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1. ABSTRACT

Increased airway smooth muscle mass has been
demonstrated in patients with bronchopulmonary dysplasia
and asthma. These data highlight the need for a precise
understanding of the events involved in airway smooth
muscle mitogenesis. To that end, investigators have
developed cell culture systems adopting tracheal and
bronchial myocytes from different species. A growing
body of literature suggests that common signal transduction
pathways regulate airway smooth muscle cell cycle entry
across species lines. This review summarizes what is
known about mitogen-activated signal transduction in
airway smooth muscle cells. The extracellular signal
regulated kinase (ERK) and phosphatidylinositol 3-kinase
(Pl 3-kinase) pathways appear to be maor positive
regulators of airway smooth muscle proliferation. It isaso
conceivable that growth factor stimulation of airway
smooth muscle simultaneously €licits signaling through
negative regulatory pathways such as the p38 mitogen-
activated protein (MAP) kinase pathway, perhaps as a
safeguard against excessive growth.

2. INTRODUCTION

Growing airways are covered with a well-formed
layer of smooth muscle cells by the end of the embryonic
period of feta lung development (1). With airway
circumferential and axial growth, this layer increases in
size, a result of both cellular hypertrophy and hyperplasia.
It has been demonstrated that smooth muscle mass is
abnormally increased in the airways of premature infants
with bronchopulmonary dysplasia (2, 3), due in part to
excess cell proliferation (4). Data describing the growth of
arway smooth muscle during norma  postnatal
development are lacking, however.
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Increased airway smooth muscle mass has also
been demonstrated in patients with non-fatal (5) and fatal
asthma (5-13). In the most convincing study to date, Ebina
and colleagues (13) examined the airway thickness and
smooth muscle cell number of patients with fatal asthma
using dtate-of-the-art stereological techniques. Two
subgroups of asthmatic airways were found, one in which
smooth muscle mass was increased only in the centra
bronchi (Type I) and another in which smooth muscle
thickness was increased throughout the airway tree (Type
I). In Type I, smooth muscle hyperplasia was responsible
for central airway smooth muscle thickening, whereas in
Type 1, celular hypertrophy was present over the length of
the airway tree.

Increased expression of epidermal growth factor
(EGF), a mitogen for human airway smooth muscle (14),
has been noted in the airways of asthmatic patients (15, 16).
In addition, when added to cultured human airway smooth
muscle cells, bronchoalveolar lavage fluid from asthmatic
airways increased the ERK activation, cyclin D; protein
abundance, [*H]-thymidine incorporation and cell number,
relative to that from control subjects (17). Finally, excess
arway smooth muscle DNA synthesis has been
demonstrated in two anima models of airways disease,
hyperoxic exposure and allergen sensitization (18-20).

Taken together, the above data strongly suggest
that excess smooth muscle proliferation is present in the
airways of patients with bronchopulmonary dysplasia and
asthma, and highlight the need for a precise understanding
of the events involved in arway smooth muscle
mitogenesis. To that end, investigators have developed cell
culture systems adopting tracheal and bronchial myocytes
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from different species. A growing body of literature
suggests that common signal transduction pathways
regulate airway smooth muscle cell cycle entry across
species lines. A summary of mitogen-activated signal
transduction in airway smooth muscle follows below.

3. BRIEF OVERVIEW OF
REGULATION

CELL CYCLE

Regulation of mammalian cell proliferation by
extracellular signals occurs in the transition from Gy to G;
of the cell cycle A key event in this transition is
phosphorylation of the 110 kD retinoblastoma protein (Rb)
by the cyclin Di/cyclin-dependent kinase-4 (cdk4) dimer.
Cyclin Dy, cdk4, proliferating cell nuclear antigen (PCNA)
and a cyclin-dependent kinase inhibitor, p21°", are
induced as part of the delayed early response to mitogenic
stimulation (21). The cyclin D;/cdk4 dimer titrates p27%iP,
another inhibitor of cdk activity (22), and also enters into
complexes with PCNA and p21°"* (23, 24). PCNA is a
cofactor of DNA polymerase delta (25). p21°P* may act as
an assembly factor, promoting binding of cyclin D; with
cdk4. As G; progresses, p27¢" is degraded by the
ubiquitin-proteasome pathway (26). Once enough cyclin
D, and cdk4 are synthesized and enough p27""* degraded,
steric inhibition by p27Kipl is exceeded, leading to
phosphorylation and activation of cdk4 by cdk4-activating
kinase (CAK) (27, 28). Activation of cdk4, in turn, leads to
hyperphosphorylation of Rb (29), a key regulator of S
phase traversal. Rb is phosphorylated near the G1/S
restriction point and accumulates phosphate until cells exit
from mitosis (30). Once phosphorylated, Rb releases the
transcription factors E2F1-3, which activate genes required
for DNA replication such as DNA polymerase alpha (31).
Titration of p27 by cyclin D,/cdk4 aso frees cyclin E/cdk2
complexes, which contribute to Rb phosphorylation and the
modification of preinitiation complexes which trigger DNA
replication (32). Finaly, inlate Gy, cyclin A isinduced and
assembles with cdk2, marking the irreversible decision to
enter S phase (GL1 restriction point) (33).

Ectopic overexpression of either cyclin D or
cyclin E accelerates progression through G and reduces the
proliferative requirement for serum-derived growth factors
(34-36). Conversely, abolition of cyclin D or cyclin E
activity through the use of neutralizing antibodies or
antisense oligonucleotides effectively blocks entry into S
phase (34, 37, 38). The requirement of cyclin D; for S
phase traversa has been confirmed in bovine tracheal
myocytes (39).

4. GROWTH FACTOR STIMULATION OF
AIRWAY SMOOTH MUSCLE CELLS

Many studies have focused on smooth muscle
cell proliferation in response to growth factor stimulation.
Airway smooth muscle cells proliferate in response to
peptide growth factors ligating receptor tyrosine kinases
(40-43) as well as to bronchoconstrictor substances
associated with G protein-coupled seven transmembrane
receptors (44-51). Sensitivity to growth factor activation
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appears to be species-specific. For instance, histamine is
mitogenic for human airway smooth muscle (51, 52), but
does not induce proliferation in bovine cels (41).
Nevertheless, the signaling pathways and downstream
targets initiated by growth factor stimulation appear to be
remarkably constant across species lines (see below).

For the last five years, our laboratory has
concentrated on the signaling pathways responsible for
PDGF-induced DNA synthesis in bovine tracheal
myocytes. We will therefore focus on this system as a
model of airway smooth muscle proliferation. The PDGF
receptor comprises two distinct chains (A and B) which are
dimerized by a disulfide bond, and can exist in three
possible isoforms, AA, AB, or BB. Typicaly, growth
factor binding to a receptor tyrosine kinase activates the
receptor's intracellular kinase domain, leading to the
phosphorylation of specific tyrosine residues inside the
kinase domain. Ligand binding of PDGF induces
formation of a stable receptor dimer, which in turn causes
one receptor molecule to phosphorylate the other in the
dimer (53). EGF, a monomeric molecule, likely binds
simultaneously to two receptor molecules (54).
Phosphorylation of tyrosine residues inside the kinase
domain further increases kinase activity, leading to
phosphorylation of other sites in the receptor outside the
kinase domain (55). These phosphotyrosine residues serve
as hinding sites for downstream signal transduction
molecules containing Src-homology 2 (SH2) domains. For
example, the PDGF receptor holds nine phosphotyrosine
domains, one which is important for receptor tyrosine
kinase activity and eight which interact with different
signal transduction proteins. The latter include the growth
factor receptor binding protein Grb2, phosphatidylinositol
3-kinase, phospholipase C-gamma, the GTPase-activating
protein GAP, the Src tyrosine kinase, and protein tyrosine
phosphatase 1D (56). We have characterized signaling
pathways stemming from three of these PDGF receptor
binding proteins (see below).

5. ROLE OF THE ERK SIGNALING PATHWAY IN
CELL CYCLE PROGRESSION

Grb2 is found in a stable complex with the
nucleotide exchange factor Son of sevenless (Sos).
Binding of this complex to the receptor tyrosine kinase
induces Sos to bind to Ras, a 21 kD membrane-bound
GTPase. Once activated, Ras may activate a number of
downstream signaling pathways, including the extracellular
signal regulated kinase (ERK) pathway (figure 1). ERKs
are members of the mitogen-activated protein (MAP)
kinase superfamily of cytosolic serine/threonine kinases
that participate in the transduction of growth and
differentiation-promoting signals to the cell nucleus. ERK
activation has been shown to be required for DNA
synthesis in a wide variety of cell systems, including
bovine, rat and human airway smooth muscle (45, 57-60).
The classical route to ERK activation involves Ras, Raf-1,
a 74 kD cytoplasmic serine/threonine kinase, and MAP
kinase/ERK kinase kinase (MEK)-1, a 45 kD dual function
kinase. Severa reports confirm that these intermediates are
involved in ERK activation in airway smooth muscle.
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Figure 1. Model illustrating three signaling pathways regulating transcription from the cyclin D; promoter in airway smooth
muscle. The ERK and Racl/Pl 3-kinase pathways positively regulate cyclin D; expression (pathways 1 and 2, respectively); a
third pathway, the p38 pathway, negatively regulates transcription from the cyclin D, promoter. Potential pathways of crosstalk
are shown by the broad grey arrows. MEKK refers to a specific MAP kinase kinase kinase called MAP kinase/ERK kinase

kinase; MKKK refers to a generic MAP kinase kinase kinase.

Microinjection of the anti-pan Ras neutralizing antibody
inhibited DNA synthesis in human airway smooth muscle
cells (61), and overexpression of a dominant-negative form
of H-Ras inhibited PDGF-mediated ERK activation in
bovine tracheal myocytes (62). (Interestingly, Ras did not
appear to be necessary for phorbol ester-induced ERK
activation.) Overexpression of a kinase-dead mutant of Raf-
1 inhibited endothelin-induced ERK activation in rat
tracheal myocytes (44). Finally, chemical or dominant-
negative inhibition of MEK-1 inhibits ERK activation and
DNA synthesis in bovine, rat and human airway smooth
muscle cells (45, 57-60).

One point a which bovine tracheal myocyte
signaling may diverge from other cell types concerns the
activation of MEK-1. Activation of MEK-1 occurred
independently of Raf-1 in these cells (63) and instead
involves anovel MEK-1 kinase (64).

Although activated ERK has been demonstrated
to induce phosphorylation or associate with numerous
nuclear transcription factors, the precise downstream
targets of ERK in airway smooth muscle cells are not
known. However, asin other cell types (65-67), it has been
demonstrated in bovine tracheal myocytes that ERK
activation is an upstream activator of transcription from the
cyclin D; promoter (68). Thus, the ERK pathway appears
to constitute an important regulator of entry into the cell
cycle and G1 progression in airway smooth muscle.

In NIH 3T3 cells, constitutive activation of
MEK-1, while sufficient to increase ERK activation and
expression of cyclin D, is insufficient for maximal
phosphorylation of the retinoblastoma protein, degradation
of the cyclin dependent kinase inhibitor p27, and cyclin A
expression (69). Furthermore Ras, but not ERK was shown
to be required for growth factor-induced degradation of p27
in [1C9 fibroblasts (70). Finaly, ectopic overexpression of
cyclin D is insufficient for S-phase traversal (34, 36).
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Taken together, these data suggest that the ERK/cyclin Dy
pathway is insufficient for cell cycle progression, and that
Ras coordinates cell cycle progression by regulating
signaling through both ERK-dependent and ERK-
independent signaling pathways.

6. ROLE OF PI 3-KINASE

PI3-kinase is a heterodimeric lipid kinase comprised
of an 85 kD regulatory subunit and a 110 kD catalytic subunit
which phosphorylates phosphatidylinositol at the D-3 hydroxyl
of the inodtol ring, forming the phosphatidylinositides
phosphatidylinositol 3-phosphate, phosphatidylinositol 3,4
diphosphate and phosphatidylinositol 3,4,5-triphosphate.  As
noted above, ligation of the PDGF receptor may induce
binding and activation of Pl 3-kinase (figure 1). Ras has
also been noted to interact with Pl 3-kinase (71). Growth
factors activate Pl 3-kinase in human (43, 72) and bovine
airway smooth muscle cells (73). Chemical inhibitors of PI
3-kinase, wortmannin and LY294002, inhibit airway
smooth muscle cyclin D; expression (73) and DNA
synthesis  (73-75). Overexpression of the catalytic
subdomain of Pl 3-kinase in bovine tracheal myocytes
induced transcription from the cyclin D, promoter but
failed to activate ERK (73), suggesting that Pl 3-kinase
signaling occurs independently of ERK. Similarly,
wortmannin and LY-294002 markedly inhibited EGF-
induced Pl 3-kinase activation in human airway smooth
muscle cells but had no effect on ERK activation (75).

7.ROLE OF RAC1

Phosphoinositide products of Pl 3-kinase may
also influence the translocation of guanine nucleotide
exchange factors, the upstream activators of GTPases
(figure 1) (76). The Rho family GTPases (Rho A-C, Racl
and 2, and Cdc42), through their regulation of the actin
cytoskeleton and interactions with multiple target proteins,
may influence cell cycle progression. In Swiss 3T3
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fibroblasts, Racl is required for cell cycle progression (77,
78). In addition, Racl (79) and Cdc42, but not RhoA (C.
Bauerfeld, K. Page, M. Hershenson, unpublished data) have
been shown to function as upstream activators of cyclin Dy
expression in bovine tracheal myocytes.

Racl forms part of the NADPH oxidase complex
that generates reactive oxygen species such as H,0.,.
Intracellular reactive oxygen intermediates are increased
following growth factor treatment of both bovine (79) and
rat tracheal myocytes (80). Accordingly, treatment with
antioxidants attenuates both growth factor induced cyclin
D, expression and DNA synthesis in these cells (79, 80).
Overexpression of active Racl does not activate ERK in
bovine tracheal myocytes, and Racl-induced transcription
from the cyclin D; promoter is insensitive to the chemical
MEK inhibitor PD98059 (79), suggesting that Racl-
mediated cell cycle progression, like that following
activation of Pl 3-kinase, isindependent of ERK activity.

8. INHIBITION OF AIRWAY SMOOTH MUSCLE
CELL PROLIFERATION

Substances which induce a sustained increase in
the intracellular concentration of cyclic AMP (cCAMP) have
been long known to inhibit airway smooth muscle growth
(52, 81-87). However, the precise mechanism by which
this occurs is unknown. In bovine tracheal myocytes, pre-
treatment with forskolin decreases cyclin D; protein
abundance and promoter activity while inducing the
phosphorylation and DNA binding of cAMP response
element binding protein (CREB)-1. Taken together, these
data suggest that cAMP suppresses cyclin D; gene
expression via phosphorylation and transactivation of
CREB. However, it remains unclear whether this is the
primary mechanism of cAMP-induced growth inhibition, or
whether the inhibition of upstream signaling pathways is
involved. cAMP does not inhibit growth factor-induced
activation of ERKs in bovine (63) or rat (58) airway
smooth muscle, suggesting that the effect of CAMP on
growth does not involve the ERK signaling pathway.
Glucocorticoids aso inhibit human airway smooth muscle
cyclin D; expression and DNA synthesis in an ERK-
independent manner (88). On the other hand, Pl 3-kinase
(74) has been shown to be cCAMP-sensitive.

Growth factor treatment of airway smooth muscle
cells also induces activation of the two stress-activated
MAP kinases, p38 and Jun amino-terminal kinase (JNK)
(47, 62, 89), consistent with the notion that these
intermediates, like ERKs, play a role in the growth
regulation (figure 1). However, based on the other types of
signals which activate p38 and INK (céllular stress and
proinflammatory cytokines), it is possible that these
pathways are involved in growth inhibition, rather than
mitogenesis (see below). The p38 MAP kinase family now
consists of four isoforms. p38apha was originaly
identified in  lipopolysaccharide-stimulated ~ mouse
macrophages and was found to have substantial homology
to the yeast high osmolarity glycerol kinase (90-93). Since
then, three additional isoforms, beta, gamma and delta have
been cloned (94-97). p38apha, beta and delta are
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somewhat ubiquitously expressed, whereas p38gamma is
primarily restricted to skeletal muscle (96). The p38 MAP
kinases are phosphorylated and activated by MAP kinase
kinase (MKK)-3, MKK-4, and MKK-6. MKK-6 appears to
strongly activate al p38 isoforms, whereas MKK-3
preferentially activates p38alpha and beta (98-102). MKK-
4 appears to phosphorylate and activate both INK1 and
p38apha (92, 93). A number of distinct MAP kinase kinase
kinases have been found to activate MKK-3 and MKK-6,
including MAP kinase/ERK kinase kinase (MEKK)-1 (103,
104), mixed lineage kinase (MLK)-2 (104) and MLK-3
(105), MAP three kinase (MTK)-1 (106), apoptosis signal-
regulating kinase (ASK) (107) and TAK-1, a potential
mediator of TGF-beta signaling (108).

We have recently obtained data suggesting that
selective activation of p38 inhibits airway smooth muscle
cell cycle progression (109), as it does in CCL39 hamster
lung fibroblasts (67). Chemica inhibition of p38 by
SB202190 and SB203580 increased transcription from the
cyclin D, promoter and cyclin D; protein abundance.
Furthermore, transient transfection of bovine myocytes
with dominant-negative forms of MKK3 or MKK6
increased transcription from the cyclin D; promoter. On
the other hand, overexpression of constitutively active
mutants of MKK3 or MKK6 decreased both basa and
PDGF-mediated cyclin D, promoter activity. Since cyclin
D, is a critical regulator of cell cycle progression (39),
these data suggest that p38 is an important negative
regulator of cell cycle progression in airway smooth muscle
cells.

Paradoxically, p38 may be stimulated by Ras and Racl (62,
110-112), suggesting that GTPases may simultaneously
activate positive and negative growth regulatory pathways,
perhaps as a safeguard against excessive growth.

9. POTENTIAL ROLE OF PROTEIN KINASE C
(PKC) ISOFORMS

PKC is a complex family including three types of
isoenzymes. The conventiond isoforms (dpha, beta,, beta,
and gamma) are activated by cacium, phorbol esters and
phosphatidylserine, whereas the nove isoforms (delta, epsilon,
eta, theta and mu) are cacium-insensitive and activated by
phorbol esters and phosphatidylserine. The atypical isoforms
(zeta, tau/lambda) are calcium and phorbol ester-insengitive
and activated by phosphatidylserine. PKC dpha, beta, betay,
delta, epsilon, and zeta, but not gamma or eta, are expressed in
bovine trachea myocytes (113), whereas PKC apha, beta,
beta,, delta, epsilon, theta, eta, zeta, tau and mu have each been
identified in human trached myocytes (114). Conventiona
and novel PKCs may be activated in vivo by diacylglyceral
that is formed from phospholipids upon receptor-mediated
activation of phospholipases. As noted above, ligand binding
of the PDGF receptor leads to the phosphorylation of tyrosine
resdues which then serve as binding dtes for sgnd
transduction molecules containing Src-homology 2 (SH2)
domains, including phospholipase C-gamma.  Accordingly,
growth factor stimulation has been noted to activate PKC
delta in vascular smooth muscle (115), NIH 3T3 cells and
monocytes (116).
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Different PKC isoforms may have distinct roles in
the regulation of cell proliferation. For example, PKCzeta
activity increases in proliferating human airway smooth
muscle (114). In NIH3T3 cels, PKCepsilon is a powerful
growth stimulus, whereas PKCapha and delta inhibit growth
(117). PKCddta adso inhibits cdl cycle progression in
vascular smooth muscle cells (118), capillary endothelia cels
(119) and ra colonic epithdia cdls (120). Findly, in
preliminary studies, we have found that overexpresson of
active PK Cdelta attenuates growth factor-induced transcription
from the cyclin D, promoter, perhaps via the aforementioned
p38 inhibitory pathway (K. Page, M. Hershenson, unpublished
data).

10. PERSPECTIVE

In recent years, the signaling pathways regulating
airway smooth muscle growth have been elucidated.
Although the substances mitogenic for airway smooth
muscle may vary across species lines, the signal
transduction mechanisms linking receptor ligation with
DNA synthesis appear to be highly conserved. For
example, the ERK and Pl 3-kinase signaling pathways
appear to congtitute the major paths required for cell
proliferation in both human (60, 72, 121) and bovine
airway smooth muscle cells (57, 73, 74).

The signaing pathways regulaing cell proliferation
appear to be comparable in vascular and airway smooth muscle.
Activation of ERK and Pl 3-kinase has been shown to be
required for vascular smooth muscle proliferation (122-124), and
inhibition of proliferation by cAMP occurs via suppresson of
cydin D; expression (125, 126), as it does in airway smooth
muscle (87). Findly, reactive oxygen pecies may be criticd for
vascular smooth muscle cell mitogenic signding (127, 128), as
they are in arway myocytes (79). Perhaps these species and
tissue amilarities are to be expected, as many aspects of MAP
kinase cascades, GTPase sgnding pahways and cel cycle
regulation are highly conserved in eukaryotic species, including
mammads, Drosophila, nematodes and yeest (129-135).

Data are lacking regarding the roles of cydlins and
their inhibitors in lung diseases. As might be expected,
expression of cydin D; atisense RNA retards lung cancer
growth (136, 137). In rodents exposed to hyperoxia, whole lung
p21Cipl accumulates during hyperoxic exposure (138), whereas
after exposure, dvedlar epithdid cdl cycin D; expresson
increases, coincident with proliferative repair (139). Findly, as
noted above, bronchodveolar lavage fluid from asthmetic
arways increases cultured human airway smooth muscle cdll
cydlin D, protein abundance relative to that from control subjects
(17). Elucidation of the sgnd transduction and cel cycle
mechaniams regulating airway smooth muscle growth may
provideinsight into similar mechanismsthat occur inthe airways
of patients with bronchopulmonary dysplasia and chronic severe
asthma, and lead to thergpeutic interventions.
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