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1. ABSTRACT

Cancer chemotherapy causes severe damage to
hematopoietic stem cells in both experimental animals and
humans. While all levels of differentiation may be
impacted, the most pivotal target of damage is the most
primitive hematopoietic stem cell, PHSC. This cell not
only suffers defective repopulating activity but also is
quantitatively depleted. The causes of this damage are not
clear. Severe possible explanations for this damage are
discussed. They include: ineffective stromal support of
stem cell function and reproduction; residual DNA damage
preventing replication; accelerated cycling; and decreased
responsiveness to normal physiologic growth stimuli.
Efforts at chemoprotection, including manipulation of
glutathione or aldehyde dehydrogenase levels, cytostatic
peptides, immunomodulatory chemicals and cytokines are
detailed. In particular, concern has been raised regarding
potential  deleterious  consequences of combined
chemotherapy-cytokine use, but substantiation of the cited
data is warranted.

2. INTRODUCTION

Dose intensification of chemotherapeutic agents
has been proposed as a way to overcome tumor cellular
resistance to chemotherapy and to improve long-term
survival. However, the short-term dose-limiting effect of
chemotherapy is most often myelosuppression, and its
consequences --- consequences readily dealt with by skilled
and selective use of transfusional and antibiotic therapy.
More difficult to predict and perhaps more difficult to treat
are the long-term residual hematologic complications of
chemotherapy.  These include marrow hypoplasia or
aplasia, which have as a clinical consequence life-
threatening  infection or prolonged transfusional
dependency.
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Upon searching for an animal model for chronic
aplastic marrow failure or aplastic anemia, Morley and
Blake discovered in 1974 that mice receiving extended use
busulfan developed late marrow aplasia and failure, with
80% of the animals eventually dying from this
complications’ effects, despite earlier normal peripheral
blood findings (1). That such a defect arose primarily from
damage to hematopoietic stem cells was evident after
normal, unmanipulated and transplanted marrow cells
corrected the hematopoietic defect in busulfan treated mice
(2). Several years later Botnick, Hannon, and Hellman
observed hematopoietic failure after exposure of mice to
alkylating agents, phenylalanine mustard, busulfan and 1,3-
bis (2-chloroethyl)-1-nitrosourea (BCNU) (3, 4). They
ascertained that this effect was a differential one, varying
with the use of different drugs and possibly affecting
differing stem cell compartments (5).

Clinical examples of drug-induced hematopoietic
failure do exist but fortunately are rare. This failure to
detect stem cell defects after chemotherapy use in human
may result from several factors:

1. There are no reliable assays for measuring in humans the
in vivo function of the most primitive hematopoietic stem
cell (PHSC), --- certainly, no assay comparable to murine
assays such as serial bone marrow transplantation, limiting
dilution assay or competitive repopulation (6-8). The lack
of such assays makes the detection of subtle or not so
subtle changes in proliferative performance of these earliest
stem cells difficult. Accordingly, the choice of assay used
to study the problem of residual hematopoietic defect
assumes a pivotal importance. Conflicting results can be
seen when hematopoietic defects are defined by different in
Vvitro assays.
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2. While murine data have been found to have excellent
correlation with human data (9), the disparate life-spans of
these two animal species may mean that intervals between
the treatment period or cessation of treatment, and eventual
development of late-term hematopoietic defect may span
decades in humans.

3. Lastly, such a defect is probably not always readily
evident in humans unless periods of hematopoietic stress
such as intervening myelosuppression, infection and drugs
including additional chemotherapy intervene.

Still, examples of deleterious hematopoietic stem
cell effect are striking when they do occur. Cumulative
bone marrow toxicity was first observed in the 1970's. This
toxicity was  manifested as delayed and prolonged
myelosuppression occurring 3 to 5 weeks after drug
administration in 42% of patients who received multiple
doses of lomustine (MeCCNU) (10). In a similar
experience, Osband et al reported that 7 of 17 patients
treated by them with MeCCNU eventually went on to have
severe, protracted hematologic compromise which included
aplasia (11). Since then, there have been other reports of
long-term chemotherapy-related marrow damage after the
use of other chemotherapeutic agents, whether given alone
or in combination with others: adriamycin with
cyclophosphamide (12); a combined regimen of
cyclophosphamide, methotrexate and S-fluorouracil (12),
mitoxantrone (13), and other regimens (14-17).

Inferential or less direct evidence for chemotherapy-
induced stem cell defect can also be seen through the
experiences of autologous transplantation. Of 7 patients with
myeloid leukemia who received re-infusions of marrow that
had been purged ex vivo with the cyclophosphamide
derivative, 4-hydroperoxycyclophosphamide, at doses of
120 micrograms/ml, 3 became persistently aplastic (18).
This implies that stem cell damage was incurred after
exposure to the drug but prior to infusion of marrow.
Other investigators have also accrued data which allow
them to reach the same conclusion: that prior and
prolonged drug exposure, as well as the amount of high-
dose exposure of stem cells to cytotoxic chemotherapy, is
proportionately related to defects in marrow proliferative
potential (19, 20).

3. THE TARGETED CELL

The mechanisms of chemotherapy-induced
hematopoietic damage are unclear. The severest toxicities
of many chemotherapeutic agents are especially seen after
cell-cycle dependent drugs are used and take place in
tissues or organs and portions of cells which are cycling.
Such cells are most likely to have the highest cellular
turnover, e.g. gastrointestinal mucosa or skin. One would
then similarly presume that the primary target cells of
cytotoxic agents would be committed, rapidly cycling
progenitors  within the myeloid and lymphoid
compartments. Then, one would see the induction of
proliferation and forced differentiation of more primitive or
less committed cellular populations. So, one would not
necessarily or naturally assume that the primary target for
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these cytotoxic agents would be the most primitive
hematopoietic stem cells, PHSC.

An elusive cellular population, PHSC are usually
quiescent and have been estimated to comprise no more
than 0.001% to 0.05% of the total bone marrow (21). It is
thought that as few as 10% of these cells, once isolated,
could provide for life-long marrow reconstitution (22).
Previously, the most widely used assays were in vitro
colony assays which only had the capacity to assess
function of committed progenitor populations (23) or the
colony-forming spleen (CFU-S) assay (24), which
measures the pluripotent myeloid precursor cells that are
active in the first two weeks after transplantation. In fact,
by using CFU-S concentrations many investigators have
arrived at gross over-estimations of PHSC numbers, or
actual predicted values (21, 25-27). However, with the
advent of the more sensitive and accurate assessment of
long-term functional capacities of PHSC offered by the
competitive repopulation assay (8), it is possible to measure
the relative marrow repopulating abilities of mixtures of
cells from mice of differing genotypes and to detect even
subtle differences in the ability of PHSC to reconstitute
marrow over large fractions of a mouse’s life-span.

That the selective target of cytotoxic agents is the
PHSC has been amply demonstrated. Two studies, in
particular, are cited that stress this. In the first study,
Neben et al tested the drugs, cytosine arabinoside (ARA-
C), cisplatin (cis-DDP), cyclophosphamide (CTX), BCNU
and busulfan for their effect on PHSC. They made the
following observations: marrow previously exposed to all
the above drugs had a drug-specific reduction in
competitive repopulating ability ranging from 4-100 fold
and seen up to 10 months after exposure (28). Despite this
decline in marrow self-renewal capacity, marrow CFU-S
content was not significantly decreased and remained at/or
near normal levels (28). Gardner et al also assessed
permanent damage to PHSC after ARA-C, CTX, 5
fluorouracil (SFU), vincristine and actimomycin D, using
the competitive repopulation assay (29). Effects on PHSC
were compared to those on CFU-S and colony-forming-
units granulocyte-macrophage (CFU-GM) and colony
forming units-erythroid (CFU-E). Again, PHSC suffered
irreparable, profound damage after all chemotherapy at the
doses used, except ARA-C and 5FU, when the latter was
given in a single dose of 150 mg/kg. The in vitro assays,
CFU-GM or CFU-E and the in vivo assay CFU-S, failed to
predict the degree of damage incurred; neither CFU-S or
CFU-E concentrations were altered and only CTX effected
a reduction in concentrations of CFU-GM.

The defect seen in PHSC proves to be not just a
qualitative one. Experiments have been performed to
determine whether the PHSC defect could also be
quantitative. Marrow was given limited, or more extensive
exposure to commonly used chemotherapeutic agents (30).
The competitive re-population assay was combined with
simple statistical analyses to assess PHSC numbers:
equivalent precursor number = (Mean)(100-
Mean)/covariance, where mean = average of 2 sample
means, P; + Pg, and covariance = SD; x SDg x r
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(lymphocyte: erythrocyte Pearson correlation coefficient or
L:E, [21]). Precursor concentrations were determined by
dividing the equivalent precursor number by the number of
cells injected. A decline in repopulating units (RU) of
cells was noted. (RU is an artificial determination which
includes all cells responsible for re-population regardless of
stage of differentiation: RU = (%) (number of 10°
competitor cells used)/(100 - %), where % = percentage
donor cell type and 1 RU = repopulating ability of 10°
untreated competitor marrow cells [21]). PHSC numbers
were preferentially impacted by cytotoxic drugs such as
CTX, or ARA-C at relatively high doses (30). Declines in
PHSC concentrations and absolute numbers to <50% of
control values were noted. Even when the repopulating
ability of PHSC was not significantly altered, ---as in the
case of vincristine or vinblastine---, drastic declines in
PHSC concentrations or numbers per donor mouse could be
observed. Such data support the hypothesis of the Hayflick
theory that suggests that all stem cells, including PHSC, are
present in finite numbers and have limited proliferative or
self-renewal capacity (31). If circumstances, e.g. cytotoxic
agent exposure, were to supervene, perhaps forcing stem
cells through excessive cycling, then exhaustion of the stem
cell pool would occur, leading to the clinical effects of
marrow hypoplasia.

4. PATHOPHYSIOLOGY EXPLORED

4.1. Chemotherapy effect on stroma

The effects of chemotherapy on the
hematopoietic microenvironment or stroma have not been
as extensively studied as the effects on hematopoietic stem
cells. It is well established that marrow fibrosis can be seen
in individuals undergoing cancer therapy with drugs (32).
Some of this change can perhaps be attributed to
hematopathology resulting from the underlying disease
(33), since myelofibrosis is sometimes a reactive
phenomenon associated with drugs, malignancy, or other
infiltrative processes. Histologic examination of marrow
biopsies has revealed that distinctive morphologic changes
occur in various cellular components of stroma after
chemotherapy. Edema, sinusoidal dilation, and large
unilocular fat cells that have developed from multilocular
preadipocytes are observed after chemotherapy (34).

Since hematopoiesis requires some degree of
cell-cell contact for its regulation or control to be effective,
it is then possible that alterations of matrix and adhesion
molecules after chemotherapy could make the
microenvironment less receptive to the stem cells which
would otherwise nest within this environment prior to
proliferating. That such disruption is possible is indicated
from data originating from several investigative groups. A
reduced capacity for hematopoietic support has been
reported after in vitro exposure of marrow stroma to VP16
(35) and busulfan (36). Gibson and colleagues detected
reduced levels of vascular cell adhesion molecule-1
(VCAM-1) on marrow stromal cells after exposure to
VPI16.

In one study, pure mouse stromal cell cultures

were treated with BCNU prior to seeding with
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hematopoietic stem cells (36). While the seeded cultures
were indistinguishable from cultures established with
untreated control cells, cells grafted onto the
chemotherapy-treated stroma were abnormal, revealing
swelling of the endoplasmic reticulum that could have been
indicative of stromal injury. In another study, already-
formed stromal monolayers were also treated with BCNU
and later seeded with hematopoietic stem cells (37).
Cultures were then examined for total adherent and non-
adherent cell and granulocyte-macrophage colony-forming
cell (GM-CFC) numbers. BCNU treatment resulted in
significant reduction in non-adherent GM-CFC numbers.
However, these adverse stromal effects occurring after
chemotherapy exposure appeared to be reversible. If stem
cell seeding of stromal layers was delayed after BCNU, no
deleterious effects on GM-CFC numbers was observed.

In experiments utilizing human stem cells,
marrow was removed from patients who had received
extensive chemotherapy. Only a small percentage (13%) of
marrow that was previously exposed to chemotherapy and
placed in long-term culture to evaluate stromal quality and
function proved capable of forming complete, confluent
stromal layers (38). Yet failure to form complete stromal
layers did not prevent hematopoietic support, since
hematopoietic reconstitution still occurred uneventfully
after transplantation. Clearly, the extent or even presence
of stromal damage after chemotherapy and its significance
need to be more fully assessed.

4.2. Ineffective DNA repair

Progression through the cell cycle, under normal
circumstances, is tightly controlled. Any deviation from
the usual sequence of events could lead to permanent
cellular damage, even death, of the cell and any resulting
progeny (40-43). If cell cycle length were drastically
shortened, as might occur with chemotherapy-induced
cycling, then it is possible that there would be insufficient
time for repair of cellular or DNA damage caused by
chemotherapeutic agents, especially those whose use leads
to disruption of DNA metabolism.

Does evidence for residual DNA damage in the
cellular genome long after the drug has been employed
exist? The chemotherapeutic agents most extensively
studied for their residual effects on DNA are the alkylating
agents such as cisplatin or cyclophosphamide. After use of
cisplatin or its analogue, carboplatin, DNA single-stranded
breaks were noted after a one-hour exposure (44). Such
breaks were repaired quickly and were eventually
eliminated, but inter-strand crosslinks persisted at low
levels for 8 or more hours. DNA-protein cross-linking was
present 24 hours later and adduct formation, especially that
of the Pt-GGadduct, persisted at 48 hours (44).

With  cyclophosphamide,  reversible  and
irreversible binding to cellular protein is observed within
one hour of exposure to the drug, and can persist for several
days after drug use (45). Lesions induced by alkylation of
the N7 position of guanine persist up to 48 hours after
exposure. (46).
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Admittedly, most damage resulting from
exposure to chemotherapy, UV- or gamma-irradiation (or
other insult) is repaired. However, several studies have
documented proof of late residual DNA damage. There is
murine data indicating the persistence of DNA mutations at
an increased frequency in bone marrow 10 days after
treatment of lambda lacZ transgenic mice with high-dose
procarbazine (47), a regimen designed to cause depletion of
the repair enzyme, O%-alkylguanine-DNA-alkyl-transferase
(AGT). Although both liver and bone marrow had
simultaneous accumulation of high levels of the DNA
mutation, repair of liver DNA took place while residual
DNA damage persisted in the marrow (47). DNA adduct
dosimetry was also measured by Fong et a/ in rats and pigs
after extended wusage of procarbazine (48). They
discovered that repair of a promutagenic lesion, O°-
methylguanine, was efficiently carried out in most tissues.
However, still detectable levels of O°-methylguanine were
reported in pig leukocytes after 4 weeks of therapy, a
finding which correlated with low levels of repair enzyme
in not only leukocytes, but also lymph nodes and brains of
treated animals.

Clinical investigations have included a study by
Tice et al who, by using single cell gel electrophoresis,
were able to identify significant, variable increases in DNA
damage in peripheral blood lymphocytes from patients who
had received cyclophosphamide and cisplatin in high doses
for treatment of breast cancer (49). Increased levels of
DNA damage were absent in most patients, indicating
probable adequate repair in the majority of individuals, but
cells having damaged DNA were still detectable in some
patients long after treatment. Similar data were obtained by
another group of investigators, who found that the elution
rate of DNA from patients’ mononuclear cells was
increased after exposure to alkylating agents, proof that
DNA strand breakage or other damage had occurred (50).
Interestingly, in some individuals’ cells, such an increase in
elution rate was apparent even before current drug exposure
had taken place, suggesting that cells which had been
previously exposed to cytotoxic therapy had persistent
although, otherwise, subtle DNA damage.

Sister chromatid exchanges (SCE), polycyclic
aromatic hydrocarbon-DNA adducts and acrolein adducts
have also been measured; these abnormalities were
increased in lymphocytes of patients who had received
cyclophosphamide, after successive courses of treatment
(51,52). The frequency of SCE is correlative with the dose
of drug used and can still be seen 21 days after treatment
(52). Platinum-DNA adducts were present in autopsy
tissue of patients receiving cisplatin up to 15 months after
the drug was last administered (53). Also, fifteen cancer
patient treated with combination chemotherapy, including
ifosfamide and cyclophosphamide, were found to have an
increased frequency of mutations in the HPRT gene, as
well as increases in detection of micronuclei, for periods of
up to 490 days after stoppage of chemotherapy (54).
Ifosfamide and cyclophosphamide were most damaging to
DNA, while equivocal findings were seen with regards to
the ability of adriamycin and bleomycin to induce DNA
damage.
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Despite this latter data, anthracycline-associated
free-radical formation results in DNA base modifications
which, while usually repaired within 24 hours of drug
exposure, can still persist, since repair of these modified
bases is not universal, leaving persistent changes which
have been held to be possibly premutagenic (55). Other
drugs implicated as causes of permanent DNA damage
include 5-azacytidine which causes a persistent
hypomethylated state and diminishes replicative potential
(56) and; epipodophyllotoxins which through illegitimate
recombination cause permanent changes in the genetic
makeup of cells that later are manifest as leukemo-or
tumorigenic effect (57, 58). Other drugs have been
reported to cause permanent DNA defects that have in turn
led to chromosomal aberrations in bone marrow cells and
spermatogonia, and may be the underlying cause of mitotic
gene conversion, mutation and later carcinogenesis (59,
60). Therefore, long-lasting DNA damage as a potential
cause for hematopoietic deficit, as well as carcinogenesis,
is not specific to alkylating agents and needs to be studied
after use of other drugs.

It is uncertain why such damage would persist. A
distinct repair bias can exist for transcriptionally active
genes, a preferentially transcribed strand, or certain genes
which correlate with a specific stage of differentiation (61-
63). An example of this bias is the preferential repair of
DNA after induction of pyrimidine dimer or intra-strand
adduct by cisplatin (62). For instance, cis-DDP lesions are
repaired far less efficiently than trans-DDP lesions, while
intra-strand cross-links d(GpG) are handled very poorly.
Or, there may be a bias for repair of certain genes which
correlate with a specific stage of differentiation (61). Thus,
it is conceivable that not all cells meet cellular
differentiative criteria or that not all DNA conforms to
transcriptional requirements necessary for repair activity to
be carried to completion, especially if such damage is
extensive. Then, too, long-lasting damage to DNA may
result from inactivation of DNA polymerase or damage to
other parts of the repair system.

There is other evidence--- inferential and
incomplete but present---- for the importance of DNA
repair (or the lack thereof) as a causative factor in residual
hematopoietic defect after alkylating agents. In humans,
very low levels of DNA repair enzymes responsible for
mismatched correction repair of the alkylation or
methylation damage of guanine after exposure to alkylating
agents, are present in hematopoietic cells (64). DNA
containing the sequence for repair enzyme was transfected
into bone marrow (and cell line) cells by Jelinek et al (65),
and Maze and his colleagues (66). Elevated enzyme
activity, expressed >4 months after transfection, conferred
chemoprotection against the cytotoxic effects of the drugs
on transfected cells and allowed recovery of colony-
forming activity to near-control levels. The transfer of the
repair gene into marrow stem cells led to modest resistance
to BCNU’s deleterious effects, as determined by lesser
reductions in marrow and spleen cellularity, lower
mortality rate and in vitro survival of high-proliferative-
potential colony-forming cells (HPP-CFC) and colony-
forming cells (CFC) (66). Unfortunately, as previously
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stated, in vitro data have certain important deficiencies and
long-term, in vivo data are needed. Transgenic mice
bearing this enzyme's gene exist and express high levels of
enzyme but have, to our knowledge, been examined mainly
for their susceptibility to tumorigenesis (67, 68).

4.3. Decreased responsiveness to normal physiologic
growth stimuli

High levels of cytokines are detectable in the
serum of patients after chemotherapy (69). Baiocchi and
others have reported that patients' own bone marrow
responds poorly to exogenous cytokine or to colony-
stimulating activity in serum if exposed previously to
chemotherapy, producing fewer CFU-GM than would
ordinarily be expected (69). Such experience either implies
there are fewer stem cells that are readily available to
respond to growth factors, or there is a type of "end-organ
failure" in which changes in stem cell behavioral
characteristics have occurred which make the cell more
resistant or less responsive to normal levels of cytokine or
growth factor. Such changes in stem cells, whether PHSC
or other early progenitor, could include declines in cytokine
gene expression, cytokine receptor levels, changes in
receptor binding affinity or in transcription factor or
oncogene induction, all of which could affect individual
cellular growth and proliferation.

4.4. Accelerated cycling at the expense of self-renewal

One alternative hypothesis that could account for
the stem cell depletion observed after chemotherapy can be
posed: temporary exhaustion of neutrophils and of late
myeloid progenitor cell pools may occur after
chemotherapy. PHSC would then be forced to terminally
differentiate at the expense of maintaining a pool of
quiescent pluripotential progenitors necessary for self-
regeneration and later re-population of those same
differentiated precursor stores. The PHSC compartment
would then suffer excessive stress. If this hypothesis were
true, then agents capable of preventing cellular turnover or
cycling of relatively committed progenitors (and indirectly
of PHSC) should allow PHSC to be spared.

Several groups of investigators have identified
naturally occurring peptides and other substances which act
as negative regulators of hematopoietic stem cells at
various stages of differentiation (70). These regulators
include the hematoregulatory peptide, pEEDCK (Glu-Glu-
Asp-Cys-Lys) (71, 72) and the tetrapeptide, acetyl-N-Ser-
Asp-Lys-Pro (AcSDKP). PEEDCK has the capability of
inhibiting myelopoiesis and bears a striking similarity to a
S-amino acid sequence in the effector domain of the alpha-
subunit of inhibitory G-proteins (73). While the dimerized
peptide indirectly stimulates hematopoiesis in vitro (74),
Paukovits and others have used the monomeric peptide to
protect hematopoietic  progenitors from damaging
chemotherapeutic effect (75). Noting that the peptide
appeared to be cytostatic towards CFU-S, perhaps having a
physiologic role in the maintenance of low levels of CFU-S
proliferation and the ability of pEEDCK to prevent ARA-
C-induced cycling of CFU-S, he and co-investigators
administered peptide to mice which then were given ARA-
C and nitrogen-mustard (75). Mice receiving both peptide
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and cytotoxic agent endured far less severe neutropenia and
had preservation or enhancement of progenitor cell activity
at the CFU-S and CFU-GM differentiative level.

AcSDKP inhibits the entry of CFU-S into the S
phase of the cell cycle, and directly prevents colony-
formation of purified human CD34'HLA-DR "& and
CD34™HLA-DR"™ cells (76). Investigators used the
peptide to protect normal hematopoietic stem cells against
the deleterious effects of cytotoxic therapy. AcSDKP was
observed to protect CFU-S after treatment with ARA-C
(77). The fact that the peptide can act selectively on
normal marrow progenitors but has no effect on leukemic
cells appears to be an added advantage to its use (78).

Similar presumptive chemoprotective properties
have been noted with other stem-cell negative regulatory
substances. The cytokine, murine macrophage inhibitory
protein-lalpha (MIP1alpha) reversibly inhibits proliferation
of CFU-S and other hematopoietic progenitors (79). The
ability of the human homologue of this protein,
rhMIPlalpha to confer protection on hematopoietic
progenitors was tested by Dunlop and others (85). They
found that MIPlalpha acted preferentially on less mature
CFU-S, inducing quiescence, or suppression of
proliferation.  After ARA-C administration, multiple
injections of rhMIPla provided significant protection to
CFU-S, resulting in enhanced recovery of peripheral blood
neutrophil counts and improved CFU numbers, as well.

Data from Kriegler et al has purported that
dexamethasone, brought about protection of hematopoietic
progenitors, as determined by in vitro assays (81). Such
protection was afforded only after repeated doses of 5-
fluorouracil but not after cyclophosphamide and seemed to
be preferentially offered to the earliest hematopoietic
progenitors studied (HPP-CFC-1>HPP-CFC-2>GM-CFC)
in a dose-and schedule-dependent fashion (81). By
effecting cell-cycle arrest, dexamethasone appeared to
prevent cell cycling and damage at a time when
chemotherapeutic agents were present at their most toxic
levels.

Unfortunately, few studies have been performed
on the progenitor subset of greatest interest (and
importance). It is not known whether such protection
offered by these substances can be extended to PHSC . To
show such protection would be the real test of the validity
of the hypothesis of “cycling vs. preservation”.
Preliminary data from our laboratory has suggested that
CFU-S only are preserved through use of dexamethasome
before 5-fluorouracil. Unfortunately, no similar protection
for PHSC has been evident (unpublished). Further studies
are underway to conclusively prove effect or lack thereof.

5. CHEMOPROTECTION

From the first realization of the severity and
potential impact of the latent, adverse hematologic
consequences of chemotherapy, the search was on for a
means of protecting PHSC from these cytotoxic effects.
Human hematopoietic cells bear high levels of the enzyme,
aldehyde dehydrogenase (82). This enzyme is responsible
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for inactivation of cyclophosphamide and is implicated in
the conferral of resistance against this drug in murine
tumors and normal cells (83-86). Cell survival of marrow
cells appears to be directly related to intracellular aldehyde
dehydrogenase levels in human leukemia cell lines (85),
but no attempts to verify benefits of elevated enzymatic
levels in mouse or man have been made, to our knowledge.

Alternatively, glutathione (GSH) levels have
been directly correlative with the ability of cells to detoxify
a number of different drugs. For example, GSH, or GSH
peroxidase or catalase may detoxify agents like
anthracyclines, such as adriamycin which act through the
production of free radicals or activated oxygen species (87-
90). GSH is also involved in the detoxification of
melphalan, an alkylating agent, perhaps through direct
interaction with melphalan, with subsequent production of
drug-thiol adducts, although this mechanism remains
speculative (94).  Again, in vivo evidence of the
effectiveness of GSH manipulation in protecting PHSC
from chemotherapy-induced toxicity does not exist.

The putative protective effect of inhibitory or
negative regulatory peptides and cytokines, such as
MIPlalpha has been discussed above. However, other
investigators have turned their attention to pharmaceutical
alternatives. One of these is amifostine, a thiol-containing
compound, first noted to protect normal tissues from
irradiation-related damage (91). Its mechanism of action is
like that previously discussed for GSH. It acts as a
scavenger of oxygen-free radicals and directly binds to and
detoxifies alkylating agents, preventing in the case of cis-
DDP, the formation of DNA adducts---fortunately, an
effect which seems to target preferentially normal cells
92).

Even norepinephrine has been examined for its
ability to protect hematopoiesis from chemotherapy effect.
Maestroni and co-investigators, in noting that marrow cells
have alpha-1-adrenoreceptors on their surfaces, gave
norepinephrine to mice that received carboplatin (93).
Protection was evident at the level of CFU-GM; survival of
mice receiving norepinephrine and carboplatin was superior
to survival of mice receiving the cytotoxic agent alone
(77% vs. 30%, respectively). Administration of the alpha-
1-adrenoreceptor antagonist, prazosin, counteracted the
chemoprotection observed with norepinephrine.

Kalechman ez al described protection of both
PHSC and stroma with the use of an immunomodulatory
compound, ammonium trichloro(dioxyethylene-O-
O’)tellurate (AS101) (94). The protection seen with AS101
presumably is mediated by endogenously secreted
cytokines, e.g. interleukin-1 (IL-1) or -6 (IL-6), tumor
necrosis factor (TNF) or stem cell factor (SCF) (95). Use
of neutralizing antibodies against these cytokines resulted
in abolition of the chemoprotective properties of AS101.

A number of cytokines, including IL-1, SCF, IL-
6, MIPIl-alpha, TNF-alpha, interferon-gamma (IFN-
gamma), interleukin-11 (IL-11), have been reported to
protect hematopoietic progenitors against the myelotoxic
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effects of chemotherapy (96-110). One possible
explanation of any putative chemoprotection observed with
the use of cytokines together with chemotherapy could be
suppression of chemotherapy-associated apoptosis in
hematopoietic stem cells (107-109). Alternatively,
cytokines which act as negative regulatory influences, e.g.
TNF-alpha or IFN-gamma could prevent cycling of cells
prior to their exposure to chemotherapeutic drugs, thus
preventing damage. DeHaan er al have proposed yet
another possible explanation (110). They hypothesized that
through the induction of active cell cycling, with ensuing
increases in both primitive and committed hematopoietic
precursors, the normal physiologic feedback loop
regulating hematopoiesis could be taken advantage of.
Eventually, cycling activity would cease after
chemotherapy use, especially for drugs which were cell-
cycle specific, in this instance 5-fluorouracil.  This
prevention of cycling would then act as a preventive for
hematopoietic damage (110).

Most evidence for chemoprotection by cytokines
stems from an observation of improved survival rates,
superior LDsy and LDy, accelerated marrow and peripheral
blood neutrophil recovery and reduced episodes of acute
toxicity. The experience with IL-1 attests to this; few
murine tests have attempted to look at repopulating activity
after IL-1 or other cytokines, in relation to cytotoxic drug
use. Exceptions to this general rule do exist, however. For
instance, Gardner investigated the ability of IFN-gamma,
given as a single dose, to protect PHSC using the
competitive repopulating assay (106). Addition of IFN-
gamma to the treatment with cyclophosphamide improved
repopulating ability of PHSC, with repopulating ability of
treated marrow returning to levels comparable to control
marrow.

Hornung and Longo tested various combinations
of cyclophosphamide, IL-1 and granulocyte-macrophage
colony-stimulating  factor (GM-CSF), wusing serial
transplantation to examine marrow repopulating ability
(120). Over a 12 week period, biweekly injections of
cyclophosphamide with or without cytokines were
administered to mice. Bone marrow cells of mice so
treated were subjected to 3 serial transfers. After the third
transfer, survival of mice was significantly lower in mice
treated with CTX alone, as were bone marrow cell numbers
and CFU-C content.  Alarmingly, these parameters
declined even more dramatically with the addition of GM-
or G-CSF to the treatment regimen. If IL-1 were
administered prior to drug and GM-(or granulocyte (-G))
CSF, restoration of function was noted. Incidentally, IL-1
pre-administration by itself appeared to offer little
protection and may even have proven deleterious.
Confirmation of these results is, of course, greatly needed.
Cytokines are increasingly being used in clinical oncologic
settings in an attempt to ameliorate the myelosuppressive
effects of chemotherapy. Because of the constraints of
methodology, clinical correlation has been lacking.
Schwartz and others attempted to assess the clinical
efficacy of combined chemotherapy/cytokine usage (5-
fluorouracil, leucovorin, doxorubicin and CTX [FLAC] and
PIXY321, a synthetic cytokine resulting from the fusion of
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the GM-CSF and interleukin-3 (IL-3) genes). Their
assessment, limited by the use of in vitro assays and thus
restricted to measurement of only the more committed
progenitors, was that cytokine did not relieve the
suppression or toxicity of chemotherapy for either CD34"
cells or committed progenitors (112).

Experimental variance may lead to differences in
cytokine effect, i.e. if there is chemoprotection or not, since
the timing of administration may give starkly contrasting
results. As an example, SCF while reported as
chemoprotective has been observed to be extremely toxic to
PHSC, if administered prior to chemotherapy (113), while
IL-1 may fail to protect PHSC adequately unless given at
least 20-24 hours before cytotoxic drug administration
(103).

If cytokines are found to have deleterious effects
on PHSC, this conclusion would have significant
implications for the clinician. As stated, no significant
clinical damage is apparent, as of this writing, but the usage
of cytokines is still relatively recent and unfortunately
without controlled trial or full knowledge of the
hematologic sequelae (124).  Further investigation is
necessary to elucidate their role and ultimate effect.
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