestational day 15
through the early postnatal period (9,126). Thus, depending
upon when nicotine is administered the effect on the
developing neuronal circuitry will differ. For instance,
there is early innervation of many brain regions by
terminals of the LC (127), and developing NE neurons are
particularly sensitive to prenatal nicotine exposure (128).
This sensitivity is critical because NE has been shown to
significantly influence cellular development (129).

6.2. Developmental Appearance of Dopamine Neurons

Nicotine binding sites have been identified on
both the cell bodies and terminals of dopaminergic neurons
(130). The detection of prenatal dopaminergic cell groups
is ubiquitous. Morphological and/or biochemical
techniques have been used to detect DA as early as day 12
of gestation in rats (131-135), day 13 in mice (134), day 14
in rabbits (135) and 5.5 weeks in humans (136). Hence,
there is evidence for very early appearance, migration,
differentiation, and  functional  development  of
dopaminergic neurons across many species. Furthermore,
DA levels increase throughout development (132,136).
Nicotinic receptors are densely distributed through the SNC
and VTA and at least one-third of striatal nicotine binding
sites are located on dopamine terminals (57).

6.3. Developmental Appearance of Noradrenergic
Neurons

Pontine NE cells are born between E10 and E13
(137) and first exhibit tyrosine hydroxylase (TH)
immunoreactivity on E12 in the rat (138,139). In humans,
TH and dopamine-B-hydroxylase immunoreactivities are
present in a region corresponding to the anlage of the LC
and associated NE nuclei by the sixth week of gestation
(140,141). This translates roughly to an equivalent point in
rat development (142). A well-organized CA system in
embryonic stages could be important for normal shaping of
the nervous system (140).

Detection of nAChRs closely follows the early
appearance of NE cells. While nicotinic cholinergic
binding sites have been detected in pontine regions as early
as E13-E14 in rat (104) it cannot be concluded that these
localize to NE cells. However, in situ hybridization studies
have revealed developmental expression of various nAChR
subunit mRNAs in the LC with appearances at E17 using
oligonucleotide probes (122) or E15 using the more
sensitive riboprobes (38). We have found that LC cells
express a number of nicotinic subunits during development
and in the adult (38). Some of these appear to be
developmentally regulated. This is significant because not
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only does it suggest the possibility of several distinct
nAChRs, it also allows for functional differences
depending on the stage of maturation.

The presence of nicotinic binding sites or their
mRNAs in embryogenesis does not affirm protein
functionality. It is possible that the necessary signal
transduction machinery downstream of the receptor is not
yet in place, or in the case of the nAChR, the ion channel
may not yet regulate the flow of ions. One interpretation of
chronic prenatal exposure to nicotine is that the
upregulation of nicotinic binding sites is evidence for
cellular adaptation to nicotine, and hence a functional
response (143). Using a dissociated tissue culture model,
we have shown that LC cells taken from E14 embryos
respond to nicotine stimulation after four days in vitro
(120).

6.4. Confounds in Developmental Experiments

Administering nicotine to the pregnant dam has
many confounds. Treating the animal with daily nicotine
injections would require either many small doses or few
comparatively high doses. Frequent injections could cause
handling stress, while high doses lead to elevated plasma
nicotine peaks, prone to cause fetal hypoxia (144). As an
alternative to injections, nicotine has been administered in
the drinking water. However, this could be problematic
because the animals fluid intake could decrease to
undesirable levels (144). To circumvent these problems
osmotic minipumps are often implanted to obtain doses
similar to human smokers. Moreover, significant route-
related changes in brain DA and NE and their metabolites
have been reported (145). One of the most vulnerable
periods in brain development for nicotine exposure in
rodents appears to be during the second postnatal week
(146,147) which roughly corresponds to the last trimester
of human gestation (142).

6.5. Prenatal Nicotine Exposure on Development of
Dopamine Neurons

Nicotine can exert acute effects on central fetal
dopamine systems. Acute injection of nicotine to pregnant
dams at gestational day (GD) 21 causes DA and its
metabolites 3,4-dihydroxyphenylacetic acid (DOPAC) and
homovanillic acid (HVA) to increase in the forebrain of
male and female rat fetuses (148). Therefore, acute
nicotine treatment stimulates DA release in the fetal rat
brain. As compared to the response of adult rats acutely
injected with the same dose, nicotine causes increased
firing of nigral DA neurons, DA turnover and striatal HVA,
but no change in DOPAC (149). Although the research is
limited, the data emphasizes an acute responsiveness of
fetal dopaminergic systems to nicotine.

Chronic prenatal exposure to nicotine results in
long-lasting changes in DA systems. Chronic nicotine
administration to the pregnant dam via minipump causes an
increase in forebrain DOPAC in GD18 male fetuses. This
is in contrast to both chronically exposed GD18 females
whose DOPAC was at control levels and acutely exposed
GD21 females whose DOPAC was significantly increased.
By two weeks of age (prenatal day 15; PN15) the DOPAC
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levels are further increased in the forebrain of male
offspring and there is a rise in forebrain DA in both sexes
(148). At adulthood (2.5 months), males have reduced
levels of forebrain DOPAC and HVA, and females have
reduced levels of forebrain HVA (148). Forebrain DA
turnover was reduced in males at PN15 (145,148) and in
both sexes at adulthood (148).  Also, it has been reported
that tyrosine hydroxylase activity was reduced in the
caudate-putamen of juvenile, PN20 and PN40, rats
prenatally exposed to nicotine (150). In another study,
PN14 rats showed no significant change in the levels of
striatal DA or DOPAC, yet, there was a reduction in the
number of striatal DA receptor binding sites as well as an
increase in the affinity of these receptors in the male
nicotine-exposed pups (151). It was also reported that there
was no significant change in the number of nicotinic
receptor binding sites in the striatum of the PNI14-
prenatally exposed pups (151). In contrast, chronic
nicotine administration to the pregnant dam caused
increased nicotinic receptor binding sites in fetal brains
(152) and in the midbrain + brainstem and cerebral cortex
of PN14 nicotine-exposed offspring (128). Thus, the effect
of nicotine on the developing brain may exhibit regional
and sexual differences.

One of the most prominent signs of basal ganglia
(including the striatum) disorders is motor disturbances.
Fung et al. (153) demonstrated that PN14 prenatally
nicotine-exposed male and female rats were spontaneously
hyperactive. However, Schlumpf ef al.(154) found that
prenatally exposed PN7 males were initially hypoactive
and became hyperactive at PN15, while female pups were
not influenced by prenatal nicotine. Similarly, Shacka et
al. (155) suggested that central control of motor function
may be more vulnerable to prenatal nicotine in males since
prenatally treated PN14 males, not females displayed
profound hyperlocomotion following a nicotine challenge.
In early adulthood, mouse pups prenatally exposed to
nicotine were hyperactive, indicating a long-lasting effect
(156). Hence, prenatal nicotine exposure may be altering
the normal development of striatal dopaminergic neurons.

6.6. Prenatal Nicotine Exposure on Development of
Noradrenergic Neurons

In the developing brain there is early innervation
of many brain regions by terminals of the LC (127,157),
and NE has been shown to significantly influence cellular
development (129). Therefore, developing NE neurons are
particularly sensitive to prenatal nicotine exposure (128).
Behavioral tests designed to elicit cognitive deficits have
revealed various limitations in animals exposed to nicotine
in utero (158) which persist in adulthood. There is,
however, considerable question as to whether the observed
effects are direct or indirect (159). Although intermittent
peripheral administration of nicotine to the dam
significantly increases NE neuronal activity (128), different
effects are observed after chronic infusion (128,148). It has
therefore been proposed that the stimulant effects of
nicotine are induced by hypoxia (128). The indirect action
is suggested by studies which failed to detect acute
nicotine-induced stimulation of NE turnover during the
perinatal period (48,159). However, continuous prenatal
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nicotine exposure ablates the ability of a subsequent
postnatal nicotine challenge to release NE (27).
Furthermore, animals exposed to nicotine by chronic
infusion during late gestation exhibit an aberrant central
release of NE in response to neonatal hypoxia (160).
Slotkin and colleagues have suggested that this
neurochemical response may be significant in mediating
respiratory adjustments, and that this may represent a
defect seen in infants with SIDS. Alternate mechanisms
have also been proposed (161,162).

Anatomical studies have examined nAChR
expression using binding studies. The results of these
experiments appear somewhat equivocal until numerous
variables are elaborated. Prenatal nicotine insult results in
a transient increase in overall numbers of nAChRs, which
appear to normalize by the sixth postnatal week in rats
(128,163). Some studies have not examined measurements
beyond the first month of life (164,165) leading to a
premature assumption of persistent overall elevation in
receptor  number. However, selective regional
measurement of brains exposed postnatally to nicotine
reveals permanent alterations in nAChRs in cortex,
hippocampus and striatum (147).

7. POSTNATAL OBSERVATIONS FOLLOWING
PRENATAL NICOTINE

Although numerous animal studies have provided
evidence that perinatal nicotine exposure significantly
alters developmental outcome, the exact effects are
extremely dependent on dose, age and route of
administration.  However, there have been consistent
observations of long-term changes in neuroendocrine status
(166-168), cognitive function (158,169-171), and
locomotor activity (153,154,156,172), following pre- or
post-natal chronic nicotine treatment. It has recently been
shown that pups born of rats exposed to sidestream smoke
had a dose-dependent reduction of birth weight and a dose-
independent ossification retardation (173). In addition,
both acute and chronic nicotine administration have been
shown to induce altered responses to hypoxia in the
neonate (160,162,174). Perinatal exposure to nicotine has
been shown to impair the ability of rat pups to
autoresuscitate from repeated exposure to hypoxia (175).
Further, prenatally exposed pups had chronic
hypoventilation (176). These effects may play a role in
sudden infant death syndrome. Although some changes
may be mediated indirectly via uteroplacental constriction
and metabolic effects (177), it has been shown that nicotine
can also significantly impact neurobehavioral development
when administered by chronic infusion at doses that do not
alter fetal growth (128). Such findings suggest that central
nicotinic receptors (nAChRs) are functional early and may
serve an important role in modulating neuronal
development.

7.1. Post-Natal Effects: Gender Differences
Accumulating evidence indicates that numerous
responses to prenatal nicotine exposure are sex-related
(155,158,164,178). While locomotor activity has already
been addressed, another behavioral measure is the prepulse
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inhibition (PPI) of the acoustic startle response. This test
measures changes in time-dependent sensory-motor gating.
Deficits in this gating are thought to underlie part of the
decreased vigilance and attention observed in children of
mothers who smoked cigarettes during pregnancy. Popke
et al. (163) found that prenatal nicotine exposure alters
prepulse inhibition in adolescent female rats, without any
obvious changes in nAChR binding. A 10 year study found
that children whose mothers smoked at least 10 cigarettes a
day during pregnancy had a 4-fold increased risk of
prepubertal-onset conduct disorder in boys and a 5-fold
increased risk of adolescent-onset drug dependence in girls
as compared to children whose mothers did not smoke
(179). One conceivable explanation for gender-differences
involves the difference in hormonal milieu between males
and females during development. However, the
mechanism(s) behind these differences are at present only
speculation.

8. CONCLUSION

The influence of nicotine on the development of
central NA and DA pathways is of particular interest, given
their putative trophic role in CNS ontogeny (129). Thus, it
has been suggested that some of the prominent effects of
prenatal nicotine exposure may result from disruption of
the development of these systems (9). Precisely how
prenatal  exposure to nicotine causes postnatal
neurobehavioral disturbances and growth retardation is not
known. Early studies proposed that nicotine exerts its
disruptive influence in the CNS indirectly through its action
at peripheral nAChRs, leading to episodic hypoxia and
ischemia (180-183). More recent evidence suggests that
this alkaloid also acts directly at central nicotinic receptors
and is involved in modulation of neurotransmitter
release (52,111,120,184,185), often by acting on
nAChRs located pre-synaptically. Early expression of
nAChR mRNA and protein in developing mammalian
CNS allows for the possible direct action of nicotine
(104,122,125,186). However, various in vivo studies
suggest that nicotine’s effect on NE in the developing
brain are indirect (183,187).

In order to understand how nicotine exerts its
effect, scientists can examine affected systems for
morphological, biochemical, and functional changes
resulting from nicotine exposure. Most studies which
examine nicotine stimulated release of neurotransmitters
have been carried out using adult brain, and there is very
little published data on the effects in developing brain.
Extrapolation of data from mature nervous tissue to the
developing system is not wise since nicotine appears to
affect the overall development of a number of systems, and
may affect brain tissue differently. For example, acute
nicotine administration causes release of NE and DA in the
adult nervous system, yet fetal exposure to nicotine leads to
deficiencies in these same systems when assessed
postnatally (27). What is becoming increasingly clear, is
that nicotine causes premature differentiation of developing
neural tissue (187) and elicits functional alterations in
noradrenergic and dopaminergic pathways in the central
nervous system (27,182).
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