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1 ABSTRACT

A large number of hormones, neurotransmitters
and other signal substances utilize adenosine 3’,5’ cyclic
monophosphate (cAMP) as an intracellular second
messenger. Cyclic AMP regulates a number of different
cellular processes such as cell growth and differentiation,
ion channel conductivity, synaptic release of
neurotransmitters, and gene transcription.The principle
intracellular target for cAMP in mammalian cells is the
cAMP-dependent protein kinase (PKA). The fact that this
broad specificity protein kinase mediates a number of
discrete physiological responses following cAMP-
engagement, has raised the question of how specificity is
maintained in the cAMP/PKA system. Here we will
describe features of this signaling pathway that may
contribute to explain how differential effects of cAMP may
be contributed to features of the PKA signaling pathway.

2. CYCLIC AMP AND THE cAMP-DEPENDENT
PROTEIN KINASE (PKA) SIGNALING SYSTEM

Reversible protein phosphorylation is a key
regulatory mechanism in eukaryotic cells. Protein
phosphorylation was first demonstrated to regulate the
activity of glycogen phosphorylase in response to glucagon
(1,2). A heat-stable factor mediating the effect of glucagon
on the phosphorylation status of glycogen phosphorylase
was next identified as 3',5'-cyclic adenosine
monophosphate (cAMP) (3), and the concept of cAMP as
an intracellular second messenger to a wide range of
hormones, neurotransmitters, and other signaling
substances was developed (4). Cyclic AMP activates a

class of cyclic nucleotide gated ion channels (5-7) as well
as the guanine exchanging factors Epac1 and Epac2
(exchanging protein directly activated by cAMP) that
regulates the activity of the small G-protein Rap1 (8,9).
However the principle cAMP receptor in mammalian cells
with which the majority of biological effects of cAMP have
been associated, is cAMP-dependent protein kinase (PKA;
EC 2.7.1.37) (10) (Figure 1). In the absence of cAMP, PKA
is an enzymatically inactive tetrameric holoenzyme
consisting of two catalytic subunits (C) bound to a
regulatory subunit (R) dimer (Figure 2). Cyclic AMP binds
co-operatively to two sites on each R protomer (for review,
see (11,12)). Upon binding of four molecules of cAMP, the
enzyme dissociates into an R subunit dimer with four
molecules of cAMP bound and two free, active C subunits
that phosphorylate serine and threonine residues on specific
substrate proteins.

At present, the cAMP/PKA-signaling pathway is
known to be activated by a number of different receptors that
upon binding of their respective ligands, transduce signals over
the cell membrane by coupling to G-proteins. These G-proteins
interact with adenylyl cyclase on the inner membrane surface
either to activate or to inhibit the production of cAMP.
Receptors that activates PKA through generation of cAMP,
regulates a vast number of cellular processes such as
metabolism (13), gene regulation (14), cell growth and division
(15), cell differentiation (16,17), and sperm motility (18), as
well as ion channel conductivity (19). Therefore, a major
question has been to understand how specificity is maintained
in this second messenger system.
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Figure 1. Cyclic adenosine 3’,5’-monophosphate (cAMP)
is generated from ATP when a ligand binds to a G-protein
coupled receptor (Receptor 1 and Receptor 2) that activates
adenylyl cyclase (AC). Free cAMP may stimulate and
alter the activity of three different cAMP receptor
molecules which includes ion channels, Epac which
regulates the Rap1 guanine-nucleotide-exhanging factor
and various PKA holoenzymes. PKA is considered the
major target for cAMP action. RI, RII and C denotes
subunits of PKA.

Figure 2. Cyclic AMP-dependent protein kinase (PKA) is a
holoenzyme consisting of a regulatory (R) subunit dimer
and two catalytic (C) subunits. Activation of PKA occurs
when four molecules of cAMP bind to the R subunit dimer,
two to each subunit, in a positive cooperative fashion.
When both cAMP binding sites (A and B) are occupied the
R subunit adopts a confirmation with low affinity for the C
subunit and the holoenzyme dissociates. The relation
between free C subunits, the R subunit dimer and the intact
holoenzyme is an equilibrium which is determined by
several factors, that include cAMP levels, the relative
concentration of PKA subunits, in addition to salt
concentration, pH and temperature.

3. ISOZYMES OF PKA
Initially, two different isozymes of PKA, termed

type I and II (PKAI and PKAII, respectively), were
identified based on their pattern of elution from DEAE-
cellulose columns (20,21). The PKAI and PKAII, eluting at
salt concentrations between 25 and 50 mM and 150 and
200 mM NaCl, respectively, were shown to contain C
subunits associated with two different R subunits, termed
RI and RII (11). However, molecular cloning techniques
have revealed a great heterogeneity in both R and C
subunits, which open up for a multiplicity of PKA
isozymes.

3.1.  Multiple isoforms of regulatory and catalytic
subunits of PKA

Cloning of cDNAs for regulatory subunits have
identified two RI subunits termed RIα (22,23) and RIβ
(24,25) and two RII subunits termed RIIα (26,27) and RIIβ
(28,29) as separate gene products. The RIα and RIβ
subunits are dissimilar, but reveal high homology (81 %
identity at the amino acid level) as do the RIIα and RIIβ
subunits (68 % identity at the amino acid level). Recently,
alternative splice variants of the RIα subunit have been
demonstrated. RIα cDNAs with different leader exons and
differentially regulated initiation from two promoters of the
RIα gene was shown (30).

Furthermore, two distinct C subunits were
initially identified by molecular cloning, and were
designated. Cα (31) and Cβ (32,33). The cloning of the Cα
and Cβ subunits from human testis by low homology
screening also revealed an additional C subunit, designated
Cγ? (34-35). Moreover, a novel human X chromosome-
encoded protein kinase X (PrKX) was identified (36). This
kinase forms a holoenzyme that can be activated by cAMP
exclusively with the RI subunit, defining PRKX1 as a novel
PKA C subunit isoform. A homologue gene is present at
the Y-chromosome, and additional genes encoding proteins
highly similar to PRKX1 is present on the X-chromosome,
indicating the possibility of additional isoforms of C.

Splice variants of both Cα and Cβ have been
reported. Three splice variants designated Cα1, Cα2 and
Cα-s have been identified (37,38). Cα2 was cloned from
interferon-treated cells and was shown to be catalytically
inactive due to truncation of the C-terminal region resulting
in a 224 amino acid protein and may thus represent a
pseudogene or translocation of little significance. In
contrast, the Cα-s subunit isolated from ovine sperm
flagellum was shown to be catalytically active (38). Cα-s,
which has been identified and cloned from human sperm
(39), is an N-terminally truncated form of Cα with an
apparent molecular mass of 39-kDa. The Cα and Cα-s are
different in the N-terminal most probably due to alternative
use of two different forms of exon 1 of the Cα gene (39). In
the case of the Cβisoform, several splice variants have been
identified in different species. In the bovine, the isoform
bCβ was first identified and is homologous to the human,
rat and mouse Cβ variant. In addition to bCβ, a bCβ2
variant has been identified and cloned (20). Bovine Cβ and
bCβ2 are dissimilar in the N-terminal end presumably due
to alternative use of two different forms of exon 1, as is the
case for the Cα and Cα-s isoforms. From the cDNA
sequence of bCβ and bCβ2 one would expect the presence
of proteins of approximately 40 kDa (bCβ) and 47 kDa
(bCβ2), respectively. In the mouse, one splice variant
(mCβ1) that is ubiquitously expressed and the brain
specific splice variants of Cβ (mCβ2 and mCβ3) were
identified and cloned (40). Mouse Cβ1 is homologous to
the previously described Cβ isoform from human, rat and
bovine (32). Mouse Cβ2 and mCβ3 are truncated in the N-
terminal end when compared to the mCβ1 isoform. The
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differences are due to alternative use of exon 1 in the mCβ
gene (40). Both mCβ2 and mCβ3 have been demonstrated
as proteins of relative molecular mass of 38-kDa.

3.2. Features of the regulatory and the catalytic
subunits of PKA
3.2.1. Structure of the regulatory subunits

The RI and RII subunits contain an amino
terminal dimerization domain, a region responsible for
interaction with the C subunit, and in the carboxy terminus,
two tandem cAMP binding sites, termed sites A and B
(41,42). Dimerization was initially discovered by the fact
that proteolytic cleavage in the hinge region of the
molecule would produce a monomeric R subunit with
cAMP binding activity (43). For the RI subunits,
dimerization further involves stable α helix configuration
by amino acids 12 through 61. As evident from in vitro
studies, disulfide bridges between Cys16 and Cys37 on
opposite strands indicate an anti-parallel orientation of the
dimer, whether such disulfide bonds are present in the
intracellular environment remain elusive (44). Dimerization
of the RII subunit is antiparallel, but does not involve
cysteine bridges. A recent study shows that the N-terminal
amino acids 1 through 44 of RIIα encompassed both the
dimerization interface as well as the interaction with A-
kinase anchoring proteins (AKAPs, see below). By solution
NMR it was demonstrated that amino acids 1-44 of RIIα
form an X-type four-helix bundle dimerization motif with
an extended hydrophobic face at the N-teminal end where
the hydrophobic face of the AKAP amphipatic helix docks
in (45).

Association of the R and the C subunit involves
two different mechanisms of interaction. One mechanism
depends on acidic residues between amino acids 15 and
258 in the R subunit which make electrostatic interactions
with specific domains in the C subunit (46). In addition, the
hinge region of both the RI and RII molecules is involved
in binding to the substrate binding site of the C subunit.
Interestingly, RII but not RI is autophosphorylated by the C
subunit.

Of the two tandem cAMP binding sites that are
located in the C-terminal domain, only site B is exposed in
the inactive tetrameric PKA complex (reviewed in (12)).
Binding of cAMP to this site enhances binding of cAMP to
the A site in a positively co-operative fashion, as a result of
a conformational change in the molecule. The
characteristics of the two cAMP binding sites have been
described in detail elsewhere (reviewed in (11,12)) as have
the relative affinities and site selectivities of a wide array of
chemically modified cAMP analogs (47). The crystal
structure of a monomeric RI deletion mutant (∆1-91) that
was refined to 2.8 Å, has been reported (48,49), and
provides a model to study cAMP- binding.

3.2.2. Structure of the catalytic subunits
With the exception of Cα2, all the C subunits

retain the catalytic core motif common to all protein
kinases (50,51). The crystal structure of the murine Cα
subunit was the first protein kinase crystal structure
available (52) and has served as a template for modeling of

several other kinases. The crystal structure of Cα
demonstrates this protein as a nearly globular protein with
two lobes in addition to a free rotating domain consisting of
the N-terminal 50 amino acids encoded by exon 1 and some
of exon 2 (52). The small, amino terminal lobe of the C
subunit is involved in MgATP-binding, whereas the larger
carboxy terminal lobe is involved in peptide binding and
catalysis. Both MgATP and the peptide come together for
catalysis in the cleft between the two lobes.

Myristylation of the C subunit was initially
thought to be important for stabilization of the C subunit by
embedding of the myristyl group in a hydrophobic cleft in
the globular protein (53,54). An amino terminal Gly serves
as a site for myristylation in Cα1 and Cβ1, but not in other
splice variants as, e.g. mCβ3 (40). Mouse Cβ3 is not
myristylated most probably due to the fact that the most
amino terminal sequence is (H2N- Gly-Leu-X-) and not
(H2N-Gly-Asn-X-) as is the case for Cα and Cβ1 (55).
Thus, the importance of myristylation for structural
stability and activity in vivo may be questioned since
several splice variants do not have motifs allowing N-
terminal myristylation, yet they are fully catalytically
active. It may be speculated that the myristyl group serves
to increase the lipofilic properties of the C subunit when
binding the RII- but not the RI subunit, by altering the
conformation and exposing the myristyl group (56).

A conserved autophosphorylation motif (-Lys-
Lys-Gly-Ser10-) is encoded by exon 1 in both Cα1 and Cβ1
(57) and at Thr 9 in Cγ (34). Interestingly, site directed
mutatation of Cα1 in Ser10 resulted in decreased activity as
well as reduced solubility of the protein, implying an
important role for Ser10 phosphorylation (57). Despite this,
it may be questioned to what extent Ser10 phosphorylation
is required for in vivo activity of all C subunits since it is
not present in Cβ2 and Cβ3, which are both enzymatically
active (40). All the C subunits except Cγ contain a domain
that is capable of binding PKI through interaction with
several amino acids including Arg133 (58). PKI, which
contains a NES (nuclear export signal), has the ability of
transporting the C subunit from the nucleus to the cytosol
and serves as a major regulator of C subunit activity (59).
Interestingly, Cγ has a Gln in position 133 instead of Arg,
and it has been shown that Cγ does not bind PKI and may
thus not be exported from the nucleus (60).

Although the Cα1 and the Cβ1 isoforms are 91 %
identical in amino acid sequence, Cα1 exhibits a 3-5 fold
lower Km for certain peptide substrates and a 3 fold lower
IC50 for inhibition by the protein kinase inhibitor PKI and
RIIα than does the Cβ1 (61). This suggests unique features
associated with the various C subunits, which may imply
that they may exhibit different functions in vivo.

4. LEVELS AND EXPRESSION OF THE
REGULATORY AND CATALYTIC SUBUNITS

In several cells and tissues at various stages of
development and differentiation extensive studies have
been performed in order to demonstrate differential
expression of R and C subunits. In an early study by Cadd
(62) it was demonstrated that in mice RIα is expressed in
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the heart and central nervous system (CNS), whereas RIβ
expression is more restricted to nervous tissues such as the
spinal cord and the brain. Furthermore, RIIα and RIIβ are
both expressed in the brain, and show distinct patterns of
expression with RIIα predominantly expressed in the heart
and RIIβ expressed in the liver and fat tissue (63). During
male germ cell differentiation a distinct pattern of
expression of PKA subunits is demonstrated. The C subunit
isoforms Cα-s and Cγ are expressed exclusively in male
germ cells primarily in late pachytene spermatocytes and
haploid cells (35). RIα is expressed in early haploid cells
and RIIα is expressed later in spermatogenesis during
spermatid elongation (64).

Levels of expression of the different PKA
subunits are subject to regulation by hormones acting
through G-protein coupled receptors (65-67), mitogenic
signals through receptors associated with protein tyrosine
kinases (PTK) (68) as well as by steroid hormones (69).
Regulation of PKA by hormones acting through cAMP
may serve as an autologous sensitization/-desensitization
mechanism of the cAMP effector system. Interestingly it
has been shown that cAMP mediated regulation of PKA
subunits acts through gene transcription (70,71) and mRNA
stability (72), as well as altered stability of the R and C
proteins after dissociation of the holoenzyme by cAMP
(71,73). Protein kinase C represents another major
signaling pathway in cells and cross talk between these two
signaling systems is seen beyond cAMP at the level of
PKA (74,75).

Upstream regulatory sequences have been
reported for the genes encoding RIα (30,76), RIβ (77),
RIIα (78), RIIβ (79,80), Cα (81), Cβ (81), and Cγ (35). All
these genes except Cγ have GC-rich and TATA-less
promoters which, are characteristics of highly regulated
genes expressed at a low level. Furthermore, the human
gene for RIα has two promoters directing expression of two
alternate initiated RIα mRNAs with different 5’ non-
translated regions. The two different promoters provide a
more complex regulation of the RIα mRNA and proteins
(30,82).

The RIα gene seems to be regulated by cAMP
with similar characteristics as the cAMP response element
(CRE) regulated c-fos gene. The 5'-flanking sequence of
the RIα gene also contains a consensus CRE that is
conserved between pig (76) and man (30). Furthermore,
cloning of an alternatively spliced mRNA with a different
leader exon leads to the identification of two alternatively
initiated promoters in the RIα gene that are differentially
regulated (30). In contrast, the RIIβ gene has a regulation
by cAMP distinct from that of RIα and c-fos, and belongs
to a group of genes, which respond to cAMP with slower
kinetics and have cAMP-responsive regions distinct from
the classical CRE, TRE, and AP-2 elements (83-85). Thus,
regulation of the RIIβ gene by FSH and cAMP have been
subject to extensive studies in granulosa- and Sertoli cells
where a 10 to 50-fold induction of its mRNA is seen
(28,70,86). Studies of the transcriptional regulation of the
RIIβ gene revealed that the cAMP-responsiveness resides

within a distinct region upstream of the translation
initiation codon (79). In fact it was discovered that a novel
mechanism was operative in regulation of RIIβ
responsiveness by which FSH regulates response genes
through immediate early upregulation of C/EBP-β (87).

Lymphoid cells have proved to serve as good
model systems to study how mitogenic signals regulate the
levels of PKA subunits. T lymphocytes are activated to
proliferation, differentiation and effector function through
the T cell antigen receptor CD3 (TCR/CD3) complex (68).
These cells were shown to express both PKA I and II,
consisting of RIα2C2 and RIIα2C2, respectively (88). Upon
T cell receptor triggering, an initial peak of cAMP and PKA
activity is observed that may serve as an acute negative
modulator and a negative feedback of signaling through the
TCR/CD3 complex (68,89). This is followed by regulatory
changes of R and C subunit levels revealed as a decrease (40-
45%) in PKA specific phosphotransferase activity, which is
coincided with a decrease in the levels of immunoreactive C
and a marked decrease (50-80%) in the Cβ but not Cα mRNA
levels within 3 hours of stimulation (68). Similar reciprocal
regulation of level of RIα mRNA and protein was observed in
a panel of lymphoid cell lines investigated for PKA
regulation, levels of cAMP and cell growth rate (90).

5. PKA ISOZYME COMPOSITION AND
CHARACTERISTICS

It is generally assumed that the C subunits associate
freely with dimers of all the R subunits. However, PKAI
holoenzymes are more readily dissociated by cAMP  in vitro
than PKAII holoenzymes (11,91). Furthermore, when RII is
over-expressed in NIH 3T3 cells, the C subunit will preferably
bind to RII, whereas RI will be present as free dimers (92). The
mechanism for this observation may involve several features
such as lower sensitivity of PKAII to cAMP compared to
PKAI and differential kinetics of association/dissociation
influenced by salt and MgATP between the two holoenzyme
types (reviewed in (12)). This indicates that PKAII
holoenzymes are assembled preferentially over PKAI under
physiological conditions. Despite this, it was recently shown
that ablation of the RIIβ and RIβ subunits by gene targeting
(knockout, KO), did not result in quantitative compensation by
RIIα in the RIIβ KO or by RII in the RIβ KO as would be
expected. Instead, Amieux et al. (93) could demonstrate
induction of RIα and PKAI assembly in both the RIβ and the
RIIβ KO as a result of a 4-5-fold increase in the half-life of
RIα protein when binding to the C subunit. Together, this
demonstrates that complex mechanisms influenced by multiple
factors are governing to what extent PKAI and PKAII
assembly is preferred in vivo.

It has been reported that PKAI (RIα2C2 and
RIβ2C2) and PKAII (RIIα2C2 and RIIβ2C2) holoenzymes
have distinct biochemical properties. RIβ containing
holoenzymes are 2 to 7-fold more sensitive to cyclic
nucleotides than are RIα containing holoenzymes (94-96).
In addition, RIIα and RIIβ holoenzymes elute from DEAE-
cellulose columns at different positions in the PKAII area,
and RIIα expressed at high levels will compete with RIIβ
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Figure 3. Cyclic AMP-dependent protein kinase II (PKAII)
is targeted to different subcellular compartments through
binding to A kinase anchoring proteins (AKAPs). At
present more than 20 AKAPs have been cloned and it has
been suggested that some cells may express as many as 10
to 15 different AKAPs located to different compartments.
These compartments may include the nucleus
(AKAP95/n150), cytoskeleton (AKAP78, ezrin, MAP2),
centrosome (AKAP450/350/CG-NAP), ion channels
(AKAP15/18), peroxisomes (AKAP220), the Golgi
(AKAP85), mitochondria (AKAP84/149), endoplasmatic
reticulum (ER, AKAP100) and membranes (AKAP79/75).

in binding the C subunit, indicating either a higher affinity
for the C subunit or a higher threshold for cAMP induced
dissociation (97).

Finally, the presence of an isozyme consisting of
an RIα-RIβ heterodimer with associated
phosphotransferase activity has been reported (98).
Interestingly, this isozyme elutes at the position of PKAII
by DEAE-cellulose chromatography, implying different
biochemical properties of holoenzymes containing R-
subunit heterodimers compared to R-subunit homodimers.

Taken together this demonstrates the existence of
multiple R and C subunits harboring different biochemical
features and activities. When assembled, they may give rise
to a number of PKA holoenzymes with different biological
characteristics and activities. A number of different PKA
holoenzyme may certainly account for some of the
specificity seen in the cAMP/PKA signaling pathway.

6 SPECIFIC EFFECTS OF CAMP ARE MEDIATED
THROUGH SUBCELLULARLY ANCHORED PKA
ISOZYMES

Although an increasing number of reports
demonstrate specific effects mediated by a particular PKA
isozyme, most of these reports imply that such effects are
associated with differential expression and subcellular
localization of various PKA isozymes (Figure 3). We will
briefly discuss to what extent regulatory effects of cAMP
depends on specific PKA isozymes that requires subcellular
anchoring.

6.1. PKAI mediates specific effects of cAMP at distinct
subcellular sites
                It is generally assumed that compartmentalization
of PKA is mediated through binding of the R subunit to
subcellular components (99). Furthermore, it is also
thought that PKAI (RIα2C2, RIβ2C2) is soluble and
preferentially located to the cytosol (100). Lymphoid cells
have proved to be a good model system to study the
specificity in cAMP signaling mediated by PKAI. Cell
growth of normal lymphoid cells and a number of
lymphoid cell lines including the B lymphoid cell line Reh
are inhibited by cAMP (90,98). In Reh cells proliferation
was inhibited by stable transfection with Cα, an effect that
could be counteracted by cotransfection of a dominant
negative mutant of RIα, that does not bind cAMP (101).
Experiments in normal T and B-lymphocytes further
showed that cAMP-dependent activation of PKAI, but not
PKAII, was necessary and sufficient to inhibit proliferation
induced through the antigen receptor complex on both T
cells (TCR/CD3) and B cells (BCR/Ig). In addition to this,
it has been demonstrated that dysfunction of T cells
isolated from patients with HIV (human immune deficiency
virus) and CVI (common variable immunodeficiency)
could be reversed by addition of PKAI antagonists
(102,103). Specifically, combination of PKAI selective
antagonist and IL-2 normalize immune function of T cells
from all patients examined (104). This implies an important
role of cAMP in regulating antigen receptor induced
proliferation and clonal expansion of lymphoid cells and
testifies to the role of PKAI in mediating these effects. In
support of the role of PKAI in mediating specific effects of
cAMP in leukocytes it has been demonstrated that cAMP-
dependent inhibition of natural killer (NK) cell
cytotoxicity is mediated by PKAI (105), and that PKAI
mediates cAMP-induced apoptosis of a myeloid
leukemia cell line (IPC-81) (106). Further evidence for
specific roles of PKAI in vivo were obtained when mice
null mutated for the RIβ subunit was generated. These
animals appeared healthy and fertile, but examination of
brain slices revealed that they had lost the ability to
undergo long term depression (LTD) in the Schaffer
collateral pathway of the hippocampus. RIα, RIIα and
RIIβ are also expressed in the hippocampus (62) but
appears unable to compensate functionally for the loss
of RIβ (107). Also, when comparing synaptic plasticity
in the developing visual cortex in normal and RIβ null
mutated mice, it was observed abnormalities in
extracellularly recorded LTP, LTD and pair-pulse
facilitation (108). Finally, in RIβ null mutant mice it
was shown that this subunit was necessary to produce
the full response to tissue injury-evoked pain in contrast
to nerve injury-evoked pain, suggesting a distinct role of
RIβ containing PKA holoenzyme in sensory nerves
(109). In summary, these studies imply that
holoenzymes containing RIα or RIβ appears to differ
functionally from other isozymes of PKA, further
providing evidence for cAMP effects mediated through
specific isozymes of PKAI in vivo.

The mechanism for specific effects of cAMP
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mediated by PKAI has been suggested to involve
subcellular localization of this enzyme. Quiescent T-
and B cells contain soluble PKAI (RIα2Cβ2/Cα2) and
particulate PKAII (RIIα2Cβ2/Cα2) in a proportion of 3:1
(47,88,110). When activated through the antigen
receptor, RIα translocates from the cytosol and
associates with the antigen complex of both T and B
cells (110,111). Despite that this implies PKAI-specific
AKAPs in lymphoid cells, no such proteins have yet
been identified in these cells. However, PKAI-specific
AKAP binding site has recently been reported in the
sperm AKAP FSC1 (112) and a PKAI-specific AKAP
was reported from C. elegans designated AKAP-CE
(113). Furthermore, dual-specific AKAPs, which bind
both RI and RII, have been identified. These includes
the fibrous sheath polypeptide of mouse sperm (FSC1)
also designated AKAP82. FSC1/AKAP82 binds RII
with high affinity but in addition contains an RI-binding
site as discussed above (114-116). Furthermore, Huang
and coworkers (117,118) have by using two-hybrid
screening and RIα as bait cloned and identified two
dual-specific AKAPs designated D-AKAP1 and D-
AKAP2. They could demonstrate that these AKAPs
associate with both RI and RII subunits and that binding
requires an R subunit dimer with an intact N-terminal
domain (119). D-AKAP1 has identity to the previously
cloned S-AKAP84/AKAP121/AKAP149 shown to bind
RII (120-122), which all are splice variants of the same
gene. These AKAPs targets PKA to the mitochondria
and endoplasmic reticulum (120,121). Interestingly, a
previous report describes PKAI-specific acute regulation
of Leydig cell steroidogenesis, which includes
regulation of cholesterol transport across mitochondrial
membranes and regulation of the rate-limiting p450ssc
enzyme on the inner mitochondrial membane (123).
Furthermore, it was recently demonstrated that
phosphorylation and inactivation of the proapoptotic
molecule BAD requires mitochondria-anchored PKA
(124) making it interesting to speculate if D-AKAP1 or
other PKAI-AKAPs mediates targeted PKA (type I?)-
specific mitochondrial effects. In addition, D-AKAP2 is
assumed to be a member of a new protein family
ubiquitously expressed at all embryonic stages as well
as in all tissues of the adult. D-AKAP2 contains an R
subunit interaction domain as well as a RGS (regulator
of G protein signaling) domain. The latter may imply D-
AKAP2 as a site for coupling G protein-dependent
cAMP formation and specific effects of PKA in
different cells.

Apart from the studies on lymphoid cells and
Leydig cells indicating that specific effects of cAMP are
mediated by anchored PKAI, no direct evidence has
been provided which demonstrate that cellular effects of
cAMP associated with anchored PKAI. This may be
explained by studies done on characterization of the
interaction domain of D-AKAP1 with the various R
subunits (125). This demonstrated that the affinity of RI
for D-AKAP1 is 2 orders of magnitude lower than that
of RII. Thus, it is likely that RI association with D-
AKAP1 only occurs in the absence of RII in vivo, but
that other PKAI-specific AKAPs may exist.

6.2. PKAII is targeted to subcellular structures via A
kinase anchoring proteins (AKAPs) and mediates
discrete cAMP responses

PKAII has been demonstrated to mediate specific
effects of cAMP on distinct cellular functions by the use of
cAMP analogs that acts synergistically to activate either
PKAI or PKAII. The first report documented that cAMP-
mediated regulation of lipolysis in adipocytes was mediated
by synergistic activation PKAII and not PKAI (126).
Interestingly, similar effects have been shown in vivo in
adipose tissue of mice lacking the RIIβ subunit (63,127).
These studies points to PKAIIβ as the holoenzyme
mediating cAMP effects at the level of cultured cells as
well as in intact animals. In other systems, such as sperm
cells, is has proved difficult to dissect which PKA isozyme
is mediating the various effects of cAMP on function and
motility. This may be due to the fact that RII specific- and
dual-specific AKAPs such as AKAP82 (115), AKAP121,
AKAP149 (D-AKAP1), FSC1, AKAP110 (128) and
AKAP220 (129) are differentially located in various
compartments of the cell. In addition, results have
demonstrated overlapping expression patterns between the
RI and RII isofoms in sperm (128,130). Despite this, a
previous study demonstrated that incubating normal sperm
with the synthetic peptide S-Ht31 that is able to penetrate
the cell membrane, completely impair motility (131). This
suggests that sperm motility require anchored PKA.

The role and specificity of cAMP/PKA signaling
in neuronal tissues have been under thorough investigation
in order to understand behavior and learning. To solve
these very complicated questions models employing
learning deficient Drosophila mutants were initially used.
Amongst several, two mutants were identified that had
defects in the phosphodiesterase encoded by the dunce+
gene and the Ca2+ sensitive adenylyl cyclase encoded by
the rutabaga gene (132,133). Since then, a number of
studies have been performed in the snail Aplysia
demonstrating that cAMP/PKA activity is required for
establishing learning and memory. In particular, these
studies have demonstrated the important role of the
cAMP/PKA signaling pathway as a mediator of short-term
modifications by phosphorylation of ion channels and long-
term modifications requiring protein synthesis and synaptic
remodeling. In more complex systems such as mammals,
the role of cAMP/PKA has been monitored in cultured
neurons and in neurons of discrete sections of the brain. In
most areas of the brain RIIβ is expressed at different levels.
In the motor neurons of the striatum which requires cAMP
for optimal synaptic response to dopaminergic drugs, the
RIIβ containing PKAII holoenzyme is expressed at high
levels. Studies on RIIβ KO mice demonstrated that motor
learning and the regulation of neuronal gene expression
require RIIβ containing PKA holoenzymes, whereas the
acute locomotor effects of dopaminergic drugs were
relatively unaffected by this PKA deficiency (134).
Moreover, when treated with haloperidol, RIIβ ablated
mice were unable to induce the acute cataleptic response
normally observed in rodents and which is seen as an
adverse effect in human. This occurred through interference
with synthesis and release, and indicates a direct role for
RIIβ containing PKAII as a mediator of haloperidol-
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induced gene expression and cataleptic behavior (135). In
these studies, the effect of gene targeting reflects the
requirement for RIIβ in order to mediate specific effects of
cAMP in nervous tissue, but does not explore to what
extent anchoring is required. This is in contrast to an earlier
study by Rosenmund et al. (136) who demonstrated that
PKAII anchoring is necessary for cAMP-mediated
regulation of AMPA (α-amino-3-hydroxy-5-methyl-4-
isoxazole-propionic acid)/kainate Ca2+-channels in cultured
hippocampal neurons. This study was the first
demonstration that anchoring of PKAII is crucial for the
regulation of cellular events.

In neuronal tissue of the CNS as well as the
peripheral nervous system (PNS) several AKAPs have been
identified. Microtubule-associated protein 2 (MAP2) was
the first protein identified as an AKAP in brain and was
shown to anchor PKAIIβ (137). Furthermore, the human
AKAP79 (and ortologs AKAP75 /AKAP150 in bovine and
mouse, respectively) (138-141) has been identified in brain
where it predominantly is expressed in cerebral cortex.
AKAP79 was first identified located to the post-synaptic
densities (PSD) that are structures on the internal surface of
excitatory synapses beneath the post-synaptic membrane
where it has been implicated in regulation of various ion
channels (AMPA/kainate receptors, L-type Ca2+ channels)
as has several anchoring proteins such as AKAP18 (L-type
Ca2+ channels), Yotiao (NMDA-receptor NR1 subunit) and
ezrin (CFTR) (142). Thus, several AKAPs may be located
post-synaptically in a number of different cells that are
innervated, including muscle fibres (neuromuscular
junction) and cardiomyocytes (143). AKAP79 is expressed
in a number of non-neuronal tissues, suggesting that it
participates also in functions other than those of the
nervous system (144,145). AKAP79 is located to the cell
membrane in different cell types through interaction with
phosphatidylinositol-4, 5-bisphosphate (146) and to cortical
actin (144). Furthermore, AKAP150/AKAP75 by
localization of PKAII, transmits cAMP signals to the
nucleus (147). In addition, the ROMK1 channel in the
kidney, which is believed to be a native K+ secretory
channel, is also associated with AKAP79 (148). Finally,
AKAP79 also tethers PKAII to β-adrenergic receptors
(149). Anchoring as a requirement for PKAI to mediate
specific effects of cAMP has in most cases been
demonstrated with studies on ion channels. However,
PKAII and not PKAI have been shown to localize with the
Golgi-centrosomal area in most cells implying that PKAII
is associated with mediating effects of cAMP on cell
metabolism and cellular trafficking and microtubule
dynamics (150-152). Interestingly, we have recently
revealed a differential distribution of RIIα and RIIβ in the
Golgi-centrosomal area (153), demonstrating that RIIβ is
located to centrosomes in differentiated but not in
undifferentiated cells, whereas RIIα is associated with
centrosomes as well as to the trans-Golgi network in both
differentiated and undifferentiated cells. In the latter case
RIIα was localized with microtubule associated vesicles.
Together, this may imply that PKAII isozymes containing
either RIIα or RIIβ may be associated with different
functions with respect to vesicle transport and cell cycle
control. The lipid anchored AKAP15/18 has three splice

variants designated α, β and γ which show differential
localization to the apical and basolateal membrane
compartments (154-158) which implicates sorting of
AKAP18 through the Golgi and into targeted vesicles.
Also, Golgi fractionation studies led to characterization of a
yet unidentified 85-kDa AKAP that may be responsible for
the abundance of PKA in this area (159).

Colocalization and coimmunoprecipitation of
RIIα with CDK1 (the mitotic kinase p34cdc2) has been
reported (160). Both RIIα and RIIβ have recently been
demonstrated as substrates for cdc2 kinase  in
vitro(161,162). Moreover, in the case of RIIα
phosphorylation, Keryer et al. (153) could demonstrate that
this R subunit is hyperphosphorylated on Thr54 by CDK1
at metaphase and that this occurs concomitantly with
dissociation of RIIα with the centrosome. Taken together
with other reports, these studies suggest that the level of
PKAII and its localization during the cell cycle is pivotal.
Initially an RII anchoring protein of approximately 350
kDa was identified at the protein level and found to locate
PKAII to centrosomes (163). This AKAP has been shown
to be identical to a 453-kDa protein which was recently
cloned and characterized by several groups and was
designated AKAP450/AKAP350/CG-NAP (164-166). The
gene encoding AKAP450 was shown to harbor coding
sequence for the previously published shorter splice variant
Yotiao which is located to the neuromuscular junction and
synapses of neurons (167) where it mediates cAMP effects
on the NMDA receptor (168). AKAP450 was shown to be
associated with the centrosome and Golgi structures and
may through anchoring of various PKAII isoenzymes, be
important for the regulation of microtubule stability and
Golgi function. A very recent study reports that another
protein in the pericentriolar matrix, pericentrin, is
implicated in centrosomal targeting of PKA via a novel
PKA binding domain that involve several Leu residue
clusters spaced over approximately 100 amino acids instead
of an amphipatic helix region (169).

 Recent studies show that the nuclear AKAP95
(170) is redistributed from nuclear matrix and associates
with the condensing chromatin upon mitosis entry and
before nuclear envelope breakdown (171). Use of immuno-
blocking antibodies demonstrated that AKAP95 but not
PKA was required for chromatin condensation and that
AKAP95 associated with condensins. Furthermore,
AKAP95 recruited PKAIIα onto condensed chromatin after
nuclear envelope breakdown, and PKA was required for
maintenance of condensed chromatin throughout mitosis.

7. AKAPS ASSEMBLE SIGNAL COMPLEXES
IMPORTANT FOR INTRACELLULAR SIGNALING

It has been established that AKAPs also targets
other molecules important for intracellular signaling to
subcellular domains. In the case of AKAP79, this protein
has been identified as a molecule able to target the
phosphatase calcineurin (PP2B) (172) and the protein
kinase, PKC (164), to cellular membrane structures. In this
way AKAP79 has been shown to serve as a regulator of
PP2B-dependent NFAT activity (173) and Ca2+/
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Calmodulin-dependent PKC activity (174). Moreover,
recently it was shown that AKAP79/150 anchors PKAII,
PKC and PP2B to the β2-adrenoreceptor, facilitating
receptor phosphorylation and down stream signaling (149).
AKAP75, AKAP220 and AKAP250 (Gravin) are also
shown to target signaling molecules to cellular structures.
AKAP75 was found to colocalize with adenylyl cyclase
(145), whereas AKAP250 have high sequence homology to
proteins that bind PKC (175). Interestingly, AKAP250 also
associated with β-adrenoreceptor and mediates regulation
of protein kinase and phosphatase activity associated with
G-protein coupled receptors (57,175). Finally, AKAP220
has been shown to associate with type 1 protein
phosphatase (PP1) in the rat (176) revealing this AKAP as
a protein locating phosphatase activity presumably to
peroxysomes (177).

Together this demonstrate that AKAPs may
orchestrate tight regulation of several proteins that may
serve as substrates for PKA and enzymes that are important
for signal transduction in various cells.

8. CONCLUDING REMARKS

In summary, this brief review describes by the
use of a few examples how multiple PKA isozymes
withdifferent biochemical properties and targeted in the cell
by association with various AKAPs may convey specificity
in the cAMP signaling pathway. It should, however, be
mentioned that there are many more examples of how PKA
by association with other AKAPs may mediate specific
effects of cAMP. In the future, it will be important to
understand molecular determinants for preferential
association between the various PKA isozymes and the
different AKAPs. Furthermore, specificity may not only be
mediated by R-anchoring to AKAPs. It was recently
reported that ablation of Cβ in mouse produced animals
with altered LTD and LTP in the hippocampus (178). This
together with the observation that Cα-s is only expressed in
sperm and is targeted to the sperm flagellum (38) may
imply specific functions associated with features of the C
subunit as well. Finally, the recent report demonstrating
that cAMP can induce events that are independent of PKA,
such as regulation of ion channel activity and GEF activity
(7-9) and that the PKA C subunit can be activated
independently of cAMP (179) indicate complex pathways
mediating effects of cAMP.
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